
Citation: Kato, R.; Tsumuraya, T.

Dirac Cone Formation in

Single-Component Molecular

Conductors Based on Metal

Dithiolene Complexes.

Magnetochemistry 2023, 9, 174.

https://doi.org/10.3390/

magnetochemistry9070174

Academic Editor: Laura C. J. Pereira

Received: 11 June 2023

Revised: 25 June 2023

Accepted: 26 June 2023

Published: 6 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

magnetochemistry

Article

Dirac Cone Formation in Single-Component Molecular
Conductors Based on Metal Dithiolene Complexes
Reizo Kato 1,* and Takao Tsumuraya 2,3,*

1 Condensed Molecular Materials Laboratory RIKEN, Saitama 351-0198, Japan
2 Priority Organization for lnnovation and Excellence (POIE), Kumamoto University, 2-39-1 Kurokami,

Kumamoto 860-8555, Japan
3 Magnesium Research Center, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
* Correspondence: reizo@riken.jp (R.K.); tsumu@kumamoto-u.ac.jp (T.T.)

Abstract: Single-component molecular conductors exhibit a strong connection to the Dirac electron
system. The formation of Dirac cones in single-component molecular conductors relies on (1) the
crossing of HOMO and LUMO bands and (2) the presence of nodes in the HOMO–LUMO couplings.
In this study, we investigated the possibility of Dirac cone formation in two single-component molec-
ular conductors derived from nickel complexes with extended tetrathiafulvalenedithiolate ligands,
[Ni(tmdt)2] and [Ni(btdt)2], using tight-biding models and first-principles density-functional theory
(DFT) calculations. The tight-binding model predicts the emergence of Dirac cones in both systems,
which is associated with the stretcher bond type molecular arrangement. The DFT calculations also
indicate the formation of Dirac cones in both systems. In the case of [Ni(btdt)2], the DFT calculations,
employing a vdW-DF2 functional, reveal the formation of Dirac cones near the Fermi level in the
nonmagnetic state after structural optimization. Furthermore, the DFT calculations, by utilizing
the range-separated hybrid functional, confirm the antiferromagnetic stability in [Ni(btdt)2], as
observed experimentally.

Keywords: Dirac electron systems; single-component molecular conductors; metal dithiolene com-
plexes; tight-binding model; first-principles DFT calculation

1. Introduction

The conventional molecular conductors are categorized as multi-component systems
wherein each molecule provides only one type of frontier molecular orbital (HOMO or
LUMO) to form the conduction band, where HOMO and LUMO denote highest occupied
molecular orbital and lowest unoccupied molecular orbital, respectively. The concept of
a single-component molecular metal is based on a multi-orbital system in which more
than two molecular orbitals (in this case, HOMO and LUMO) in the same molecule con-
tribute to electronic properties. In a single-component molecular metal, the fully occupied
HOMO band and the empty LUMO band overlap, and electron transfer between them
induces a partially filled state. This idea was confirmed by the observation of electron and
hole pockets in an ambient-pressure single-component molecular (semi)metal [Ni(tmdt)2]
(tmdt = trimethylenetetrathiafulvalenedithiolate: Scheme 1) through the detection of quan-
tum oscillations at the begging of this century [1–4]. Since this breakthrough, various
single-component molecular conductors have been developed by extending π conjugat-
ing systems to reduce the HOMO-LUMO energy gap, or by applying high pressure to
increase the band width for each band. In particular, metal dithiolene complexes with a
planar central core have played an important role due to their small HOMO-LUMO energy
gap [5,6].

On the other hand, the Dirac electron system, typically observed in graphene, exhibits
neither partially filled bands, like in metals, nor band gaps, like in insulators. The energy
band structure of the Dirac electron system possesses a unique feature known as the Dirac
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cone, where two conical surfaces with linear dispersion meet at a single point called the
Dirac point in momentum space. A system in which the Dirac point forms extended lines
or loops in the Brillouin zone is referred to as a nodal line semimetal, and has garnered
significant attention due to the possibility of topologically nontrivial states [7,8].

The discovery of the nodal line semimetal state in a single-component molecular
conductor [Pd(dddt)2] (dddt = 5,6-dihydro-1,4-dithiin-2,3-dithiolate: Scheme 1) under
high pressure has revealed a significant connection between single-component molecular
conductors and the Dirac electron system [9]. The Dirac cone formation in [Pd(dddt)2] can
be understood using a tight-binding model based on extended Hückel molecular orbital
calculations [10]. This mechanism relies on (1) the crossing of the HOMO and LUMO
bands and (2) the presence of nodes in the HOMO–LUMO couplings, which favor the emer-
gence of Dirac cones located near the Fermi level. Subsequently, an ambient-pressure
nodal line semimetal based on a single-component molecular conductor [Pt(dmdt)2]
(dmdt = dimethyltetrathiafulvalenedithiolate: Scheme 1) was reported [11]. Our analysis
using tight-binding band calculations indicated that this system exemplifies the mecha-
nism proposed by us in a textbook manner [12]. An important aspect is the molecular
arrangement (Figure 1) associated with the symmetry of the frontier molecular orbitals
in [Pt(dmdt)2], which satisfies the requirements for the Dirac cone formation. Within the
bc plane, [Pt(dmdt)2] molecules exhibit a stretcher bond pattern wherein each molecule
overlaps with the molecule above and below it by half (Figure 1a). Transfer integrals
labeled p and c are associated with major intermolecular interactions and form a two-
dimensional conducting network (we tentatively call this network “layer”). Dirac cones are
described on the ky-kz plane, and nodal lines extend along the kx direction. As the HOMO
has ungerade (odd) symmetry and the LUMO has gerade (even) symmetry (Figure 1b),
the main HOMO–HOMO and LUMO–LUMO couplings (p and c) yield transfer integrals
with opposite signs (Table 1), facilitating the crossing of the HOMO and LUMO bands,
which is the first requirement for Dirac cone formation. In this work, we focus on two
single-component molecular conductors derived from metal complexes with extended
tetrathiafulvalenedithiolate ligands, [Ni(tmdt)2] and [Ni(btdt)2] (btdt = benzotetrathiaful-
valenedithiolate: Scheme 1) [13], that exhibit molecular arrangements similar to that in
[Pt(dmdt)2]. The former is a (semi)metal, and the latter is a narrow-gap semiconductor with
high conductivity at room temperature. We explore the possibility of Dirac cone formation
in these compounds by means of tight-biding models and first-principles density functional
theory (DFT) calculations.
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tc 67.1 −62.9 64.9 
ta −6.2 −6.5 0.3 
tq1 8.2 −7.4 7.8 
tq2 8.2 −7.7 7.9 
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Figure 1. Crystal structure of [Pt(dmdt)2]: (a) Molecular arrangement within the bc plane, (b) HOMO–
HOMO and LUMO–LUMO couplings in the stretcher bond arrangement of the [Pt(dmdt)2] molecule,
where each frontier molecular orbital is represented using the p orbital of sulfur atom, (c) end-on
projection (molecular arrangement viewed from the long molecular axis). Each element is identified
by color as follows: S, yellow; C, gray; H, blue; Pt, magenta.

Table 1. HOMO–HOMO (H-H), LUMO–LUMO (L-L), and HOMO–LUMO (H-L) intermolecular
transfer integrals (t) in [Pt(dmdt)2] (meV). 1

Transfer Integral H-H L-L H-L

tp 53.4 −49.8 51.7
tc 67.1 −62.9 64.9
ta −6.2 −6.5 0.3
tq1 8.2 −7.4 7.8
tq2 8.2 −7.7 7.9

1 See Figure 1c. Transfer integrals in this table are used in Equations (2)–(4) with subscripts H-H, L-L, and H-L,
which represent HOMO–HOMO, LUMO–LUMO, and HOMO–LUMO couplings, respectively (for example, tpH-H
means a transfer integral tp between HOMO and HOMO).
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2. Models and Methods
2.1. Tight-Binding Model

We used published atomic coordinates data [1,13] for our calculations. In order to
make a comparison with [Pt(dmdt)2] easier, each unit cell (ao, bo, co) was transformed to a
new cell (a, b, c), as follows:

a = ao, b = bo, c = ao + co for [Ni(tmdt)2]
a = ao, b = ao + bo, c = co for [Ni(btdt)2].
In the tight-binding model, we consider one HOMO band and one LUMO band,

because the unit cell contains only one molecule. Calculations of molecular orbitals and
intermolecular overlap integrals (S) between HOMOs and LUMOs undertaken via the
extended Hückel method were carried out using reported sets of semi-empirical parameters
for Slater-type atomic orbitals and valence shell ionization potentials for H [14], C [14],
Ni [14] and S [15]. Intermolecular transfer integrals, t (eV), were estimated using the
equation t = –10 S. The band energies E(k) (k is given by k = kxa* + kyb* + kzc* in terms of
the reciprocal lattice vectors a*, b*, and c*) are obtained as eigenvalues of the following
2 × 2 Hermitian matrix.

H(k) =
(

hH-H hH-L
hH-L hL-L

)
(1)

For [Pt(dmdt)2], the matrix elements are given by

hH-H = 2 [tpH-H cosk(b + c) + tcH-H coskc + taH-H coska + tq1H-H cosk(a + c) + tq2H-H cosk(−a + b + c)] (2)

hH-L = 2i [tpH-L sink(b + c) + tcH-L sinkc + taH-L sinka + tq1H-L sink(a + c) + tq2H-L sink(−a + b + c)] (3)

hL-L = ∆ + 2 [tpL-L cosk(b + c) + tcL-L coskc + taL-L coska + tq1L-L cosk(a + c) + tq2L-L cosk(−a + b + c)], (4)

where ∆ is an energy gap between HOMO and LUMO (0.25 eV for [Pt(dmdt)2]). Matrix
elements hH-H, hL-L, and hH-L are associated with HOMO–HOMO, LUMO–LUMO, and
HOMO–LUMO couplings, respectively.

2.2. DFT Calculations

We utilized various methods in our first-principles DFT calculations. To plot the Dirac
cones in [Ni(tmdt)2] and [Ni(btdt)2], we performed band structure calculations using an
all-electron full-potential linearized plane wave (FLAPW) method implemented in QMD-
FLAPW12 [16,17]. The exchange-correlation functional employed was the generalized
gradient approximation by Perdew, Burke, and Ernzerhof (GGA-PBE) [18]. We have found
that a cut-off energy for plane waves of 20 Ry is sufficient for calculating the band structure.
The cut-off energy for electron densities is assumed to be 213 Ry. For [Ni(tmdt)2] and
[Ni(btdt)2], we employed uniform k-point meshes of 6 × 6 × 4 and 8 × 8 × 4, respectively.
Since the c axis direction is longer than the a and b directions in these crystal structures, the
reciprocal lattice vector is shorter, allowing for a reduced number of k-point meshes along
the c direction. To calculate three-dimensional band dispersion of the Dirac cone, we used
a high-density k-mesh, similar to our previous works [19,20].

For [Ni(btdt)2] at ambient pressure, we performed structural relaxation using the van
der Waals density functional (vdW-DF2) [21–23]. Specifically, we chose the vdW-DF2- b86r
functional proposed by Hamada [24]. The calculations were carried out using the Quantum
Espresso v.6.8 [25]. We employed the ultrasoft pseudopotential method with plane-wave
basis sets. Ultrasoft pseudopotentials established by Garrity, Bennett, Rabe, and Vanderbilt
(GBRV) were used [26]. During the structural relaxations, a uniform k-point mesh was set
as 4 × 4 × 2. When performing structural optimization with stress tensors, it is crucial
to use a fixed number of plane waves based on the initial lattice parameters rather than a
constant cut-off energy, as the latter can introduce significant errors in the calculated stress
tensors [27]. To minimize errors in the calculated stress tensors, we used higher cut-off
energies for plane waves, specifically, 60 Ry. The cut-off energy for electron densities was
set to 488 Ry.
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To investigate the stability of antiferromagnetic (AFM) ordering and the possible
realization of the semiconducting phase in [Ni(btdt)2], we employed a hybrid functional
approach using the exchange-correlation functional set out by Heyd, Scuseria, and Ernzer-
hof (HSE06) [28,29]. The HSE06 calculations were performed by use of the Vienna Ab initio
Simulation Package (VASP) [30–32], which is also based on the pseudopotential technique
employing the projected augmented plane wave (PAW) method [33,34]. In the HSE06
calculations, we first obtained a converged charge density through the self-consistent cal-
culations within GGA. Subsequently, self-consistent hybrid functional calculations were
performed using the GGA charge density as the initial state. A k-point mesh of 3 × 4 × 2
was employed for the calculations. The cut-off energy for plane waves was set to 36.75 Ry.
The range-separation parameter in the HSE06 calculations was 0.2 Å–1, and 25% of the
exact exchange was mixed with the GGA exchange for short-range interactions.

3. Results
3.1. [Ni(tmdt)2]
3.1.1. Tight-Binding Model

Figure 2 illustrates the crystal structure of [Ni(tmdt)2]. The molecular arrangement in
the bc plane exhibits the stretcher bond pattern. The end-on projection indicates zigzag face-
to-face stacking, and the molecular pair labeled p exhibits the strongest HOMO–HOMO
and LUMO–LUMO couplings (Table 2). However, this does not imply a simple “dimer-
ization”, because the [Ni(tmdt)2] molecules stack “uniformly” along the b + c direction
(corresponding to p) and along the c direction (corresponding to c), as depicted in Figure 2a.
Table 2 demonstrates that conducting layers parallel to the bc plane are strongly intercon-
nected through interlayer transfer integrals q1 and a, which imports three-dimensional
characteristics of the electronic structure. This differs from the case of [Pt(dmdt)2] that fun-
damentally possesses a two-dimensional character. For most transfer integrals, including
tp and tc, the HOMO–HOMO and LUMO–LUMO couplings exhibit opposite signs.

Table 2. HOMO–HOMO (H-H), LUMO–LUMO (L-L), and HOMO–LUMO (H-L) intermolecular
transfer integrals (t) in [Ni(tmdt)2] (meV). 1

Transfer Integral H-H L-L H-L

tp 72.0 −68.8 70.5
tc 33.9 −26.7 30.1
ta −32.8 −33.1 0.6
tq1 46.9 −46.9 46.9
tq2 3.6 −3.2 3.4
tr 2.8 −2.6 2.7

1 See Figure 2b. Transfer integrals in this table are used in Equations (5)–(7) with subscripts H-H, L-L, and H-L,
that represent HOMO–HOMO, LUMO–LUMO, and HOMO–LUMO couplings, respectively.

The matrix elements of H(k) for [Ni(tmdt)2] are given by

hH-H = 2 [tpH-H cosk(b + c) + tcH-H coskc + taH-H coska + tq1H-H cosk(c − a) + tq2H-H cosk(a + b + c) + trH-H cosk(−a + b + c)] (5)

hH-L = 2i [tpH-L sink(b + c) + tcH-L sinkc + taH-L sinka + tq1H-L sink(c − a) + tq2H-L sink(a + b + c)] + trH-L sink(−a + b + c)] (6)

hL-L = ∆ + 2 [tpL-L cosk(b + c) + tcL-L coskc + taL-L coska + tq1L-L cosk(c − a) + tq2L-L cosk(a + b + c) + trL-L cosk(−a + b + c)], (7)

where ∆ is 0.15 eV. Figures 3a and 4 display the band dispersion and Fermi surface obtained
from the tight-binding model. On the ky-kz plane (kx = 0), a crossing of the HOMO and
LUMO bands occurs at (kx, ky, kz) = (0.0, ±0.578, ±0.210) (marked as N in Figure 3a),
resulting in the emergence of symmetrical Dirac cones around the Γ point (0.0, 0.0, 0.0)
(Figure 5). The Dirac points reside below the Fermi level, resulting in electron pockets.
Due to the strong interlayer interactions among the conducting networks parallel to the bc
plane, the Dirac points move within the three-dimensional wave vector space depending
on kx and form a loop. The reciprocal unit cell contains one nodal loop, which is nearly
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planar. The loop exhibits energy variations, which gives rise to electron pockets and
hole pockets, indicating the presence of a nodal line semi-metal (Figure 6). Compared to
[Pt(dmdt)2], however, the deviation of the band energy from the Fermi energy is relatively
large, resulting in a system with a large Fermi surface (Figure 4).
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c (4.24 Å) is significantly longer than that in the molecular pair p (3.01 Å), leading to a 
considerable reduction in intermolecular interaction c. In contrast, in [Pd(dmdt)2] and 
[Ni(tmdt)2], the corresponding interplanar distances are nearly equivalent (3.54 Å and 3.53 
Å in [Pd(dmdt)2], 3.46 Å and 3.58 Å in [Ni(tmdt)2]). The main HOMO–HOMO and 
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Figure 6. kx dependence of the band energy at the Dirac point calculated with tight-binding models.

3.1.2. First-Principles DFT Calculations

Figure 7 indicates the DFT band structure of [Ni(tmdt)2] calculated with the GGA-
PBE functional. In the kx = 0 plane, due to the space inversion symmetry, a pair of Dirac
points exists at (kx, ky, kz) = (0, 0.685, 0.265) and (0, 0.315, −0.265). The Dirac point is
located 65 meV lower than the Fermi level. The tight-binding band structure in Figure 3a is
generally in agreement with the DFT band structure, e.g., hall-like characteristics near the
X point and electron-like characteristics near the N point.
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3.2. [Ni(btdt)2]
3.2.1. Tight-Binding Model

As shown in Figure 8a, the molecular arrangement of [Ni(btdt)2] within the bc plane
exhibits the stretcher bond pattern. The interplanar distance in the molecular pair labeled
c (4.24 Å) is significantly longer than that in the molecular pair p (3.01 Å), leading to a
considerable reduction in intermolecular interaction c. In contrast, in [Pd(dmdt)2] and
[Ni(tmdt)2], the corresponding interplanar distances are nearly equivalent (3.54 Å and
3.53 Å in [Pd(dmdt)2], 3.46 Å and 3.58 Å in [Ni(tmdt)2]). The main HOMO–HOMO and
LUMO–LUMO couplings are observed in the molecular pairs labeled p and q1 (Table 3,
Figure 8b). Both transfer integrals tp and tq1 exhibit HOMO–HOMO and LUMO–LUMO
couplings with opposite signs. Notably, tp is opposite in sign to tp in [Pt(dmdt)2] and
[Ni(tmdt)2].

Table 3. HOMO–HOMO (H-H), LUMO–LUMO (L-L), and HOMO–LUMO (H-L) intermolecular
transfer integrals (t) in [Ni(btdt)2] (meV). 1

Transfer Integral H-H L-L H-L

tp −59.8 51.0 −55.5
tc 6.6 2.5 1.7
ta 7.9 9.6 0.2
tq1 44.8 −24.5 34.2
tq2 0.6 −0.6 0.6
ts −1.7 1.5 −1.6

1 See Figure 8b. Transfer integrals in this table are used in Equations (8)–(10) with subscripts H-H, L-L, and H-L,
that represent HOMO–HOMO, LUMO–LUMO, and HOMO–LUMO couplings, respectively.

The matrix elements of H(k) for [Ni(btdt)2] are given by

hH-H = 2 [tpH-H cosk(b + c) + tcH-H coskc + taH-H coska + tq1H-H cosk(c + a) + tq2H-H cosk(−a + b + c) + tsH-H cosk(b + 2c)] (8)

hH-L = 2i [tpH-L sink(b + c) + tcH-L sinkc + taH-L sinka + tq1H-L sink(c + a) + tq2H-L sink(−a + b + c)] + tsH-L sink(b + 2c)] (9)

hL-L = ∆ + 2 [tpL-L cosk(b + c) + tcL-L coskc + taL-L coska + tq1L-L cosk(c + a) + tq2L-L cosk(−a + b + c) + tsL-L cosk(b + 2c)], (10)

where ∆ is 0.15 eV. The band dispersion and Fermi surface (Figures 9a and 10) obtained
from the tight-binding model indicate a semimetallic electronic structure where hole and
electron pockets align alternately along the a* + b* − c* direction. The Dirac points emerge
at (kx, ky, kz) = (0.0, ±0.118, ±0.264) (marked as N in Figure 8a) on the ky-kz plane (kx = 0)
and (±0.308, ±0.404, 0.0) on the kx-ky plane (kz = 0). In the three-dimensional reciprocal
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lattice, the Dirac point forms a line along the a* + b* − c* direction (Figure 11). The energy
at the Dirac point fluctuates around the Fermi level along the line (Figure 6), resulting in
the presence of hole and electron pockets.
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LUMO couplings (pristine), (b) without HOMO–LUMO couplings (hH-L = 0). Γ = (0,0,0), X = (1/2,0,0),
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Figure 11. Nodal line projected on the kx-ky (a) and kx-kz (b) planes and a pair of Dirac cones on
the kx = 0 and kz = 0 planes in [Ni(btdt)2]. The hole-like characteristic is indicated in red and the
electron-like characteristic in blue.

3.2.2. First-Principles DFT Calculations

Next, we describe the structural and electronic properties of [Ni(btdt)2] as calculated
using the first-principles method. Figure 12a shows the band structure for the experimental
crystal structure with the original unit cell vectors, indicating a metallic character. Unlike
the tight-binding model, the DFT band structure does not exhibit a Dirac cone.

As mentioned in the previous subsection, the experimental crystal structure, de-
termined using powder X-ray diffraction analysis with constrained conditions, has a
much shorter interplanar distance (~3.01 Å) compared to other single-component metal
dithiolene complexes such as [Ni(tmdt)2] [1] and [Ni(hfdt)2] (hfdt = bis(trifluoromethyl)
tetrathiafulvalenedithiolate) (~3.40 Å) [36]. Therefore, we performed structural relaxation
for the lattice parameters and internal coordinates using a vdW-DF2 functional (vdw-df2-
b86r) [28]. The vdW-DF method, proposed by Dion et al. [21], incorporates a semi-local
exchange-correlation functional and a nonlocal correlation functional to account for dis-
persion interactions. In single-component molecular crystals, dispersion interactions are
significant at ambient and low-pressure conditions. We anticipate that structural relaxation
with the vdW-DF functional will yield an efficient determination of structural properties.

Figure 12b displays the band structure for the structure with relaxed atomic positions
using the vdw-df2-b86r functional (Appendix A). The band gap remains unopened, and
a massless Dirac cone emerges at the Fermi level. The band at the Y point has shifted
lower, and there is a significant separation between the top and lower bands of the valence
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band. A new unit cell described in Section 2.1 for the optimized structure has the lattice
parameters a = 6.36, b = 6.98, c = 14.46 Å, α = 107.53, β = 78.34, and γ = 79.80◦, while those
for the experimental structure are a = 6.720, b = 7.925, c = 12.563 Å, α = 90.41, β = 93.62, and
γ = 59.85◦. The DFT-optimized structure, where the interplanar distances are adjusted to
ordinary values (~3.47 Å), appears to be a reasonable structure. However, despite using
the DFT-optimized structure to simulate the XRD pattern, the resulting simulated pattern
differs from the pattern obtained through the powder X-ray diffraction method. Hence, we
consider the DFT-optimized structure as a model structure.
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The tight-binding models have revealed that all three single-component molecular 
conductors with the stretcher bond type molecular arrangement, [Pd(dmdt)2], [Ni(tmdt)2], 
and [Ni(btdt)2], form Dirac cones. The emergence of the Dirac cone is determined by sat-
isfying the following conditions simultaneously in H(k) [12]: 

hH-H = hL-L (11)

hH-L = 0. (12)

Figure 12. (a) Band structure for the experimental structure of [Ni(btdt)2] calculated with GGA-PBE
functional. (b) Band structure for the optimized structure calculated with a vdW-DF2 functional (vdw-
df2-b86r). These band structures are calculated based on the original unit cell vectors. Γ = (0,0,0),
X = (1/2,0,0), M = (1/2,1/2,0), Y = (0,1/2,0), Z = (0,0,1/2), and L = (0,1/2,1/2), in units of the reciprocal
lattice vectors.

Figure 13a illustrates the band structure for the new unit cell of the optimized structure.
The Dirac points are located at specific points in k-space, represented by the coordinates
(kx, ky, kz) = (±0.3120,∓0.014, 0). Figure 13b and Figure 13c depict the Dirac cones observed
in the kx-ky and kx-kz planes, respectively. It should be added that the tight-binding band
calculation based on the DFT-optimized structure also indicates the presence of Dirac cones
at (kx, ky, kz) = (±0.414, 0, ∓0.004).
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Figure 13. (a) Band dispersion of nonmagnetic calculations in [Ni(btdt)2] for the crystal structure
optimized with a vdW-DF2 functional (vdw-df2-b86r). Γ = (0,0,0), X = (1/2,0,0), M = (1/2,1/2,0),
Y = (0,1/2,0), Z = (0,0,1/2), and L = (0,1/2,1/2), for the new unit cell. Band structure close to the
Dirac point on (b) the kx-ky and (c) kx-kz planes. These electronic structures are calculated with the
GGA-PBE functional using the all-electron FLAPW method.
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4. Discussion
4.1. Dirac Cone Formation in Single-Component Molecular Conductors

The tight-binding models have revealed that all three single-component molecular
conductors with the stretcher bond type molecular arrangement, [Pd(dmdt)2], [Ni(tmdt)2],
and [Ni(btdt)2], form Dirac cones. The emergence of the Dirac cone is determined by
satisfying the following conditions simultaneously in H(k) [12]:

hH-H = hL-L (11)

hH-L = 0. (12)

Equation (11) represents the HOMO–LUMO band crossing, and Equation (12) indicates
a node of the HOMO–LUMO coupling. When the HOMO–LUMO coupling hH-L is set to
zero, the HOMO and LUMO bands intersect, resulting in a large Fermi surface as shown
in Figures 3b and 9b. Notably, the energy at the intersection is situated near the Fermi
level, because the HOMO is fully occupied and the LUMO is entirely empty in the isolated
molecule state. Figure 14 illustrates that the intersection forms a (green) loop on the ky-kz
plane (kx = 0) for [Ni(tmdt)2] and [Ni(btdt)2]. In real systems, however, the HOMO–LUMO
coupling induces band hybridization and maintains a gap between the two bands, known
as band repulsion. An exception occurs at the node of the HOMO–LUMO coupling. In
Figure 14, the node (hH-L = 0) is represented by the orange line, and the intersection point
with the green loop gives the Dirac point where Equations (11) and (12) are satisfied.

This mechanism operates as long as the HOMO and LUMO bands cross each other.
The band crossing arises due to the small energy gap between the HOMO and LUMO (∆),
leading to the emergence of Dirac cones within a specific range of the ∆ value (∆ < 0.62 eV
for [Ni(tmdt)2] and ∆ < 0.37 eV for [Ni(btdt)2], respectively). Furthermore, the curvature of
the two bands is also a crucial factor for the band crossing. Bands with opposite curvatures
tend to intersect each other. The band curvature is associated with the sign of the transfer
integrals. The stretcher bond type molecular arrangement facilitates HOMO–HOMO and
LUMO–LUMO transfer integrals with opposite signs. In Figure 15, the transfer integrals in
the face-to-face stacking arrangement are mapped as a function of the offset from the center
of the molecule (Pt or Ni) for the [Pt(dmdt)2] and [Ni(tmdt)2] molecules. The maps for both
compounds are very similar to each other. In the region of Figure 15, there are two (positive
or negative) peaks around s = 0 Å and three (positive or negative) peaks around s = 1.75 Å.
The transfer integrals p are situated around s = 0 Å and the transfer integrals c are located
around s = 0 Å ([Pt(dmdt)2]) or 1.75 Å ([Ni(tmdt)2]). Importantly, the HOMO–HOMO and
LUMO–LUMO transfer integrals exhibit opposite signs almost everywhere.
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The [Ni(btdt)2] molecule, with the terminal benzene rings, provides a different pattern
in the maps within the L > 14 Å region (Figure 16). Nevertheless, even in this case, the
HOMO–HOMO and LUMO–LUMO transfer integrals maintain opposite signs.

As observed above, although the face-to-face stacking mode in the stretcher bond type
molecular arrangement displays several variations, each mode tends to yield significantly
strong HOMO–HOMO and LUMO–LUMO couplings with opposite signs, thereby inducing
band crossing. In the early stages of research on single-component molecular conductors,
the presence of crossing band structures was considered undesirable for achieving a metallic
state due to the band repulsion, and a parallel band structure composed of HOMO and
LUMO bands with the same curvature was preferred [5]. This viewpoint, however, is
applicable only to one-dimensional systems. Currently, single-component molecular metals
with two- or three-dimensional crossing band structures are not uncommon and can be
understood within the framework of the conventional tight-binding band picture. The truly
unique aspect of single-component molecular conductors with crossing band structure is
the emergence of the Dirac electron system, which represents a new direction for the study
of functional single-component molecular conductors.

Unfortunately, both [Ni(tmdt)2] and [Ni(btdt)2] do not clearly exhibit the nature of the
Dirac electron system. In [Ni(tmdt)2], the (semi)metallic nature associated with the large
Fermi surface dominates electronic properties. This is because the energy at the Dirac point
is largely shifted away from the Fermi level (Figure 6). On the other hand, for [Ni(btdt)2],
we considered the effects of antiferromagnetic (AFM) spin order, as demonstrated in the
following subsection.
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Figure 15. Map of HOMO–HOMO and LUMO–LUMO transfer integrals (meV) between two
molecules in the face-to-face stacking arrangement for [Pt(dmdt)2] and [Ni(tmdt)2], as a function of
a shift along the long molecular axis (L) and a shift along the short molecular axis (s). Interplanar
distance h is fixed to 3.5 Å. The symbols p and c indicate transfer integrals, tpH-H, tpL-L, tcH-H, and
tcL-L.
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Figure 16. Map of HOMO–HOMO and LUMO–LUMO transfer integrals (meV) between two
molecules in the face-to-face stacking arrangement for [Ni(btdt)2], as a function of a shift along
the long molecular axis (L) and a shift along the short molecular axis (s). Interplanar distance h is
fixed to 3.0 Å. The symbol p indicates transfer integrals tpH-H and tpL-L (we do not consider tcH-H,
and tcL-L that are much smaller due to the longer interplanar distance).

4.2. Spin Ordering in [Ni(btdt)2]: Antiferromagnetic HSE06 Calculations

To consider the AFM order, the magnetic unit cell needs to contain a minimum of two
[Ni(btdt)2] molecules, unlike the single molecule found in the unit cell of the experimental
structure. To construct a magnetic cell, the original lattice vector of the crystal structure
optimized using the vdW-DF2 functional is transformed using a rotation matrix consisting
of (1, –1, 0), (1, 1, 0), and (0, 0, 1), with an origin shift of (0.5, 0.5, 0). The resulting lattice
parameters are a = 6.98, b = 13.38, c = 14.46 Å, α = 110.43, β = 107.53, and γ = 69.32◦.

We have found that a range-separated hybrid functional developed by Heyd, Scuseria,
and Ernzerhof (HSE) is effective in describing the electronic states of molecular charge order
systems [37,38]. The hybrid functional method calculates the exchange-correlation energy
by combining the exact Fock exchange with the exchange energy functional from GGA.

As shown in Figure 17a, a finite band gap of 0.034 eV is obtained from spin-polarized
HSE06 calculations. In the HSE calculations, the magnetic moments at the Ni site and
(btdt)2 ligands are ±0.05 and ±0.18 µB, respectively. Thus, the total magnetic moment per
[Ni(btdt)2] molecule is 0.23 µB. The magnetic moment of the ligand is determined by the
summation of the magnetic moments of the C and S atoms belonging to the ligands. In
contrast, the GGA calculations yield a magnetic moment of ±0.02 µB at the Ni site and
±0.06 µB for the ligands. A small band gap of approximately 0.01 eV is opened within the
spin-polarized GGA, as plotted in Figure 17b.
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In the experiments, the magnetic susceptibility above 25 K follows the Curie-Weiss 
law, with the constants C (0.52 emu K mol−1) and θ (–28.63 K), indicating that intermolec-
ular antiferromagnetic coupling is the dominant factor [13]. We obtain a stable AFM state 
through the spin-polarized HSE calculations using the structure optimized by the vdW-
DF2 functional. On the other hand, using the experimental structure [13], we can stabilize 
an AFM state with a different ordering pattern from Figure 18, which was found to be 
metallic. Although the HSE functional includes a portion of the exact exchange, it does 
not account for the correlation effect. In the future, a semiconducting band structure can 
be achieved using methods that consider the correlation effect, such as GW approximation 
and dynamical mean field theory calculations. 

5. Conclusions 
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Figure 17. Band dispersion and total DOS for the AFM state in [Ni(btdt)2] calculated with (a) HSE06
and (b) GGA-PBE functionals. The zero energy at the longitudinal axis is set at the top of the valence
bands. Y = (0,1/2,0), Γ = (0,0,0), R = (1/2,1/2,1/2), U = (1/2,0,1/2), Z = (0,0,1/2), and X = (1/2,0,0), in
units of the reciprocal lattice vectors.

Next, we discuss the AFM pattern of spin ordering. Figure 18 illustrates the spin
densities in the AFM state of [Ni(btdt)2]. As shown in Figure 18a, the spins alternate in a
pattern along the b axis of the magnetic unit cell. The spin densities are mainly localized on
the four S atoms closest to the Ni atom, as depicted in Figure 18b. The presence of the dxz
orbital of the Ni atom indicates that the LUMO of the [Ni(btdt)2] molecule contributes to the
spin densities (see supporting materials of Ref. [13]). We note that these spin density and
DOS analyses have been widely used in various other studies that describe the electronic
structure of materials [39,40].
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Figure 18. Contour plots of the spin densities of an AFM state in [Ni(btdt)2]. (a) ab and (b) bc
planes. The isosurface level of the spin density is set as 0.00043. The figures are plotted using VESTA
software version 3 [41]. n (↑) and n (↓) are the spin-up and spin-down densities calculated with a
HSE06 functional.

In the experiments, the magnetic susceptibility above 25 K follows the Curie-Weiss law,
with the constants C (0.52 emu K mol−1) and θ (–28.63 K), indicating that intermolecular
antiferromagnetic coupling is the dominant factor [13]. We obtain a stable AFM state
through the spin-polarized HSE calculations using the structure optimized by the vdW-DF2
functional. On the other hand, using the experimental structure [13], we can stabilize
an AFM state with a different ordering pattern from Figure 18, which was found to be
metallic. Although the HSE functional includes a portion of the exact exchange, it does not
account for the correlation effect. In the future, a semiconducting band structure can be
achieved using methods that consider the correlation effect, such as GW approximation
and dynamical mean field theory calculations.
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5. Conclusions

Both the tight-binding model and the DFT calculation have indicated the possibility of
Dirac cone formation in two single-component molecular conductors derived from metal
complexes with extended tetrathiafulvalenedithiolate ligands, [Ni(tmdt)2] and [Ni(btdt)2].
Despite various band calculations performed on these systems, the formation of Dirac
cones has never been reported before. This is because the close relationship between single-
component molecular conductors and the Dirac electron system has not been recognized.
Our proposed mechanism suggests that the stretcher bond type molecular arrangements
favor the formation of Dirac cones, providing an important clue for the development
of new Dirac electron systems. The manifestation of the Dirac electron system depends
primarily on the proximity of the Dirac point to the Fermi level. Furthermore, the study of
[Ni(btdt)2] has revealed the importance of antiferromagnetic spin order effects. As observed
in [Ni(btdt)2], the results obtained from the tight-binding model and DFT calculations do
not always agree. Although resolving this discrepancy remains a future challenge, this
work has demonstrated that combining the strengths of both methods is a powerful tool
for the design of functional molecular materials.
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Appendix A. Crystal Data of [Ni(btdt)2] Optimized with the vdw-df2-b86r Functional

Space group: P
−
1

Lattice constants: ao = 6.36, bo = 8.57, co = 14.46 Å, αo = 113.28, βo = 78.34, γo = 126.73◦

Fractional atomic coordinates:

Atom x y z

Ni 0.0000 0.0000 0.0000
S1 0.2206 −0.0388 0.0741
S2 −0.1432 0.1154 0.1400
S3 0.3365 0.0884 0.2961
S4 −0.0134 0.2300 0.3580
S5 0.4602 0.2102 0.5300
S6 0.1176 0.3598 0.5927
C1 0.1804 0.0637 0.1994
C2 0.5499 0.3109 0.7322
C3 0.0192 0.1324 0.2288
C4 0.1948 0.1925 0.3948
C5 0.2495 0.2466 0.4943
C6 0.4262 0.3049 0.6600
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Atom x y z

C7 0.2691 0.3799 0.6900
C8 0.2393 0.4651 0.7923
C9 0.3672 0.4743 0.8641

C10 0.5199 0.3961 0.8342
H1 0.1208 0.5274 0.8155
H2 0.3477 0.5446 0.9444
H3 0.6189 0.4020 0.8906
H4 0.6678 0.2480 0.7085
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