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Abstract: The antiferromagnetic phase transition of the heavy-fermion system Ce(Cu1−xCox)2Ge2

for x = 0.05 and 0.2, showing up in specific heat, magnetic susceptibility, and muon spin relaxation
(µSR) data, has been further investigated. The neutron diffraction (ND) results show that Co-doping
drastically reduces the moment size of Ce, without a qualitative change in the magnetic structure of
the undoped compound CeCu2Ge2. An incommensurate magnetic propagation vector k = (0.2852,
0.2852, 0.4495) with a cycloidal magnetic structure with a Ce moment of 0.55 µB in the ab-plane has
been observed for x = 0.05. Although for x = 0.2 the specific heat and magnetic susceptibility data
reflect a phase transition with a broad peak and the muon relaxation rate shows a sharp peak at
T = 0.9 K, our ND data dismiss the possibility of a long-range magnetic ordering down to 50 mK. The
ND data, along with previously reported results for x = 0.2, are interpreted in terms of the reduced
ordered state magnetic moments of the Ce3+ ion by Kondo screening and the presence of dynamical
short-range magnetic correlations.

Keywords: heavy-fermion system; antiferromagnetism; neutron diffraction

1. Introduction

Over the past few decades, heavy-fermion systems containing a sub-lattice of 4 f or
5 f elements have been intensively studied [1–10]. Competing interactions often reveal
different ground-state properties in these compounds. The inter-site Ruderman–Kittel–
Kasuya–Yosida (RKKY) interaction favours a long-range magnetic order and the onsite
Kondo effect suppresses magnetic ordering by screening the local magnetic moments.
Tuning the relative strength of the onsite Kondo and intersite RKKY exchange interac-
tions leads to various phenomena, such as long-range magnetic order, quantum critical
fluctuations, unconventional superconductivity, and heavy-Fermi- and non-Fermi-liquid
(NFL) behaviors [2–10]. In particular, the heavy-fermion compound CeCu2Ge2 is an ideal
system to study as its anti-ferromagnetic (AFM) ground state can be easily tuned by a
magnetic field or an external or chemical pressure [11–13]. CeCu2Ge2 is a magnetically
ordered Kondo lattice with an AFM phase transition TN = 4.1 K and a Kondo temperature
TK = 6 K [14]. A sinusoidal spin-density-wave-type incommensurate magnetic ordering
with a propagation vector of k = (0.283, 0.283, 0.538) at T = 40 mK has been reported [15].
Over the past few years, more detailed studies of the electronic properties and the magnetic
structure under chemical or external pressure have been reported on CeCu2Ge2 using
neutron diffraction (ND) experiments [15–17].

Recently, we reported the tetragonal Kondo lattice series Ce(Cu1−xCox)2Ge2 using
bulk and muon spin relaxation (µSR) measurements [18,19]. The cobalt substitution com-
presses the unit cell volume and increases the hybridization between the 4 f electrons and
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the conduction band states. For intermediate concentrations, two distinct AFM phase transi-
tions were anticipated. The first type of transition, the so-called local moment type of AFM,
persists up to x = 0.1. For higher x (0.1 < x < 0.6), the development of a heavy-fermion
band magnetism has been predicted, and finally the system changes its state to a heavy
Fermi liquid close to x = 1. Moreover, NFL behavior develops as TN → 0 K for x ∼ 0.6.
This feature was characterized by the formation of magnetic clusters in a non-magnetic
background known as the Griffiths phase [18,19]. The AFM phase in the second regime
is associated with pronounced anomalies in the temperature dependence of the magnetic
susceptibility but a weaker anomaly in the specific heat. In addition, the µSR experiment
also confirms that the samples with x = 0 and 0.2 have magnetic ordering below T = 4 and
0.8 K, respectively, but the true nature of the magnetic phase could not be established yet.
To shed more light on the unusual magnetic properties and the complex magnetic phase
diagram of Ce(Cu1−xCox)2Ge2, we performed neutron powder diffraction measurements
for x = 0.05 and 0.2 samples. We anticipate that the ND experiment will give a difference in
magnetic structure for Ce(Cu1−xCox)2Ge2 between 0 ≤ x ≤ 0.1 and 0.1 < x < 0.6 samples,
similar to the Ni-doped CeCu2Ge2 system, because the substitution of Ni at the Cu site also
compresses the unit cell and increases the hybridization [20]. Compared to Ni, small Co
concentrations strongly suppress the magnetic ordering temperature because, in addition
to the volume effect, the change in the electronic structure plays an important role.

2. Experimental Methods

Polycrystalline samples of Ce(Cu1−xCox)2Ge2 for x = 0.05 and 0.2 were prepared by
arc melting stoichiometric amounts of high-purity elements in an argon atmosphere. Initial
characterization of the samples was performed by X-ray diffraction with Cu-Kα radiation
at room temperature, magnetization, and transport measurements. Neutron powder
diffraction experiments were performed using the time-of-flight WISH diffractometers
at the ISIS Pulsed Neutron and Muon Source, Rutherford Appleton Laboratory, United
Kingdom [21]. The powdered Ce(Cu1−xCox)2Ge2 samples were lightly packed in a thin-
walled copper can (diameter 3 mm). The low temperature was achieved by cooling the
sample inside a He-3 cryostat (for x = 0.05 sample) and a dilution fridge (for x = 0.2 sample)
using He-exchange gas inside the In-sealed Cu can to ensure good thermal contact at low
temperatures. In order to determine the magnetic structure, ND data for x = 0.05 and
0.2 samples were collected down to 0.28 K and 50 mK, respectively, with long counting (5 h
per run). We also collected the diffraction data at several temperatures between 0.28 and 5 K
with a shorter counting time (30 min per point) for x = 0.05 to investigate the temperature
dependence of the order parameter as well as any change in the magnetic structure with
temperature. Rietveld refinement technique was used to refine the low-temperature nuclear
pattern using Fullprof program [22].

3. Results and Discussion

A neutron powder diffraction pattern of Ce(Cu1−xCox)2Ge2 for x = 0.05 at tempera-
tures above the magnetic ordering (T = 2 K) is shown in Figure 1a. The Fullprof structural
refinement of this pattern reveals a single-phase ThCr2Si2-type (space group I4/mmm)
tetragonal structure. Along with the main phase, copper (because we used a Cu can)
with space group Fm− 3m [23] was also detected. The lattice parameters of the nuclear
reflections were determined to be 5 K and 0.28 K and are listed in Table 1. The ND data
thus confirm that the crystal structure for x = 0.05 down to 0.28 K remains the same as that
at room temperature.
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Figure 1. (a) Neutron powder diffraction patterns of Ce(Cu0.95Co0.05)2Ge2 from one of the detector
banks of the WISH diffractometer at T = 2 K. The solid line represents the Rietveld refinement
profile fit for the ThCr2Si2-type body-centered tetragonal (space group I4/mmm) structure. A small
amount of impurities of copper (Fm− 3m), from the Cu-sample can, is included in the refinement.
(b) The expanded view shows the differences between 2 K (green) and 0.28 K (red) data, where the
magnetic Brag peaks are quite visible. The blue curve at the bottom shows the temperature difference
data 0.28–2 K.

Table 1. Crystallographic parameters obtained from Rietveld refinement of powder XRD (room
temperature) and ND data of Ce(Cu1−xCox)2Ge2 (x = 0.05, 0.2) at different temperatures with the
body-centered tetragonal ThCr2Si2-type structure (space group I4/mmm).

x = 0.05 x = 0.2

XRD ND ND XRD ND ND

(300 K) (5 K) (0.28 K) (300 K) (0.9 K) (50 mK)

Lattice parameter
a(Å) 4.1759(1) 4.1689(5) 4.1680(1) 4.1744(4) 4.1729(5) 4.1708(2)
c(Å) 10.1860(7) 10.1702(3) 10.1711(1) 10.1225(1) 10.1230(8) 10.1149(2)

V(Å3) 177.6249 176.7518 176.6930 176.3908 175.2727 175.9545

Atomic coordinate
zGe 0.3767 0.3776 0.3777 0.3753 0.3766 0.3766

Refinement quality
χ2 1.67 19.4 20.3 2.13 17.4 19.3

RP(%) 16.5 17.93 15.01 19.6 17.93 18.82
RWP(%) 20.4 15.32 14.91 26.3 19.72 21.11

A comparison of the diffraction pattern at 2 K and 0.28 K in an expanded scale
reveals the appearance of additional weak magnetic Bragg reflections below T = 2 K for
x = 0.05 (Figure 1b). The reflections exhibit a critical behavior (Figure 2), and a power-
law fitting of the integrated intensity plotted as a function of temperature yields the
transition temperature TN = 2.0(2) K and the critical exponent β = 0.31(2). TN is in excellent
agreement with the results of µSR, magnetization, and heat capacity measurements [19].
The magnetic peaks can be indexed with the incommensurate propagation vector k =
(0.2852, 0.2852, 0.4495), which is close to the propagation vector reported by Singh et al. [15]
for the undoped CeCu2Ge2 compound. The quantitative refinement of the magnetic
intensities was therefore approached based on the magnetic ground state of CeCu2Ge2. The
model provided a reasonably good refinement quality (Figure 3) but with a significantly
reduced moment size 0.55(1) µB in comparison with the undoped counterpart (1.04(4) µB).
The model implies a gradual rotation of the Ce magnetic moments, confined within the
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tetragonal ab-plane, upon propagation through the crystal (Figure 4). Apparently, the
doping significantly increases the Kondo screening, as further evidenced by the lack of any
detectable magnetic signal in the x = 0.2 sample (Figure 5a).
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Figure 2. Magnetic Bragg peaks (a) (0 0 0) ± k, (b) (0 0 2) − k, and (c) (0 −1 1)/(−1 0 1) + k at
various temperatures, and (d) the integrated intensity of the peaks (0 0 0) ± k, (0 0 2) − k, and
(0 −1 1)/(−1 0 1) + k versus temperature for x = 0.05. The solid lines are fit to the data with power-
law behavior.
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Figure 3. Rietveld refinement of the magnetic intensities obtained by subtraction of high-temperature
(2 K) paramagnetic data from the low-temperature (0.28 K) data of Ce(Cu1−xCox)2Ge2 with x = 0.05.
The solid black lines show the fit. The difference between the experimental and calculated intensities
is shown by the blue curves at the bottom. The olive vertical ticks show the position of the magnetic
Bragg peaks (bottom) and the structural Bragg peaks (top).

The Rietveld refinement confirms that the x = 0.2 sample also crystallizes in the
tetragonal ThCr2Si2-type structure space group I4/mmm. The refined lattice parameters,
atomic position parameters, and thermal parameters are given in Table 1. As we noted a
magnetic anomaly in χ(T), C(T), and in the µSR measurements at around T = 0.8 K for
x = 0.2, we can expect additional magnetic reflections in the difference ND data for above
and below the ordering temperature, i.e., TN = 0.8 K. Comparing the data collected at two
temperatures (Figure 5b), i.e., at T = 0.9 K and 50 mK, we do not observe magnetic signals.
This is because the moment is too small (apparently below the detectable limit). This is
not unexpected: if x = 0.05 of Co reduced the moment from 1 to 0.5 µB, it is quite natural
that the moment size in x = 0.2 is outside the resolution limit. Fitting of the difference
ND data in the model used to refine the magnetic structure of the x = 0.05 sample did not
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yield a statistically significant moment size with the three-sigma interval around 0.2 µB,
which was taken as the top limit of the ordered moment for the x = 0.2 sample. This is
in agreement with the observation of the dynamical electronic relaxation down to 0.35 K
seen in the µSR data as discussed in our previous report [19]. Our µSR data neither showed
any sign of frequency oscillations, which one expects for a long-range magnetic ground
state with small moments ordering, nor a loss of 2/3 initial asymmetry, which one expects
for a larger moment long-range magnetic ordered ground state. It is to be noted that in
CeCu2(Si1−xGex)2, for x ≤ 0.4, no magnetic intensities could be detected either by powder
or by single-crystal ND [24]. This also supports the Kondo screening of the Ce moments
for x ≤ 0.4.

Figure 4. The incommensurate magnetic structure of Ce(Cu1−xCox)2Ge2 (x = 0.05) with magnetic
propagation vector k = (0.2852, 0.2852, 0.4495) obtained from the refinement of ND pattern at 0.28–2 K.
The solid lines show the unit cell, and the magnetic moments are shown by red arrows at the Ce atom
position presented by red balls.
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Figure 5. (a) Neutron powder diffraction patterns of Ce(Cu0.8Co0.2)2Ge2 at T = 50 mK. The solid line
represents the Rietveld refinement profile fit for the ThCr2Si2-type body-centered tetragonal (space
group I4/mmm) structure. The refinement includes a small amount of copper impurities (Fm− 3m).
(b) No magnetic Brag peak could be seen in the expanded view of the difference between 0.9 K and
50 mK data.

4. Conclusions

We have investigated the magnetic structure of Ce(Cu1−xCox)2Ge2 using neutron
powder diffraction for x = 0.05 and 0.2 in the temperature range 0.28 ≤ T ≤ 5 K and
0.05 ≤ T ≤ 5 K, respectively. The results of ND reveal that Co-doping significantly reduces
the moment size of Ce while leaving the magnetic structure of the undoped compound
CeCu2Ge2 almost unchanged. For x = 0.05, we observed magnetic reflections with incom-
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mensurate magnetic propagation vector k = (0.2852, 0.2852, 0.4495), the magnetic structure
obtained from the refinement corresponds to a cycloidal structure, and the Ce moments are
antiferromagnetically coupled in the ab plane. The value of the magnetic moment of Ce at
0.28 K is 0.55(1) µB/Ce-atom. This value is slightly smaller than the ordered state moment
of CeCu2Ge2, i.e., 1.04(4) µB, which could be due to the presence of the Kondo effect. This
magnetic structure is identical to that of CeCu2Ge2 with propagation vector k = (0.28, 0.28,
0.54). However, for x = 0.2, no magnetic Brag peak could be detected, which implies either
complex short-range dynamical magnetic fluctuations or a further reduction in the ordered
state Ce magnetic moments for Co concentrations x ≥ 0.1, which are below the detectable
limit. The results of the present study will be important in future investigations of the
low-energy magnetic excitations in these materials.
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