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Abstract: The synthesis and structural characterization of a new triangular Cu3–µ3OH pyrazolato
complex of formula, [Cu3(µ3−OH)(pz)3(Hpz)3][BF4]2 (1−Cu3), Hpz = pyrazole, is presented. The
triangular unit forms a quasi-isosceles triangle with Cu–Cu distances of 3.3739(9), 3.3571(9), and
3.370(1) Å. This complex is isostructural to the hexanuclear complex [Cu3(µ3−OH)(pz)3(Hpz)3](ClO4)2]2

(QOPJIP). A comparative structural analysis with other reported triangular Cu3–µ3OH pyrazolato
complexes has been carried out, showing that, depending on the pyrazolato derivative, an auxiliary
ligand or counter-anion can affect the nuclearity and/or the dimensionality of the system. The
magnetic properties of 1−Cu3 are analyzed using experimental data and DFT calculation. A detailed
analysis was performed on the magnetic properties, comparing experimental and theoretical data of
other molecular triangular Cu3–µ3OH complexes, showing that the displacement of the µ3−OH−

from the Cu3 plane, together with the type of organic ligands, influences the nature of the magnetic
exchange interaction between the spin-carrier centers, since it affects the overlap of the magnetic
orbitals involved in the exchange pathways. Finally, a detailed comparison of the magnetic properties
of 1−Cu3 and QOPJIP was carried out, which allowed us to understand the differences in their
magnetic properties.

Keywords: Cu3–µ3OH complex; pyrazolato ligands; trinuclear complex; spin frustration; magnetic
susceptibility; antisymmetric exchange; DFT calculations

1. Introduction

Triangular CuII complexes have been largely studied in the literature, and among
them, several systems present a µ3−X− (X = Cl−, Br−, OH−, O2−) bridging unit that,
together with other organic auxiliary ligands enables obtaining very stable systems [1–5].
Due to their high stability, these triangular fragments can be used as secondary building
units (SBU) in constructing several coordination polymers or MOF systems [6–9].

Moreover, triangular complexes are an interesting class of materials, since they have
been suggested as possible qubits, as they can present spin–electron coupling due to the
interplay between three main factors (spin exchange, spin–orbit interaction, and chiral-
ity) [10–15]. Spin frustration (SF) has been suggested as the origin of the abovementioned
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features. This phenomenon originates when an odd number of non-integer spin carri-
ers that are antiferromagnetically coupled cannot be satisfied simultaneously, like in a
triangular system [16]. Thus, the energy of the ground state is doubly degenerate, but
distortions of the C3 symmetry of the triangle or by the antisymmetric exchange, which is
related to spin–orbit interactions, can break this degeneracy by lowering the symmetry of
the system [17,18]. The antisymmetric exchange introduced by Dzyaloshinsky–Moriya ex-
plains the origin of spin-canting in magnetic systems. They were considering the isotropic
exchange, which tends to align the spins of the system in a parallel or antiparallel way, de-
pending on the nature of the magnetic interaction, and the antisymmetric exchange, which
tends to be arranged perpendicularly to each of the spins of the system. Both interactions
compete with each other, giving rise to a small canting angle [19,20].

These triangular CuII systems have been largely, studied since they formed the simplest
spin triangle. This has allowed for the possibility of studying the magnetic properties of
geometrically spin-frustrated systems in detail [21]. Among these systems, the ones with a
hydroxy bridge (µ3−OH−) are among the most reported in the literature [22,23]. Systems
presenting pyrazolato, triazolato, and other types of auxiliary organic ligands, have been
magnetically studied in the literature [24,25]. In general, the displacement of the µ3−OH−

from the Cu3 plane, together with the type of organic ligand, has been related to the nature
of the magnetic exchange interaction between the spin-carrier centers, since they affect the
overlap of the magnetic orbitals involved in the exchange pathways [26].

Among all the mentioned systems, Cu3–µ3OH pyrazolato complexes are among
the most reported systems, and they present strong antiferromagnetic properties [27,28].
However, they have not been extensively analyzed in the search of magneto-structural
features, as has been done for the triazolato complexes [19]. Depending on the pyrazolato
derivative, auxiliary ligand, or counter-anion, these compounds may present different
nuclearity and/or dimensionality [3,24].

In this work, we present the synthesis and structural characterization of a triangular
Cu3–µ3OH pyrazolato complex of formula, [Cu3(µ3−OH)(pz)3(Hpz)3][BF4]2 (1−Cu3),
Hpz = pyrazole. Interestingly, this trinuclear complex is isostructural to the hexanuclear
QOPJIP structure [Cu3(µ3−OH)(pz)3(Hpz)3(ClO4)2]2, since the perchlorate anions connect
the two triangular units [29]. An extensive structural analysis with other reported triangular
Cu3–µ3OH pyrazolato complexes has been performed. The magnetic properties of 1−Cu3
were analyzed using experimental data together with DFT calculation, showing that strong
antiferromagnetic interactions exist between the CuII centers. We present a detailed analysis
of the magnetic properties of 1−Cu3, and compare them with the experimental data of
other molecular triangular Cu3–µ3OH pyrazolato complexes and the theoretical magnetic
properties of a previously reported Cu3–µ3OH complex [26]. Finally, we perform a detailed
study of the magnetic properties of 1−Cu3 and QOPJIP to understand the differences in
their magnetic properties.

2. Results and Discussion
2.1. ESI Mass and FTIR Spectra

ESI–MS in a positive mode (acetonitrile) showed the existence of different frag-
ments of the [Cu3–µ3OH]n+ unit, such as: ([Cu3(µ3−OH)(pz)3(Hpz)3][BF4])+ (m/Z = 700);
([Cu3(µ3−OH)(pz)3(Hpz)3] + 1e−)+ (m/Z = 613); ([Cu3(µ3−OH)(pz)3(Hpz)2] + 1e−)+

(m/Z = 544); ([Cu3(µ3−OH)(pz)3(Hpz)1] ] + 1e−)+ (m/Z = 476); and ([Cu3(µ3−OH)(pz)3)+

(m/Z = 408). See Figure S1. Complementary analyses (EA and FTIR spectroscopy) con-
firmed the purity of the crystalline material (see Supporting Information, Section S2, FTIR).

2.2. Structure Analysis

The triangular complex (1−Cu3) crystallizes in the centrosymmetric monoclinic space
group P21/c (for more information, see CIF file and Section S3). The molecular structure
consists of a triangular [Cu3–µ3OH]n+ core, surrounded by three protonated Hpz and three
deprotonated pz− ligands, forming the cationic complex [Cu3(µ3−OH)(pz)3(Hpz)3]2+,
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which is counterbalanced by two tetrafluoroborate anions. The trinuclear unit is formed by
two CuII (Cu1 and Cu3) centers with a square pyramid (SqP) geometry, and an octahedral
Cu2 center (Oh) with a Jahn–Teller distortion. This triangular unit presents pseudo-three-
fold symmetry, forming an isosceles triangle, with copper–copper distances of 3.3740(8),
3.3574(8), and 3.3702(8) Å for Cu1–Cu2, Cu2–Cu3, and Cu1–Cu3, respectively. As observed
for similar systems, the µ3−OH− group is not coplanar with the plane formed by the three
copper centers, displaced by 0.439 Å. Other displacements reported in the literature for the
[Cu3–µ3OH]n+ are in the range of 0.363 and 0.759 Å [28,30]. The metal centers present three
different types of Cu–O, Cu–N, and Cu–F bonds. The first is around 2.00 Å, the second is
between 1.98 and 2.02 Å, and the third is between 2.48 and 2.58 Å (Figure 1).
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Figure 1. Crystal structure of the triangular complex [Cu3(µ3−OH)(pz)3(Hpz)3][BF4]2 (1−Cu3).
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An original aspect of 1−Cu3 is the presence of two [BF4]− counter-anions (B1 and B2)
coordinated to the copper centers of the trinuclear unit. In fact, 1−Cu3 is the first example
of a triangular pyrazolato complex with this type of counter-anion. One of the [BF4]−

anions (B1) presents a µ3 coordination mode, with three F atoms coordinated to the three
CuII centers (with F–Cu distances of 2.483(3), 2.530(4), and 2.581(4) Å). The other [BF4]−

anion (B2) is only coordinated by one F atom to a single CuII center (Cu2-F5 = 2.557(4) Å).
The structure presents an inversion center (outside the complex) that generates a second
triangular [Cu3(µ3−OH)(pz)3(Hpz)3][BF4]2 unit, where the fluorine atom (F7) of the [BF4]−

anion (B2) is semi-coordinated to Cu1 with a long distance of 2.812(3) Å. Finally, it is worth
mentioning that between the triangular units, there are some hydrogen bonds that stabilize
the crystal lattice of the complex, with inter-cluster Cu–Cu distances ranging between
7.309(1) and 13.4522(9) Å (Figure 2).

According to the CCDC database, there are at least 96 structures based on pyra-
zolato (R-pz−) ligands, forming complexes with the general formula [Cu3(µ3−OH)(R-
pz)3(L)3]n+/−, where R = –H, –CH3, –NO2, among others, and L = pz0/−, Cl−, H2O, NO3

−,
etc. [2,8,27–34]. The nature of the axial ligand and the type of substitution of the pz− ligand
leads to the formation of either high dimensional systems (usually for R = –COO−) or
discrete complexes. If the axial ligand is monodentate or acts as a chelate, or if the pz−

ligand substituent group cannot coordinate with other metal centers, discrete (0D) systems
are formed (see Table 1). As a general trend, we observe that when larger ligands are
present either as axial or auxiliar ligands, the distance between the Cu3 plane and the
µ3−OH− group increases. We also observe that when auxiliary ligands are present, the
triangular units can form hexanuclear units by coordinating these auxiliar ligands to the
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metal centers of the closest triangular units (RUYGEX, RUYGIB, RUYHEY, RETQUD,
QOPJIP, DIBXOC, EGIXUQ, EHOLIZ).
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Table 1. Structural parameters of triangular Cu3 systems of the type [Cu3(µ3−OH)(R-pz)3(L)3]n+/−.

CCDC
Code

CuII–CuII

(Å)
Cu3 (plane)–OH

(Å)
Cun–OH

(Å)
Cun–N (pz)

(Å)
Cun-1–Cun–Cun+1

(◦)
Cun–OH–Cun+1

(◦) Ref.

1−Cu3

3.3740(8)
3.3574(8)
3.3702(9)

0.439
2.005(3)
1.978(3)
1.995(3)

1.942(4) to
1.965(3)

59.71(2)
60.09(2)
60.20(2)

115.8(2)
115.3(2)
114.8(2)

This
work

AMACIC
3.3020(6)
3.2561(5)
3.3927(6)

0.553
1.977(2)
2.001(2)
2.005(2)

1.932(3) to
1.947(2)

58.19(1)
62.30(1)
59.51(1)

112.20(9)
116.9(1)

108.73(9)
[31]

ASUNIN
3.3456(1)
3.3266(6)
3.3456(1)

0.510
2.011(1)
1.932(5)
2.042(5)

1.918(3) to
1.952(1)

59.62(1)
60.19(1)
60.19(1)

116.1(1)
113.6(2)
111.3(1)

[32]

BOFLEP
3.349(2)
3.239(2)
3.355(2)

0.580
2.005(4)
2.001(4)
1.995(3)

1.924(5) to
1.958(4)

57.78(2)
61.20(2)
61.02(2)

113.5(2)
108.3(2)
114.1(2)

[33]

DEFSEN
3.384(1)
3.2503(9)
3.2950(9)

0.567
1.975(3)
2.008(3)
2.000(2)

1.928(4) to
1.948(4)

58.22(2)
59.52(2)
62.26(2)

116.3(1)
108.4(1)
112.0(1)

[27]

DIBXOC
3.2972(5)
3.2972(5)
3.3843(4)

0.609
2.008(2)
2.030(2)
2.008(2)

1.946(2) to
1.1.957

59.12(1)
61.76(1)
59.12(1)

109.5(1)
109.5(1)
114.9(1)

[35]

EGIXOK
3.3540(5)
3.3874(6)
3.4036(6)

0.363
1.979(2)
1.993(2)
1.985(3)

1.921(3) to
1.941(2)

60.16(1)
60.64(1)
59.19(1)

115.2(2)
116.7(2)
118.3(2)

[30]

EGIXUQ
3.268(1)
3.379(1)
3.350(1)

0.148
1.936(5)
1.943(4)
1.913(5)

1.914(5) to
1.942(5)

61.39(2)
60.50(2)
58.11(2)

114.8(2)
121.0(2)
122.4(2)

[30]

EHOLIZ
3.389(5)
3.389(5)
3.389(5)

0.274
2.046(10)
1.941(10)
1.941(10)

1.92(1) to
1.97(2)

60.0(1)
60.0(1)
60.0(1)

116(1)
122(1)
116(1)

[36]
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Table 1. Cont.

CCDC
Code

CuII–CuII

(Å)
Cu3 (plane)–OH

(Å)
Cun–OH

(Å)
Cun–N (pz)

(Å)
Cun-1–Cun–Cun+1

(◦)
Cun–OH–Cun+1

(◦) Ref.

JEWWEO
3.3416(8)
3.3825(8)
3.3502(7)

0.461
1.988(3)
2.010(3)
1.982(3)

1.923(4) to
1.943(4)

60.73(2)
59.76(2)
59.51(2)

113.4(1)
115.9(2)
115.1(2)

[2]

JEWWIS
3.387(1)
3.309(1)
3.350(1)

0.486
1.976(6)
2.021(5)
1.985(6)

1.919(7) to
1.952(8)

58.84(3)
60.03(3)
61.13(3)

115.9(3)
111.4(3)
115.5(3)

[2]

MUZQUU
3.3696(5)
3.3461(5)
3.3788(5)

0.455
1.982(2)
2.003(2)
2.001(2)

1.947(3) to
1.960(2)

59.45(1)
60.41(1)
60.14(1)

115.45(9)
113.39(9)
116.05(9)

[8]

*
QIMSIQ-

a

3.2977(4)
3.1704(4)
3.3126(4)

0.688
2.016(2)
2.012(2)
1.987(2)

1.938(2) to
1.959(2)

57.32(1)
61.58(1)
61.10(1)

109.91(7)
104.90(7)
111.68(8)

[28]

*
QIMSIQ-

b

3.3911(4)
3.3023(4)
3.3214(4)

0.512
2.000(1)
1.994(2)
1.989(2)

1.944(2) to
1.959(2)

58.93(1)
59.48(1)
61.59(1)

116.20(8)
111.99(7)
112.72(7)

[28]

*
QIMSOW-

a

3.2559(7)
3.342(1)

3.2345(9)
0.713

1.992(3)
2.032(3)
2.044(3)

1.941(4) to
1.958(4)

61.98(2)
58.69(2)
59.32(2)

108.0(1)
110.2(1)
106.6)1)

[28]

*
QIMSOW-

b

3.2045(6)
3.1837(8)
3.2007(9)

0.759
1.985(3)
2.011(2)
1.990(3)

1.948(3) to
1.960(4)

59.61(2)
60.13(2)
60.25(2)

106.6(1)
105.4(1)
107.3(1)

[28]

QOPJIP
3.355(1)
3.386(1)
3.368(1)

0.466
1.994(5)
2.000(4)
2.007(5)

1.929(6) to
1.958(6)

59.94(3)
60.49(3)
59.57(3)

114.3(2)
114.4(2)
115.6(2)

[29]

QUSMEX
3.344(2)
3.286(2)
3.392(2)

0.475
1.955(8)
2.017(6)
1.992(9)

1.933(9) to
1.978(9)

58.39(4)
61.53(4)
60.07(4)

114.7(4)
110.1(4)
118.5(4)

[34]

QUSMIB
3.289(2)
3.289(2)
3.289(2)

0.489
1.961(1)
1.962(1)
1.960(1)

1.89(1) to
1.930(8)

60.00(4)
60.00(4)
60.00(4)

114.0(1)
114.0(1)
114.0(1)

[34]

QUSMUN
3.3550(5)
3.3615(5)
3.3439(6)

0.471
1.985(2)
2.005(2)
1.987(2)

1.937(2) to
1.951(2)

60.24(1)
59.72(1)
60.04(1)

114.42(9)
114.68(9)
114.65(9)

[34]

RETQUD
3.3833(6)
3.3629(6)
3.3769(5)

0.542
2.026(2)
2.028(3)
2.013(2)

1.942(3) to
1.961(2)

59.66(1)
60.07(1)
60.26(1)

113.1(1)
112.7(1)
113.5(1)

[24]

RETRAK
3.365(1)
3.3650(9)
3.3886(8)

0.565
2.023(3)
2.041(3)
2.019(2)

1.933(3) to
1.962(5)

59.77(2)
60.46(2)
59.77(2)

111.8(1)
111.9(1)
113.9(1)

[24]

RETREO
3.3442(6)
3.3975(6)
3.3022(7)

0.625
2.024(2)
2.033(2)
2.038(2)

1.936(3) to
1.957(3)

61.48(1)
58.65(1)
59.87(1)

111.0(1)
113.1(1)
108.7(1)

[24]

RUYGEX
3.4471(9)
3.206(1)

3.4227(9)
0.524

1.987(3)
2.024(3)
2.035(3)

1.940(4) to
1.953(4)

55.55(2)
62.01(2)
62.44(2)

118.5(1)
104.4(1)
117.3(1)

[3]

RUYGIB
3.2473(8)
3.4007(6)
3.4305(8)

0.507
2.014(3)
2.017(2)
1.989(2)

1.933(4) to
1.952(4)

61.16(1)
62.08(1)
56.76(1)

107.3(1)
116.2(1)
118.0(1)

[3]
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Table 1. Cont.

CCDC
Code

CuII–CuII

(Å)
Cu3 (plane)–OH

(Å)
Cun–OH

(Å)
Cun–N (pz)

(Å)
Cun-1–Cun–Cun+1

(◦)
Cun–OH–Cun+1

(◦) Ref.

RUYHEY
3.414(1)
3.253(1)
3.277(1)

0.613
2.012(5)
2.006(4)
2.016(3)

1.929(7) to
1.950(5)

58.15(3)
58.82(3)
63.03(3)

116.4(2)
108.0(2)
108.9(2)

[3]

SIJKOL
3.112(1)
3.321(1)
3.321(1)

0.658
2.000(1)
2.000(1)
1.977(1)

1.942(1) to
1.967(4)

62.06(1)
62.06(1)
55.88(1)

102.2(1)
113.3(1)
113.3(1)

[37]

UZIWEI
3.3695(6)
3.2840(5)
3.2953(5)

0.595
1.998(2)
2.004(2)
2.104(2)

1.937(2) to
1.952(2)

59.03(1)
59.36(1)
61.61(1)

114.68(8)
109.64(8)
110.42(8)

[38]

VAZCOR
3.1913(9)
3.391(1)
3.353(1)

0.599
2.032(4)
2.030(4)
1.959(3)

1.933(6) to
1.960(5)

62.36(2)
61.16(2)
56.49(2)

103.6(2)
116.4(2)
114.3(2)

[39]

VIMYEX
3.2639(7)
3.1851(8)
3.299(1)

0.712
2.027(2)
1.991(2)
2.003(2)

1.935(2) to
1.950(2)

58.06(1)
61.52(1)
60.41(1)

108.67(7)
105.79(7)
109.9387)

[40]

XOKXAX
3.347(1)
3.403(1)
3.320(1)

0.491
1.998(4)
2.000(4)
2.000(4)

1.939(5) to
1.963(6)

61.38(2)
58.92(2)
59.70(2)

113.6(2)
116.6(2)
112.3(2)

[41]

YIFGIG
3.3500(8)
3.2440(7)
3.3519(6)

0.521
1.978(2)
1.968(2)
2.008(2)

1.928(2) to
1.953(2)

57.90(1)
61.08(1)
61.02(1)

116.20(9)
109.37(9)
114.48(9)

[22]

* In QIMSIQ and QIMSOW, the letters a and b denote the structure that presents two different triangular
Cu3 units.

Among the compounds listed in Table 1, QOPJIP [Cu3(µ3−OH)(pz)3(Hpz)3][ClO4]2) [29]
is isostructural to 1−Cu3 ([Cu3(µ3−OH)(pz)3(Hpz)3][BF4]2), although there are some
differences, mainly related to the nature of the counter-anion. The smaller size of the [BF4]−

unit located between the two triangular units (compared to ClO4
−) leads to an important

shortening of the distances between the Cu3 planes for 1−Cu3 (6.789 Å), as compared to
QOPJIP (7.044 Å). This shortening allows for the formation of a hydrogen bond between
F8 and the hydrogen atom of the µ3−OH- group (not observed in QOPJIP), enlarging the
O–H bond in 1−Cu3 (0.991 Å), compared to QOPJIP (0.979 Å). The lower coordination
capacity of BF4

− compared to ClO4
− is clearly observed in 1−Cu3, where the Cu3(µ3−OH)

units are isolated (except for a very long semi-coordinated Cu1–F7 bond of 2.811(3) Å). In
contrast, in QOPJIP, the ClO4

− anion connects two triangular Cu3 units through four short
Cu–O bonds (in the range of 2.44–2.66 Å) to form a hexanuclear complex.

2.3. Magnetic Properties. dc Magnetic Analysis

The thermal variation of the product of the molar magnetic susceptibility per Cu3
unit multiplied by the the temperature for 1−Cu3, measured with a DC field of 100 mT,
shows a value of around 0.5 cm3 K mol−1 at 300 K (Figure 3). This value is below the
expected one for three uncoupled paramagnetic Cu(II) ions (1.125 cm3 K mol−1 with
g = 2.0), indicating the existence of bulk antiferromagnetic interactions between the CuII

atoms of the Cu3(µ3−OH) core. When the temperature is lowered, χmT steadily decreases,
reaching a plateau between 130 and 100 K. Below 100 K, χmT further decreases and reaches
a value of 0.26 cm3 K mol−1 at 2 K. The χmT value in the plateau is 0.38–0.40 cm3 K mol−1,
which is the expected value for a trinuclear unit with an S = 1/2 ground state [19,29]. The
field dependence of the magnetization at 2 K for 1−Cu3 shows a value of around 0.7 µB
at 5 T, corresponding to ca. 0.7 electrons, although saturation is not fully reached at 5 T
(Figure 3). This behavior is typical of systems with a µ3-hydroxido moiety with a ground
state of S = 1

2 (M = 1 µB), that present magnetization values below the expected ones and
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do not reach saturation, even at high fields [22,39]. Comparing the experimental data with
those calculated using the PHI program (see below) for 1−Cu3 shows a good agreement
between them. The lower values of the experimental data confirm the presence of an
antisymmetric exchange.
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The magnetic behavior observed for the χT data at low temperatures can be associated
with the spin frustration phenomena, which allows for the existence of an antisymmetric
exchange, as described by Ferrer et al. [19]. This work describes in detail the antisymmetric
exchange interaction in a triangular Cu3 system based on triazolato derivatives. Addition-
ally, we cannot discard that geometry distortions of the local coordination environment
may influence the overall magnetic properties. In this sense, several discussions have arisen
from this point, and according to Niedner-Schatteburg et al., spin frustration leads to a
geometric distortion [42–44].

The fit of the dc experimental data was achieved using the PHI program [45]. At
first, only isotropic interactions assuming an isosceles arrangement, i.e., two equal copper
distances and one different for the system, were considered, providing a good fit in the
50–300 K range. The best fit in the whole temperature range was obtained by adding
the antisymmetric exchange interaction (ASE; Gij) to the model. It has been extensively
discussed in the literature that triangular systems can deviate from the isotropic behavior,
presenting non-isotropic magnetic interactions, such as the antisymmetric exchange that
tends to arrange the spins perpendicular to each other. The antisymmetric vector is consid-
ered equal for each pair (G12 = G23 = G31 = G) and only the z-component is assumed to be
non-zero (Gx = Gy = 0) [18,19]. It is important to remark that the antisymmetric exchange
can be affected by the distortions of the triangular structure [46–48]. Thus, based on the
structural arrangement of the CuII triangles, we have used a model with two isotropic
exchange interactions (J1 and J2) for an isosceles triangle and an antisymmetric exchange,
using the Hamiltonian equation shown below:

Ĥ = −2J1(S1S2 + S2S3)− 2J2(S1S3)− 2G
(
Ŝ1 × Ŝ2 + Ŝ2 × Ŝ3 + Ŝ1 × Ŝ3

)
+ µBgH∑3

i=1Ŝi (1)

The best-fit parameters obtained for the isotropic exchange interactions are
J1 = −193.5(6) cm−1 and J2 = −205.5(3) cm−1, with an antisymmetric exchange parame-
ter |GZ| = 28 cm−1 (solid line in Figure 3). These values are listed in Table 2, together
with the magnetic parameters of selected molecular [Cu3–µ3OH]n+/− pyrazolato com-
plexes. The isotropic interaction values are strongly antiferromagnetic, being similar to
those reported for other pyrazolato and triazolato triangular Cu3–µ3OH complexes. The
antisymmetric exchange interactions for triangular CuII hydroxido pyrazolato complexes
have only been reported for two systems: VAZCOR (|GZ| = −18.2 cm−1) and YIFGIG
(|GZ| = −31.2 cm−1) [22,39]. However, for complexes based on the triazolato ligand, there
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are more examples in the literature, with |GZ| values between 17.5 and 44 cm−1 [19]. Thus,
the isotropic and antisymmetric exchange interactions obtained for 1−Cu3 are within the
range observed for other triangular CuII hydroxy compounds (see Table 2).

Table 2. Selected examples of the magnetic and structural parameters of triangular Cu3 pyrazolato
systems of the general formula, [Cu3(µ3−OH)(R-pz)3(L)3]n+/−.

CCDC
Code

d(CuII–CuII)
(Å)

Cu3 (plane)–OH
(Å)

J(CuII–CuII)
(cm−1)

g zJ´
(cm−1)

|GZ|
(cm−1) Ref.

1−Cu3

3.3740(8)
3.3574(8)
3.3702(9)

0.439 −193.5(6)
−205.5(6) 2.09 - 28 This work

BOFLEP #
3.349(2)
3.239(2)
3.355(2)

0.580 - - - - [33]

DEFSEN
3.384(1)
3.2503(9)
3.2950(9)

0.567 −117.7
−90.3 2.047 −3.0 - [27]

QISOW-a *
3.2559(7)
3.342(1)

3.2345(9)
0.713 −140 2.07 - - [28]

QISOW-b *
3.2045(6)
3.1837(8)
3.2007(9)

0.759 −109 2.07 - - [28]

QOPJIP
3.355(1)
3.386(1)
3.368(1)

0.466 −241.9 2.07 −23.0 - [29]

SIJKOL
3.112(1)
3.321(1)
3.321(1)

0.658 −148
−23 2.17 - - [37]

VAZCOR
3.1913(9)
3.391(1)
3.353(1)

0.599 −298
−257 2.12 −0.37 18.2 [39]

YIFGIG
3.3500(8)
3.2440(7)
3.3519(6)

0.521 −392
−278 2.09 - 31.2 [22]

# The magnetic properties are qualitatively described in this structure and no analytical interpretation was performed.

Magneto-structural analysis on triangular systems was carried out using the exper-
imental data shown in Table 2. According to the literature, two structural parameters
have been selected to study their influence on the magnetic properties of these triangular
systems. The first is the displacement of the µ3−OH− from the Cu3 plane, where the mag-
netic interaction becomes more antiferromagnetic when the displacement is smaller [49].
The second corresponds to the Cu–(µ3-X)–Cu angle, which seems to be sensitive to the
magnetic coupling interaction. The magnetic coupling interaction is switched from ferro-
magnetic to antiferromagnetic when the angle varies from 76◦ to 120◦ [50]. The analysis of
these structural parameters with the average magnetic exchange interactions shows that
a general tendency is observed only with the displacement of the µ3−OH− from the Cu3
plane (Figure 4).
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Figure 4. Relation between the displacement of the µ3−OH− from the Cu3 plane and the average
magnetic exchange interactions of triangular Cu3 pyrazolato systems. Squares represent the structures
depicted in the graph.

As mentioned in the Structural Analysis section, 1−Cu3 and QOPJIP are isostructural
crystalline systems. According to the literature, the displacement of the µ3−OH− group
from the Cu3 plane influences the magnetic properties. This effect shows that a larger
displacement causes a weaker antiferromagnetic interaction, which can be related to a
weaker overlap of the magnetic orbitals of the CuII centers in the triangular system [51].
However, the smaller displacement observed for 1−Cu3 (0.439 Å) compared to that of
QOPJIP (0.466 Å), suggests that 1−Cu3 should present a stronger antiferromagnetic inter-
action between the copper centers than QOPJIP. However, the opposite phenomenon is
observed (Figure 5).
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We have performed DFT calculations to rationalize the magnetic properties observed
for 1−Cu3 (see Materials and Methods section) [23]. The results were compared to a
previously reported theoretical study on the magnetic properties of several µ3−OH−-
bridged trinuclear CuII complexes [26]. The theoretical calculations for 1−Cu3 were carried
out at the same level of theory as for the study mentioned above. The geometrical array of
the triangular unit for 1−Cu3 permits defining three exchange pathways, with magnetic
exchange interactions of J1 = −94.9 cm−1, J2 = −87.7 cm−1, and J3 = −98.6 cm−1. For
QOPJIP, the previously reported DFT calculations also describe three exchange constants:
J1 = −118.3 cm−1, J2 = −106.0 cm−1, and J3 = −120.6 cm−1. The difference observed in
the magnitude of the magnetic exchange interaction between the calculated and the one
obtained from the fitting experimental data for both systems may be related to the so-
called strong interaction limit, in which the weak interaction limit treatment of Noodleman
would result in J-values being generally twice as larger [23]. This difference could also be
because the experimental J-values were obtained from bulk magnetic data that include
other magnetic phenomena in the crystalline lattice. On the other hand, DFT calculations
can isolate the magnetic phenomena for the molecular structure.

The DFT calculation of 1−Cu3 was completely validated, since the overlapping pa-
rameters, together with their calculated magnetic exchange interactions, fit well on the plot
of the J-values of the seven studied complexes as a function of the square of the overlap
depicted in the previous work of reference [26]. A linear relationship can be observed, as
expected from the Kahn–Briat overlap model (Figure 6). These results permit us to infer
that the µ3−OH−-bridged complex contributes to the exchange phenomenon, together
with other bridges. Finally, Mulliken spin density values were determined for four spin
configurations. The obtained values for the CuII atoms were in the 0.60–0.68 e− range,
similar to those obtained for other similar CuII systems [23,26]. These results reflect that
most of the electron spin density is located on the metal centers, and the rest of the spin
density appears over the atoms of the first coordination sphere through a delocalization
mechanism of the spin density. Figure S3 presents the spin density surfaces for the ferro-
magnetic solution ST = 3/2 and three broken-symmetry solutions ST = 1/2 for 1−Cu3. It is
possible to observe that no polarization mechanism of the spin density is observed for the
corresponding second coordination spheres.
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Finally, from all the results discussed above, it is possible to conclude that both
compounds, 1−Cu3 and QOPJIP, have a similar trinuclear structure with µ3−OH− and
µ2−pz− bridges, and both systems show a tetrahedral anion with a µ3 coordination mode
([BF4]− and [ClO4]−). The average DFT calculated J-values for 1−Cu3 and QOPJIP were
−93.7 and −114.9 cm−1, respectively. The displacement of the µ3−OH− group from the
plane of the three copper atoms is smaller for 1−Cu3 (0.439 Å) than for QOPJIP (0.466 Å);
thus, the first system should have stronger antiferromagnetic interactions, contrasting the
experimental values. These results suggest that the µ3−ClO4

− anion is not an innocent
ligand, and favors an antiferromagnetic exchange between the CuII centers, resulting in a
stronger antiferromagnetic coupling in QOPJIP.

3. Materials and Methods
3.1. The Synthesis of [Cu3(µ3−OH)(pz)3(Hpz)3][BF4]2 (1−Cu3)

Cu(BF4)2·H2O (765.5 mg, 3 mmol) was dissolved in 20 mL of methanol. Then, a
solution of pyrazole (204.2 mg, 3 mmol) and dimethylamine (135.2 mg, 3 mmol) in 15 mL
of methanol was added to the first solution. After adding the second solution, the color
changed from light blue to greenish−blue in the final solution. The greenish-blue crystals
of 1−Cu3, suitable for X-ray diffraction, were obtained within three days through the
slow evaporation of the filtered solution at room temperature. Elemental analysis found
the following: C, 27.9%; N, 19.5%; H, 3.2%. The calculation for Cu3C18H22N12OB2F8
was as follows: C, 27.5%; N, 21.4%; H, 2.8%. The elemental ratio estimated via electron
probe microanalysis (EPMA) was as follows: (exp.) theo. Cu: F = (2.89)3: (8.03)8. ESI–
MS in a positive mode (acetonitrile) showed the existence of only [Cu3(µ3−OH)]2+ unit,
confirmed through mass spectrometry results. The experiments show the existence of
the ([Cu3(µ3−OH)(pz)3(Hpz)3][BF4])+ (m/Z = 700); ([Cu3(µ3−OH)(pz)3(Hpz)3] + 1e−)+

(m/Z = 613); ([Cu3(µ3−OH)(pz)3(Hpz)2] + 1e−)+ (m/Z = 544); ([Cu3(µ3−OH)(pz)3(Hpz)1]
+ 1e−)+ (m/Z = 476); ([Cu3(µ3−OH)(pz)3)+ (m/Z = 408) (see Figure S1). IR data (KBr,
νmax/cm-1) 3400m [ν(NH)], 3137w [ν(µ3−OH−)], 1650w, and 1200w [νas(CN aromatic)].
See Figure S2.

3.2. Physical Characterization

Fourier transform infrared spectroscopy (FTIR) was performed using a NICOLET
5700 (Thermofisher Scientific, Waltham, MA, USA) in the range 4000–650 cm−1. Elemental
analysis (C, N, H) was performed employing microanalytical procedures, using an EA 1108
elemental analyzer (CE Instruments, Wigan, UK). Electrospray ionization mass spectrome-
try (ESI–MS) studies of 1−Cu3 were performed using a QTOF Premier instrument with an
orthogonal Z-spray–electrospray interface (Waters, Manchester, UK). A capillary voltage of
3.5 kV was used in the positive scan mode, and the cone voltage was set to 10 V to control
the extent of fragmentation.

3.3. X-ray Diffraction

A single crystal of the 1−Cu3 compound was mounted on a glass fiber, using a
hydrocarbon oil to coat the crystal, and then transferred directly to the cold nitrogen stream
for data collection. X-ray data were collected at 120 K on a Supernova diffractometer
(Rigaku, Austin, TX, USA) equipped with a graphite-monochromated Enhance (Mo) X-ray
Source (λ = 0.71073 Å). The program CrysAlisPro, Oxford Diffraction Ltd. (Yarnton, UK),
was used for unit cell determination and data reduction. Empirical absorption correction
was performed using spherical harmonics, implemented in the SCALE3 ABSPACK scaling
algorithm. The structure was solved with the ShelXT structure solution program [52], and
refined with the SHELXL-2018 program [53] using Olex 2 [54]. Non-hydrogen atoms were
refined anisotropically, and the hydrogen atoms were placed in calculated positions that
were refined using idealized geometries (riding model). A summary of the data collection
and structure refinements is provided in Table S1. CCDC-2174487 (1−Cu3) contains the
supplementary crystallographic data for this paper. These data can be obtained free of
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charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_
request/cif. (28 November 2022).

3.4. Magnetic Susceptibility Measurements

Variable temperature susceptibility measurements were carried out for 1−Cu3 in
the temperature range of 2–300 K, with an applied magnetic field of 100 mT on a ground
polycrystalline sample (with a mass of 37.64 mg), using a Quantum Design (San Diego,
CA, USA) MPMS XL-5 SQUID magnetometer. The susceptibility data were corrected for
the diamagnetic contributions of the sample using Pascal´s constants [55]. Isothermal
magnetization measurements were made between 0 and 5 T at 2 K.

3.5. DFT Calculations of the Magnetic Properties

Spin-unrestricted calculations under the density functional theory approach were
performed using the hybrid B3LYP functional [56,57] and a triple-ζ all-electron basis set
for all atoms in all the calculations [58]. A guess function was generated using the Jaguar
5.5 code [59]. Total energy calculations were performed with the Gaussian09 code [60], using
the quadratic convergence approach with a convergence criterion of 10−7 a.u. Mulliken
spin densities were obtained from single-point calculations using Gaussian09.

The Heisenberg–Dirac-van Vleck spin Hamiltonian used to describe the exchange
coupling in the trinuclear complex was Ĥ = − ∑

i>j
JijSiSj, where Si and Sj are the spin

operators of the paramagnetic centers of the compound. The Ji parameters are the magnetic
coupling constants between neighboring centers with unpaired electrons. Four different
spin distributions (three antiferromagnetic and one ferromagnetic) for the system were
calculated, and the obtained energies permit evaluating the magnetic exchange constants
of the system.

Utilizing the non-projected energy of the broken symmetry solution as the energy of
the low-spin state within the DFT methodology produced good results because it avoided
the cancellation of the non-dynamic correlation effects, as has been stated in studies carried
out by Ruiz et al. Thus, the J-value was obtained using the non-projected method [61,62].

4. Conclusions

A new trinuclear cationic [Cu3–µ3OH]n+ complex based on the pyrazolato ligand
has been obtained, i.e., [Cu3(µ3−OH)(pz)3(Hpz)3][BF4]2 (1−Cu3). The triangular complex
presents the [BF4]− as a counter-anion and is isostructural with the QOPJIP system. Nev-
ertheless, the smaller size of the BF4

− anion in 1−Cu3, compared to the ClO4
− anion in

QOPJIP, prevents the connection of the triangular units in 1−Cu3, in contrast to what is
observed for the isostructural complex QOPJIP.

The magnetic data show that strong antiferromagnetic interactions, together with
antisymmetric interactions, exist in the triangular unit. The analysis of the experimental
data and theoretical DFT results lead to the conclusion that there is a correlation between the
displacement of the µ3−OH− from the Cu3 plane and the magnetic exchange interactions
of the triangular Cu3 pyrazolato systems. However, the presence of other bridging organic
ligands also plays a role in the magnetic exchange. These features affect the overlap of the
magnetic orbitals according to the Khan–Briat model, suggesting that a strong overlap of
magnetic orbitals exists in these systems.

The differences in the magnetic properties between 1−Cu3 and QOPJIP were an-
alyzed and rationalized, showing that the different structural parameters, such as the
displacement of the µ3−OH− from the Cu3 plane, the nature of the bridging organic
ligands, and also the size of the counter-anion, affect the overall magnetic properties of
these systems.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/magnetochemistry9060155/s1, Figure S1. Electrospray–
mass spectrometry 1−Cu3 measurements in the positive mode with the different simulated fragment

www.ccdc.cam.ac.uk/data_request/cif
www.ccdc.cam.ac.uk/data_request/cif
https://www.mdpi.com/article/10.3390/magnetochemistry9060155/s1
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patterns Figure S2. FTIR Spectra of 1−Cu3. Figure S3. Spin density surfaces for 1−Cu3 of the
antiferromagnetic configurations and the ferromagnetic one. Table S1. Crystal data and structure
refinement for 1−Cu3. Table S2. Fractional atomic coordinates and equivalent isotropic displacement
parameters for 1−Cu3. Table S3. Anisotropic displacement parameters for 1−Cu3. Table S4. Bond
lengths for 1−Cu3. Table S5. Bond angles for 1−Cu3. Table S6. Hydrogen atom coordinates and
isotropic displacement parameters for 1−Cu3.
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