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Abstract: Quantum chemical methods for the calculation of indirect NMR spin–spin coupling con-
stants and chemical shifts are always in progress. They never stay the same due to permanently
developing computational facilities, which open new perspectives and create new challenges every
now and then. This review starts from the fundamentals of the nonrelativistic and relativistic theory
of nuclear magnetic resonance parameters, and gradually moves towards the discussion of the
most popular common and newly developed methodologies for quantum chemical modeling of
NMR spectra.
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1. Introduction

The determination of the structure of compounds using the NMR spectral analysis
has now become an integral part of physical-chemical research in organic and inorganic
chemistry. In general, establishing the structure of compounds using NMR spectra based
only on the empirical or semi-empirical rules is not always completely correct. An erroneous
interpretation may occur, for example, when it is necessary to choose from several close
presumptive structures, such as diastereomers, or, when analyzing new structures with
NMR parameters going beyond the usual ranges. In such cases, high-quality quantum
chemical calculations are necessary.

Since the application of the perturbation theory to the NMR properties by Ramsey, over
70 years ago, computational methodology has made a great leap due to both the accelerated
progress of computer technique and the development of the electron theory. Now we
can witness the flourishing of density functional methods, being successfully applied to
biological macromolecules at acceptable computational cost as well as a routine usage
of the ab initio wavefunction-based correlated methods such as polarization propagator
approaches or coupled-cluster techniques in the calculations of the NMR properties of
medium-size molecules.

Here it is relevant to recall that a good deal of reviews regarding the calculation of the in-
direct nuclear spin–spin coupling constants and NMR chemical shifts have appeared over the
past decades. In this respect, quantum chemical methods for the calculations of NMR parame-
ters were reviewed by Gauss et al. [1], Fukui et al. [2–4], Helgaker et al. [5–8], Contreras [9,10],
Aucar et al. [11,12], Autschbach et al. [13–16], Sauer et al. [17], Lazzeretti [18], Cremer and
Gräfenstein [19], de la Vega and Fabián [20], Rusakov et al. [21–24], Krivdin [25–40], Mulder
et al. [41], Pyykkö [42], Facelli [43], and some others [44–49].

This review is aimed at surveying modern ubiquitous methods for modelling the NMR
spectra of compounds with a special accent placed on the recent developments. Notes
are given on the propensities of various quantum chemical methodologies suitable for
the calculations of NMR parameters. Configuring a route to an effective computational
protocol, a good number of factors influencing the accuracy, such as the choice of an atomic

Magnetochemistry 2022, 8, 50. https://doi.org/10.3390/magnetochemistry8050050 https://www.mdpi.com/journal/magnetochemistry

https://doi.org/10.3390/magnetochemistry8050050
https://doi.org/10.3390/magnetochemistry8050050
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/magnetochemistry
https://www.mdpi.com
https://orcid.org/0000-0002-1089-3864
https://doi.org/10.3390/magnetochemistry8050050
https://www.mdpi.com/journal/magnetochemistry
https://www.mdpi.com/article/10.3390/magnetochemistry8050050?type=check_update&version=2


Magnetochemistry 2022, 8, 50 2 of 72

basis set, the treatment of relativistic effects, vibrational corrections, and solvent effects, are
discussed to a reasonable extent.

2. Theoretical Background
2.1. Nonrelativistic Representation of NMR Parameters

The original expressions of the NMR parameters were derived by Ramsey [50,51] on
the basis of the second-order Rayleigh–Schrodinger perturbation theory without taking
into account the relativistic effects. In the calculation of the NMR molecular properties,
Schrödinger–Hamiltonian is extended to include hyperfine interactions between nuclei and
magnetic field, which can be expressed as follows:

Ĥ(B,µN) = Ĥ(0) + Ĥ(10)B +
1
2

BĤ(20)B + ∑
N
µNĤ(01)

N +
1
2∑

N
µNĤ(11)

N B +
1
2 ∑

MN
µMĤ(02)

MNµN + . . . (1)

where Ĥ(0) is the Schrödinger–Hamiltonian, B is the external magnetic flux density, µN is

the nuclear magnetic moment, Ĥ(nl) is the interaction operators containing the n-th power
of B and l-th power of µN . The wave function of a system is represented in the form of
power series of B and µN :

Ψ(B,µN) = Ψ0 + Ψ(10) · B + ∑
N

Ψ(01)
N ·µN + . . . , (2)

where Ψ0 is the unperturbed ground state wave function and Ψ(nl) are the expansion
coefficients. Substituting Ĥ(B,µN) and Ψ(B,µN) into the expression for electronic energy:

E(B,µN) = 〈Ψ(B,µN)|Ĥ(B,µN)|Ψ(B,µN)〉, (3)

gives an infinite power series:

E(B,µN) = E0 + E(10) · B + ∑
N

E(01)
N · µN + ∑

N
µT

NE(11)
N B + ∑

NM
µT

NE(02)
N µM + . . . (4)

By definition, the NMR shielding tensor is expressed as the second derivative of the
total energy with respect to the Cartesian components of an external magnetic flux density
and the nuclear magnetic moment

σN;αβ =
∂2E(B, µ)
∂Bα∂µN;β

∣∣∣∣∣ µN = 0, B = 0
(5)

The tensor σN can be split apart into two components that are different from a physical
point of view, namely the diamagnetic and paramagnetic contributions:

σN = σdia
N +σ

para
N . (6)

These contributions were first deduced by Ramsey [50] within the framework of the
common perturbation theory. The diamagnetic contribution has the form of an average of
the diamagnetic operator over the ground state of the unperturbed system:

σdia
N = Cdia

〈
1Ψ(0)

0

∣∣∣∑
i

(
rT

i0riNI− ri0rT
iN

)
r−3

iN

∣∣∣1Ψ(0)
0

〉
. (7)

At the same time, the paramagnetic contribution is determined through the perturbed
wave function as a sum over singlet-excited states of the electronic system:
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σ
para
N = −Cpara ∑

n 6=0

(
1E(0)

n − 1E(0)
0

)−1
{〈

1Ψ(0)
0

∣∣∣∑
i

L̂i0

∣∣∣1Ψ(0)
n

〉〈
1Ψ(0)

n

∣∣∣∑
j

2L̂T
jNr−3

jN

∣∣∣1Ψ(0)
0

〉
+

+
〈

1Ψ(0)
0

∣∣∣∑
i

2L̂iNr−3
iN

∣∣∣1Ψ(0)
n

〉〈
1Ψ(0)

n

∣∣∣∑
j

L̂T
j0

∣∣∣1Ψ(0)
0

〉}
,

(8)

where the L̂i0 = −i(ri − R0)×
→
∇i and L̂iN = −i(ri − RN)×

→
∇i are the electron angular

momentum in relation to the gauge origin and the position of Nth nucleus, respectively.
From a physical point of view, the diamagnetic contribution (7) is due to the diamagnetic
circular electron currents in the orbitals of the atom N induced by an external magnetic field.
The expression (7) is an analogue of Lamb’s formula [52], which describes the shielding
effect for nucleus of an atom, which is proportional to the electron density in the region of
the nucleus.

The paramagnetic component is expressed in terms of paramagnetic currents caused
by the mixing of the ground and excited states under the action of an external field.
The paramagnetic contribution is nonzero only for systems having the electrons with a
non-zero angular momentum. The diamagnetic component is a local property, while the
paramagnetic part can be roughly divided into local and non-local components, the first of
which is expressed in terms of local paramagnetic currents of the atom in question, and the
second is due to the electron currents of neighboring atoms or currents circulating over the
groups of atoms, as, for example, in the case of aromatic molecules. The paramagnetic and
diamagnetic components are of different signs.

In a liquid or gas phase NMR experiment, the rotation of molecules is so fast that the
nuclear shielding tensor is isotropically averaged. The isotropic constant of the nuclear
magnetic shielding is expressed as the one third of the trace of the corresponding tensor:

σN;iso =
1
3

Tr(σN) =
1
3 ∑

α=x,y,z
σN;αα. (9)

In order to obtain the data independent of experimental conditions, the so-called
chemical shifts or δ-scale was introduced. The values on δ-scale represent the ratio of
chemical shifts measured in Hz and the operating frequency of the spectrometer. As a result,
dimensionless quantities δ, measured in points per millionths (ppm), are obtained. The
chemical shifts, δ, measured in the NMR experiment, are calculated using the International
Union of Pure and Applied Chemistry (IUPAC) formula [53,54], through the isotropic
absolute NMR shielding constant of a given nucleus in the reference compound (the
standard), σref, and that of the compound under question, σsample [55]:

δ =
σre f − σsample

1− σre f
× 106

∣∣∣∣∣ (10)

However, in the units of parts per million, a simplified equation for chemical shifts
is adopted:

δ = σre f − σsample. (11)

The magnetic vector-potential of the external magnetic field, A, uniquely determines
the magnetic field B = ∇ × A(r), however, the otherwise statement is not true, i.e., a
given magnetic field B gives a variety of vector-potentials A. Suppose, one adds the
gradient of any scalar function ∇ f to a given vector-potential A. This results in a zero
change in the magnetic field of B, because ∇×∇ f = 0. This ambiguity emerges in the
expressions (7) and (8) as the dependence of the resulting values on the radius-vector of the
center of the coordinate system. The multivariance in describing a physical property with
different vector potentials leads to a natural requirement to the property to be independent
from the selected coordinate center. This requirement is usually referred to as the gauge
invariance principle. The gauge invariance is trivially satisfied by the exact solutions of
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the Schrödinger equation (for the proof, see, for example, [56]), however, for approximate
solutions this is not the case. This is a serious problem for quantum chemistry, which, in fact,
is built upon the approximate solutions. The violation of the gauge invariance principle
in approximate approaches of quantum chemistry occurs for two reasons: (a) the use of
finite basis sets; (b) the fact that some quantum chemical schemes do not obey the virial
theorem [57]. The first reason is usually considered the most serious; the latter is mentioned
in the literature much less frequently [58]. For methods that do not violate the virial
theorem, for example, the Hartree–Fock method, it can be shown that they provide gauge
invariance of the observed physical quantities in the complete basis set (CBS) limit [59].

The solution of the gauge origin problem lies in going to the terms of local gauge
origins. The main idea of these methods is to avoid using a single coordinate center,
which, in principle, does not provide an adequate solution to the calibration problem in
the calculations of molecular properties. For atoms, it was shown that the best possible
choice is to place the coordinate center at the position of a nucleus. This ensures the
fastest convergence with respect to the basis set. Withdrawal of the coordinate origin from
the nucleus position leads to a dramatic deterioration of the results. For molecules, the
difficulty lies in the fact that there is no optimal unique origin of the reference system, since
the molecule is a system of many nuclei.

The introduction of individual gauge origins for various local parts of the wave
function alleviates the gauge origin problem. Since the operators of the hyperfine magnetic
interaction are of one-electron type, it was proposed to introduce the local origin of the
coordinate system for individual one-electron components of wave functions, that is, either
for the molecular or atomic orbitals [60]. In the case of choosing the individual gauge origins
for the molecular orbitals, a serious problem, connected with their strong delocalization,
arises. At the initial stage, this disadvantage was circumvented by using the localized
molecular orbitals within the framework of the individual gauge for localized orbitals
(IGLO) by Kutzelnigg et al. [61,62], and within the localized orbitals/local origin (LORG)
scheme by Hansen and Bowman [63,64].

However, this leads to additional constraints for the wave functions in the electron-
correlated methods. Resorting to the individual gauge origins for atomic orbitals presents
a more adequate solution to the gauge origin problem in molecules. Atomic orbitals are
necessarily localized; therefore, no additional constraint concerning the quantum chemical
treatment is required. The use of local (nucleus-centered) origins for atomic orbitals is
usually referred to as the gauge-including atomic orbitals (GIAO) approach [59,65–71].
Formally, the local origins of the coordinate system are introduced by the non-canonical
transformations of the following form [1]:

Ψ→ Ψ′ = ∑
µ

exp(−Λµ(r))P̂µΨ (12)

Ĥ → Ĥ′ = ∑
µ

P̂µ exp(−Λµ(r))Ĥ∑
ν

exp(Λν(r))P̂ν (13)

where
Λµ(r) =

i
2
[(

Rµ −R0
)
× B

]
r (14)

and P̂µ is the projection operator on the local fragments of the molecule wave function,
which shifts the gauge origin for the part denoted by µ-th to the new position Rµ. The
projection operator P̂µ is expressed as follows:

P̂µ = ∑
ν

∣∣χµ

〉
S−1

µν 〈χν|, (15)

where Sµν are the elements of the atomic orbital overlap matrix, given that the new origin is
placed at the corresponding nuclear position. From the formal point of view, introduction
of multiple local gauge origins Rµ of the reference frame does not solve the problem of
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the violation of the gauge invariance principle, since there is not an explicit reformulation
of the problem in the gauge invariant form. Instead, the methods of multiple local gauge
origins give results that do not depend on the choice of the origin of the global coordinate
system. In addition, it should be noted that the approach of local coordinate systems is
physically motivated, and in practice demonstrate much better convergence of properties
on the basis sets.

In addition to the splitting of nuclear spin levels in the external field, there is an
additional splitting due to the interaction of nuclear spins. One part of this interaction
is due to the direct magnetic dipole-dipole interaction of nuclear spins. In the liquid or
gas phase NMR experiment, the direct tensor gives zero due to the isotropic averaging.
The second part of this is due to the polarization of the electron cloud caused by the
nuclear spins under consideration. The first part of the coupling tensor is called the direct
coupling tensor and its components are measured in the solid-state NMR experiments,
while the second part is called the indirect reduced coupling tensor, and it gives a non-zero
value under the isotropic averaging in the liquid or gas phase NMR experiments. The
components of the indirect reduced coupling tensor are the second partial derivatives of
the total perturbed energy of an electronic system in relation to the Cartesian components
of magnetic moments of the nuclei:

KMN;αβ =
∂2E(B, µ)

∂µN,α∂µM,β

∣∣∣∣∣ µN , µM = 0
(16)

The tensor KMN has four contributions:

KMN = KDSO
MN + KPSO

MN + KFC
MN + KSD

MN (17)

These contributions were first deduced by Ramsey [51]. The first contribution in the
Equation (17) is called as the diamagnetic spin-orbit contribution (DSO). It comes from the
diamagnetic operator, which is included in the Hamiltonian of the system as an operator
bilinear in the magnetic moments of the nuclei and corresponds to the interaction of the
magnetic moments of the nuclei through induced diamagnetic currents. It is very similar
to the diamagnetic contribution to the nuclear shielding tensor, and represents the average
of the diamagnetic interaction operator over the ground state:

KDSO
MN = CDSO

〈
1Ψ(0)

0

∣∣∣∑
i

rT
iMriNI− riMrT

iN
r3

iMr3
iN

∣∣∣1Ψ(0)
0

〉
(18)

The second contribution in the Equation (17) is the paramagnetic spin-orbit contri-
bution (PSO). The PSO contribution is very close to the paramagnetic contribution to the
nuclear magnetic shielding tensor. It is also expressed in terms of the sum of excited singlet
states and also contains the angular momentum operators of electrons:

KPSO
MN = CPSO ∑

n 6=0

(
1E(0)

n − 1E(0)
0

)−1〈1Ψ(0)
0

∣∣∣∑
i

L̂iM

r3
iM

∣∣∣1Ψ(0)
n

〉〈
1Ψ(0)

n

∣∣∣∑
j

L̂T
jN

r3
jN

∣∣∣1Ψ(0)
0

〉
(19)

Its physical meaning consists in the transfer of the nuclear spin–spin interaction
through the induction of the paramagnetic orbital electron currents.

The third and fourth contributions in Equation (17) correspond to the Fermi-contact
(FC) and spin-dipole (SD) contributions. These contributions come from the hyperfine
dipole interaction of the magnetic moment of one of the nuclei under consideration with
the electron spins, resulting in the polarization of the electron spins of a system, which is
transmitted to the region of the second nucleus and leads to the appearance of an additional
magnetic field in that region. In fact, the FC and SD terms originate from the same hyperfine
interaction operator and describe the same physical process. However, the FC contribution
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is due to the electrons of orbitals intersecting the nuclear centers. The corresponding
equations for the FC and SD contributions are as follows:

KFC/SD
MN = CFC/SD ∑

n 6=0

(
3E(0)

n − 1E(0)
0

)−1〈1Ψ(0)
0

∣∣∣ĤSD/FC
M

∣∣∣3Ψ(0)
n

〉〈
3Ψ(0)

n

∣∣∣ĤSD/FC
N

∣∣∣1Ψ(0)
0

〉
(20)

ĤFC
M = ∑

i
δ3(riM)ŝi (21)

ĤSD
M = ∑

i

3riMrT
iM − r2

iMI
r5

iM
ŝi (22)

The isotropic spin–spin coupling constant (measured in Hz) is obtained from the
reduced tensor K as one third of its trace multiplied by a coefficient containing the product
of the gyromagnetic ratios of the nuclei under consideration:

JMN =
1
3
·
(

}
2π

)
· γMγN · Tr(KMN) (23)

The most part of the modern nonrelativistic quantum chemical methods for calculating
the NMR parameters are based on Equations (6)–(9), (17)–(23). However, it is impossible
to use them in practice in their original form, since they include exact wave functions and
energies. A route to make them useful for computational quantum chemistry is to express
them in terms of molecular orbitals with the aid of the second quantization technique [72].
In the simplest approximation, where the excited wave functions are built by the action of
the singlet and triplet excitation operators on the ground state wave function, described
by the Hartee–Fock single-determinant many-body wave function, the nonrelativistic
contributions to nuclear shielding and spin–spin coupling constants are as follows:

σdia
N = Cdia

occ

∑
i
〈ϕi|

(
rT

0 · rNI− r0rT
N

)
r−3

N |ϕi〉 (24)

σ
para
N = −Cpara

occ

∑
i

vac

∑
a
(εi − εa)

−1
{
〈ϕi|L̂0|ϕa〉〈ϕa|2L̂T

Nr−3
N |ϕi〉+ perm.

}
(25)

JDSO
MN = CDSO

occ

∑
i
〈ϕi|

rT
MrNI− rMrT

N
r3

Mr3
N

|ϕi〉 (26)

JX
MN = CX

occ

∑
i

vac

∑
a
(εi − εa)

−1〈ϕi|Ĥ
X |ϕa〉〈ϕa|

(
ĤX
)T
|ϕi〉 (27)

In Equation (27), the operator ĤX designates different types of hyperfine operators,
namely X = FC, SD and PSO. In these equations |ϕi〉 and |ϕa〉 correspond to the occupied
and vacant molecular orbitals with the energies εi and εa, respectively.

2.2. Relativistic Representation of NMR Parameters

For heavy elements, the available methods for prediction of NMR parameters based
on the Schrödinger equation often become insufficient. In these cases, the average orbital
velocities of electrons in the vicinity to nuclei are close to the speed of light, giving rise
to relativistic effects such as spin-orbit coupling, the Darwin term, and the mass-velocity
correction, which can all substantially affect the NMR spectroscopic parameters. Relativistic
effects on the NMR parameters can already take place for the compounds bearing the atoms
of the third period of the periodic table. The magnitude of the relativistic effects on the
NMR parameters cannot be estimated simply from the reasoning in the atomic terms, using,
for instance, the well-known Lorentz factor γ = (1 − v2/c2)−1/2, which allows to determine
the “relativistic” contraction of the inner 1s shells ([(γ − 1)/γ] × 100%). That is not enough
for the NMR parameters, since the relativistic corrections to these are rather non-local
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properties, which are determined by the electronic structure of the entire electron system of
the molecule.

The study of the relativistic effects [73–87] in the NMR parameters was commenced
by the scientific groups of Pyper [88–90], Zhang [91] and Pyykkö [92,93] in the 1980s. The
pioneering ideas, proposed in these works, were gradually developed to coherent relativis-
tic theories by the scientific groups of Nakatsuji [94–99], Fukui [100,101], Liu [102–107],
Aucar [108–115], Vaara [116–119], Autschbach [120–123], Manninen [124–126], Sauer [127],
and some others [128–133].

The transition to the relativistic representation of NMR parameters is based on the
stationary Dirac equation for a particle in the external electrostatic potential of nuclei. This
equation can be represented as a matrix equation with a 4 × 4 Hamiltonian:

ĥ
D
4×4ψ4×1 =

(
c
→
α
→̂
p + mc2(β− I) + V̂ I

)
4×4
ψ4×1 =

(
V̂ I2×2 c

→
σ2×2

→̂
p

c
→
σ2×2

→̂
p

(
V̂ − 2mc2) I2×2

)
ψ4×1 = Eψ4×1. (28)

In Equation (28), the energy level is shifted down by the energy of rest, mc2, and the
moieties β and

→
α are the 4 × 4 matrices, called the Dirac matrices:

→
α =

[
02×2

→
σ

→
σ 02×2

]
, β =

[
12×2 02×2
02×2 −12×2

]
. (29)

The matrices β and
→
α consist of 2 × 2 Pauli matrices

→
σ =

{
σx,σy,σz

}
, which repre-

sent the elements of the electron spin operator matrix,
→
σ = 2

→̂
s :

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (30)

The Dirac Equation (28) satisfies all the necessary requirements, in particular, it is
Lorentz-covariant, provides a positive probability density, and, in addition, it resorts to
the notion of spin as an additional degree of freedom. The solutions of Equation (28) are
stationary 4-spinors, ψ4×1 that can be expressed as bispinors, consisting of “large” and
“small” components:

ψD
4×1 =


ψ1
ψ2
ψ3
ψ4

 =

(
ψL2×1
ψS2×1

)
. (31)

Free-particle Dirac equation (without external potential) has two types of solutions:
with positive and with negative energies. Solutions with the positive energies correspond
to the electronic continuum, unlimited from above, and those possessing the negative
energy belong to the positronic continuum, unlimited from below. The introduction of
the external potential leads to the appearance of bound electronic states with a discrete
spectrum −2mc2 < E < 0.

Generalization to the case of a many-particle system can be performed by means
of introduction of the interelectronic interaction operator into the Hamiltonian and by
going to a multidimensional Hilbert space, which is the direct product of one-partial
Hilbert spaces. This leads to a Hamiltonian of the dimension 4Ne × 4Ne, where Ne is the
number of electrons. However, the Hamiltonian of this large dimension is not applicable in
practice. As a rule, all standard relativistic methods reduce the multi-electron problem to
single-particle equations, so that the resulting equations are very similar to Equation (28).
The construction of any single-particle approximations relies upon the four-component
many-particle Dirac–Coulomb–Breit Hamiltonian (DCB) [134]:

ĤDCB =
Ne

∑
i

ĥD(i) +
1
2

Ne

∑
i 6=j

ĝ(i, j) (32)
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where ĥD(i) is the single-particle Dirac operator, presented by Equation (28) with operator
V̂ describing the interaction of the electrons with the fixed nuclear framework, whereas the
operator ĝ(i, j) represents the interelectronic interaction and is called the Coulomb–Breit
operator, which is the sum of the usual Coulomb operator and the leading relativistic Breit
correction to the energy of the two-electron interaction, consisting of the Gaunt operator
and the gauge term:

ĝ(i, j) = r−1
ij 14×4 + ĝB(i, j) (33)

ĝB(i, j) = ĝGaunt(i, j) + ĝgauge(i, j) = − 1
2rij

{
→
αi
→
α j +

(
→
αi
→
r ij)(

→
α j
→
r ij)

r2
ij

}
(34)

The equations for the NMR parameters in the relativistic representation are derived
from the energy obtained from the four-component DCB Hamiltonian on the basis of
common perturbation theory with the external and nuclei magnetic fields considered as
perturbations. The kinetic term in the presence of magnetic fields is obtained by the so-

called minimal substitution of the kinetic operator c
→
α
→̂
p for the prorogated kinetic operator

c
→
α
⇀̂
π , where

→̂
π =

→̂
p + e

→
A, while

→
A is the total vector potential of all magnetic fields. Overall,

the vector potential
→
A is the sum of the vector potentials of the external magnetic field (

→
A0)

and the magnetic fields induced by the nuclei (
→
AN):

→
A =

→
A0 +

Nnuc

∑
N

→
AN , (35)

→
A0 =

1
2

→
B ×→r 0,

→
r 0 =

→
r −

→
R0, (36)

→
AN =

µ0
4π

→
µ N ×

→
r N

r3
N

,
→
r N =

→
r −

→
RN . (37)

In these equations,
→
r ,
→
r 0, and

→
RN refer to the coordinates of an electron, the origin

of the coordinate system and that of the Nth nucleus, respectively. Thus, the magnetic
perturbation describing the interaction of electrons with a magnetic field has the form:

Ĥrel
NMR(

→
B ,
→
µ N) =

ce
2

→
B · [→α ×→r 0] +

ceµ0
4π ∑

N

→
µ N ·

[
→
α ×→r N ]

r3
N

. (38)

Taking into account the relativistic magnetic Hamiltonian (38), the correction to the
energy up to the second order according to the standard perturbation theory can be
expressed as follows:

∆E =
〈

Ψ(0)
∣∣∣Ĥpert

11

∣∣∣Ψ(0)
〉
+ ∑

n 6=0

〈
Ψ(0)

∣∣∣Ĥpert
01

∣∣∣Φ(n)
〉〈

Φ(n)
∣∣∣Ĥpert

10

∣∣∣Ψ(0)
〉

E(0) − E(n)
+ (0 � 1). (39)

where the magnetic perturbation is represented as the sum Ĥpert
= ec

→
α
→
A1 + ec

→
α
→
A2, where

→
A1,

→
A2 are the

→
A0,

→
AN and

→
AM,

→
AN in the case of σN;αβ and KMN;αβ, respectively. In

Equation (39), Ĥpert
11 , Ĥpert

01 and Ĥpert
10 correspond to various combinations of perturbations

in the general operator Ĥpert, namely, the first operator is a term bilinear by
→
A1 and

→
A2, while the other two are linear perturbations containing either

→
A1 or

→
A2.

∣∣∣Ψ(0) >

represents the unperturbed ground state with the energy E(0).
∣∣∣Ψ(0) > are the excited

states of an undisturbed system with the energies E(n). The first term in Equation (39)
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turns to zero, since there are no terms containing
→
A1 and

→
A2 at the same time. This

means that the diamagnetic contributions to the tensors σN;αβ and KMN;αβ are not explicitly
present, as opposed to what is observed in the nonrelativistic picture. Nevertheless, despite
the compactness of the Hamiltonian (38), all nonrelativistic operators involved in the
description of the NMR phenomenon become explicit when going to the nonrelativistic
limit [121,122]. The relativistic expressions for the NMR parameters in the four-component
representation are derived similarly to the nonrelativistic case, i.e., by double differentiation
of the energy correction (39) by the corresponding magnetic perturbations. The final
expressions for the shielding and spin–spin coupling tensors have the form of the relativistic
four-component polarization propagators in the static approximation:

σN;αβ =
µ0
4π

e2c2

〈〈(→
αN ×

→
r N

r3
N

)
α

;
(→
αN ×

→
r 0

)
β

〉〉
0

, (40)

JMN;αβ =
( µ0

4π
ec}
)2 γMγN

h

〈〈(→
αM ×

→
r M

r3
M

)
α

;

(→
αN ×

→
r N

r3
N

)
β

〉〉
0

. (41)

Here
〈〈

P̂; Q̂
〉〉

0 is the static polarization propagator or the static linear response func-
tion of the operators P̂ and Q̂:

〈〈
P̂; Q̂

〉〉
0 = ∑

n 6=0

〈
Ψ(0)

∣∣∣P̂∣∣∣Φ(n)
〉〈

Φ(n)
∣∣∣Q̂∣∣∣Ψ(0)

〉
E(0) − E(n)

. (42)

In fact, the polarization propagator describes the response of a molecule to an external
perturbation. Such a response function represents a first-order change in the mean value of
the quantum operator P̂ over the ground state under the action of a static perturbation Q̂.
From now on, the notations 〈〈P; Q〉〉S/T

0 and 〈〈P; Q, R〉〉S/T
0 are referred to, respectively, as

the linear and quadratic response functions of singlet (S) or triplet (T) types. The dimension
of σN;αβ and KMN;αβ is determined by the dimension of the characteristic matrix elements

such as
〈

Ψ(0)
1×4

∣∣∣P̂4×4

∣∣∣Φ(n)
4×1

〉
that give scalars of 1 × 1. From the general structure of

the tensors σN;αβ and KMN;αβ, it can be noted that they are of the “paramagnetic type”,
and the main contributions, which are distinguishable at the nonrelativistic level, seem to
be inseparable in the relativistic domain. The only thing that has been done so far is the
splitting of the diamagnetic- and paramagnetic-type terms apart in both cases. This was
done by Aucar [115], who showed that the polarization propagator can be divided into
two parts: 〈〈

P̂; Q̂
〉〉

0 =
〈〈

P̂; Q̂
〉〉

0;ee +
〈〈

P̂; Q̂
〉〉

0;pp. (43)

The first and second terms of the polarization propagator (43) involve the orbital
rotations between the orbitals with positive and negative energies, respectively. The first
term (ee) gives all contributions to the paramagnetic-type parts of the shielding and spin–
spin coupling tensors, while the second term (pp) gives the corresponding diamagnetic
counterparts.

The operators corresponding to various types of relativistic effects on NMR parameters
can be expressed explicitly only when going from a four-component to a two-component
representation. The transition to the two-component level is carried out through the block-
diagonalization of the Dirac Hamiltonian by means of a unitary transformation Û, which
transforms the four-component spinors with positive and negative energies, Ψ(+) and Ψ(−)

into the spinors with zero small and large components, respectively:

Û+
[

ĥLL ĥLS
ĥSL ĥSS

]
Û =

( ˆ̃h+ 02×2

02×2
ˆ̃h−

)
, Û+Û = I4×4, (44)
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Û+

(
ψ

(+)
L

ψ
(+)
S

)
=

(
ψ̃

(+)

02×1

)
, Û+

(
ψ

(−)
L

ψ
(−)
S

)
=

(
02×1

ψ̃
(−)

)
. (45)

The original form of such a transformation was proposed by Foldy and Wouthuysen
(FW) [135]. In the case of free particles, the FW transformation converts the system of
Equations (28) into a pair of independent equations for large and small components.
However, in the presence of the Coulomb potential, FW constructs singular operators that
are not applicable in variational calculations. The most general form for that case was
proposed by Heully [136] in terms of kinetic balance operator. It projects small components
onto the space of large components and can easily be expressed from the second equation
of the system (28):

ψS = R̂ψL, R̂ =
1

2mc

(
1 +

E− V̂
2mc2

)−1
→
σ
→̂
π . (46)

Heully’s transformation consists of two matrix operators, one of which directly diago-
nalizes the Hamiltonian, a second one which is responsible for the renormalization of the
spinor. Thus, in general, the transformation operator Û has the form:

Û = Ŵ1Ŵ2, Ŵ1 =

(
I −R̂+

R̂ I

)
, Ŵ2 =

1√
I + R̂+R̂

(
I 0
0 I

)
. (47)

If the exact operator R̂ is known, then the application of the transformation (47)
to the Dirac Hamiltonian leads to its exact block diagonalization in one step, and the

solution of the equation with the modified upper left Hamiltonian ˆ̃h+ exactly reproduces
the solution of the original four-component Dirac equation. Finding the exact operator via
the Equation (46) is not possible as it contains the energy in an explicit way. The equations
for the operator R̂ and its Hermitian conjugation R̂+ are derived from the requirement
that the non-diagonal elements of the transformed Hamiltonian are equal to zero. Thus,
a system of two-component nonlinear operator equations containing all elements of the
original Dirac Hamiltonian as “coefficients” is obtained. Reformulating this system of
equations in the matrix form and finding its solutions is a central idea of modern exact two-
component quasi-relativistic methods, generally called X2C. Equation (46) was used in an
approximate form by Fukui [100] to obtain the positive-energy two-component Breit–Pauli
Hamiltonian ĤBP

+ for the case of many particles for the purpose of deducing the leading
relativistic contributions to the nuclear shielding tensor. In Fukui’s work, the operator R̂
from Equation (48) was reduced to the following expression:

R̂ =
1

2mc
→
σ
→̂
π , (48)

where
→̂
π =

→̂
p + e

→
A is the momentum operator extended for the presence of the magnetic

field. In this form, the operator R̂ is called the magnetic restricted kinetic balance (MRKB).
Substituting (48) into Equation (47) yields an approximate unitary transformation that
converts the four-component Hamiltonian into the block-diagonal form. The resulting
Hamiltonian ĤBP

+ contains all the relativistic hyperfine interactions that define the nuclear
magnetic shielding tensors and the SSCCs at the non-relativistic level and a large number
of additional terms representing the relativistic corrections to NMR parameters. The
expressions for tensors σN;αβ and KMN;αβ in the two-component representation, in fact,
do not differ from the classical non-relativistic definitions, except for the energy, which
is expressed in terms of an average value of the Hamiltonian ĤBP

+ over the perturbed
positive-energy many-body ground state Ψ+:

σN;αβ =

[
∂2

∂Bα∂µN;β

〈
Ψ+(

→
B ,
→
µ N)

∣∣∣∣ĤBP
+ (
→
B ,
→
µ N)

∣∣∣∣Ψ+(
→
B ,
→
µ N)

〉]
→
B =

→
µ N =

→
0

, (49)
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KMN;αβ =

[
∂2

∂µM;α∂µN;β

〈
Ψ+(

→
µ M,

→
µ N)

∣∣∣ĤBP
+ (
→
µ M,

→
µ N)

∣∣∣Ψ+(
→
µ M,

→
µ N)

〉]
→
µ M =

→
µ N =

→
0

. (50)

Perturbed positive-energy ground state wavefunction Ψ+(
→
B ,
→
µ N) is expanded into the

Taylor series by the powers of magnetic moments of the nuclei
→
µ N and the external magnetic

field
→
B . The substitution of the perturbed Ψ+(

→
B ,
→
µ N) as a power series to an average value

of ĤBP
+ (
→
B ,
→
µ N) in Equations (49) and (50) gives the positive energy E+(

→
B ,
→
µ N) in a form of

infinite power series of magnetic moments of the nuclei and the external magnetic field.

The second derivatives of E+(
→
B ,
→
µ N) relative to

→
B and

→
µ N at

→
B =

→
µ N =

→
0 in Equation

(49) and to
→
µ M and

→
µ N at

→
µ M =

→
µ N =

→
0 in Equation (50) give the coefficients, which

are bilinear on both perturbations. According to Fukui’s mathematical deductions, the
diamagnetic component of the nuclear shielding tensor at the two-component level can be
represented as a sum of three terms:

σdia
N;αβ

= σdia
N;αβ

(DS) + σdia
N;αβ

(DS, ROO) + σdia
N;αβ

(ROO). (51)

The first term corresponds to the standard nonrelativistic diamagnetic contribution,
which is an average value of the diamagnetic operator DS over the undisturbed ground
state. The other two are the relativistic corrections. These corrections involve both the
standard DS operator and different parts of the retarded orbit-orbit interaction operator
(ROO), which, in particular, contains Darwin’s operator (Dar). It is worth noting that the
correction σdia

N;αβ
(DS, ROO) is a singlet linear response function 〈〈DS; ROO〉〉S0 .

The paramagnetic component is divided into a large number of contributions, which
can be formally divided into four types of terms:

σpara
N;αβ

= σpara
N;αβ

(OP) + σpara
N;αβ

(FC) + σpara
N;αβ

(SD) + σpara
N;αβ

(ROO). (52)

All contributions of the first type σ
para
N;αβ (OP) necessarily include the classical orbital

paramagnetic operator (OP), ∑
i

r−3
iN L̂iNα. One of the contributions of this type is the non-

relativistic paramagnetic contribution 〈〈OP; OZ〉〉S0 , the rest are the relativistic corrections
of two types, namely 〈〈OP; ROO〉〉S0 and 〈〈OP; OZ; ROO〉〉S0 . The contributions of the
types σ

para
N;αβ (FC) and σ

para
N;αβ (SD) contain Fermi-contact and spin-dipole interaction operators

and share a similar general structure. They can be represented as the sum of the con-
tributions of four types: 〈〈FC/SD; SO; OZ〉〉T0 , 〈〈FC/SD; SO〉〉T0 , 〈〈FC/SD; SZ; SO〉〉T0 , and
〈〈FC/SD; MV〉〉T0 . These are the triplet response functions containing not only the FC or SD
triplet operators, but also the spin-orbit interaction operator (SO), orbital Zeeman operator
(OZ), spin Zeeman operator (SZ), and mass-velocity operator (MV). It is worth noting that
the relativistic correction of the type 〈〈FC/SD; SO; OZ〉〉T0 is of particular importance, since
the relativistic effect of a heavy atom on the shielding constant of a light atom, the so-called
heavy atom on light atom effect (HALA) [122,133,137–140], is almost completely described
by this term. The last term in (52) is a singlet-type response function 〈〈ROO; OZ〉〉S0 . Thus,
within the two-component formalism, the shielding tensor σN;αβ includes the nonrelativistic
paramagnetic and diamagnetic contributions and a great number of relativistic corrections
in the form of both linear and quadratic response functions containing various combina-
tions of NMR operators (DS, OP, OZ, FC, SD) as well as the standard relativistic operators
such as SO, MV, ROO (Dar).

For the SSCCs tensor KMN;αβ, there are many more types of relativistic corrections
than that to the shielding tensor σN;αβ. For the most part, these are either triplet linear
response functions or singlet-triplet quadratic response functions. For example, nine
types of third-order relativistic corrections to KMN;αβ are determined by the following
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response functions: 〈〈PSOM; PSON ; MV〉〉S0 , 〈〈PSOM; PSON ; Dar〉〉S0 , 〈〈FCM; FCN ; MV〉〉ST
0 ,

〈〈SDM; SDN ; MV〉〉ST
0 , 〈〈FCM; FCN ; Dar〉〉ST

0 , 〈〈SDM; SDN ; Dar〉〉ST
0 , 〈〈SDM; FCN ; MV〉〉ST

0
+M � N , 〈〈FCM; PSON ; SO〉〉ST

0 + M � N , 〈〈SDM; PSON ; SO〉〉ST
0 + M � N , among

which only the first two are the singlet response functions with spinless operators. The rest
are the singlet-triplet response functions, including both singlet and triplet operators. All
currently known relativistic corrections to the tensor obtained from the positive-energy
Breit–Pauli Hamiltonian are presented in Manninen’s works [124–126].

Based on the operator structure of relativistic corrections to NMR parameters, they can
be divided into two categories: scalar or spin-free and spin-dependent (in particular, spin-
orbital). Scalar relativistic effects arise from the corrections to kinetic energy caused by the
relativistic increase of the mass of electrons at high velocities (mass-velocity operator) and
from the corrections to the centrifugal Coulomb potential (Darwin operator), which occur
due to the spontaneous creation and annihilation of the electron-positron pairs, resulting
in small irregular fluctuations of the electrons around their average positions. The latter
phenomenon was called as “Zitterbewegung” [141]. Spin-orbit effects reflect the influence
on the NMR parameters of the interaction of spins of electrons with their angular momenta.

Relativistic effects can also be divided into the direct and indirect effects. Direct
relativistic effects are due to the incompleteness of the non-relativistic representation of
the physical operators in the hyperfine NMR Hamiltonian. Accordingly, direct relativistic
effects can be estimated from the difference in NMR parameters calculated using the
relativistic NMR Hamiltonian, which explicitly includes the speed of light, and those
obtained in the nonrelativistic limit obtained by the increasing the speed of light to infinity,
which, in practice, is very well reached by increasing the speed of light by several times.
Indirect relativistic effects on NMR parameters include all other types of relativistic effects
that can affect their values. For example, for the systems containing heavy elements, the
NMR parameters calculated at the equilibrium geometry, which were optimized at the
relativistic level of theory, will noticeably differ from those obtained at the nonrelativistic
geometry.

3. Quantum Chemical Methods for Calculating NMR Parameters
3.1. Configuration Interaction Methods

The configuration interaction (CI) method [142–145] is most likely one of the simplest
nonempirical methods for solving the Schrödinger equation, which takes into account the
effects of electronic correlation. In CI theory, the wave function is expressed as a linear
combination of N-electron Slater determinants constructed from RHF orbitals:

ΨCI = a0ΦHF + ∑
S

aSΦS + ∑
D

aDΦD + ∑
T

aTΦT+ . . . = ∑
i=0

aiΦi. (53)

All configurations are constructed on the basis of the ground state wave function
obtained within the Hartree–Fock approximation, ΦHF. The excited determinants are
obtained by the application of the singlet, doublet, triplet, etc., excitation operators to
the wave function ΦHF. This is equivalent to replacing one, two, three, etc., occupied
spin-orbitals with the same number of vacant spin-orbitals. The CI-coefficients a0, aS, aD,
. . . are found from the Schrödinger equation in matrix form:

Hc = ESc, (54)

where Hij = 〈Φi|Ĥ
∣∣Φj
〉

is the Hamiltonian matrix within the basis of electron configura-
tions, Sij =

〈
Φi
∣∣Φj
〉

is the overlap matrix, and c is the vector-column of the CI-coefficients.
If all possible N-electron functions are included in the CI procedure (subject to spatial

and spin symmetry restrictions), then the Schrödinger equation is solved exactly within the
space spanned by the one-particle basis functions. In that case the method is called Full
Configuration Interaction (FCI). The FCI method can successfully be applied to difficult
cases where the ground state wave function cannot be adequately described within a single
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electronic configuration, or to the calculation of the excited state properties, properties of the
open-shell systems or those of the systems far from their equilibrium geometries. The FCI
method provides exact results within a given finite one-electron basis set. Moreover, it is
size-consistent and size-extensive, which results in the fact that the FCI method ensures the
independence of the accuracy of correlation energy on the system size [146–150]. However,
apart from these advantages, FCI have one great drawback. The dimension of full CI
procedure grows factorially with the system size, so it is necessary to select only the most
important N-electron determinants. Due to its extremely severe computer requirements,
the FCI method is rarely used in the calculations of the NMR parameters, however, in some
cases it serves as a calibration method for other quantum chemical approaches. In particular,
the FCI method was used to calculate the helium–helium SSCC in the helium dimer [151],
boron–proton SSCC in the hypothetical BH molecule [152] and deuteron–proton SSCC in
the HD molecule [153], as well as the proton shielding constant in H2 molecule within the
GIAO approach [154].

A common method of reducing the computer requirements of the CI method consists
of restricting its configurational space. The simplest and the most inaccurate approximation
is the configuration interaction singles (CIS) [155,156]. In the CIS wave function, only the
Hartree–Fock ground state wave function and the linear combination of singly excited
configurations are included. CIS is a size-consistent method, which does not include
electron correlation and, thus, is a rough excited-state analog of ground-state Hartree–Fock
theory. CIS is a candidate for the simplest level of theory in the excited-state hierarchy of
methods, although it fails to describe states that have important contributions from double
(or higher) excitations [157]. The unrestricted (UCIS) or restricted open-shell (ROCIS)
variant of the CIS method was presented by Maurice et al. [157].

The next approximation includes both singly and doubly excited configurations and
is referred to as the configuration interaction singles and doubles (CISD) [158,159]. In
particular, it should be noted that the CISD method represents an accurate approxima-
tion that takes into account 95–96% of the correlation energy [160]. However, there is
a considerable drawback of the CISD method, which consists in the lack of size consis-
tency [161] (as opposed to FCI), i.e., this method does not provide a correct scaling of
the correlation energy with the increase of the number of electrons, which, in turn, may
bring about considerable errors in the calculation of SSCCs and chemical shifts of large
molecules. By a common definition, size consistency means that the calculated energy of
two noninteracting subsystems is identical to the sum of the calculated energy of the two
subsystems separately, as it should be. Specifically, for the CISD model, which is restricted
by doubly excited configurations, the size-consistency error stems from the approximating
higher excitations by the products of minor excitations [162]. For example, the quadruple
excited coefficients are approximated by using the cluster condition, cabcd

ijkl ≈ cab
ij ccd

kl . This
results in the modified equation on the double-excited amplitudes, which can, therefore,
be treated by approximating the “higher excitation terms” using a variety of schemes
which introduce different size-consistency corrections. The simplest way of correcting the
size-consistency error of the CISD method is to neglect the so-called exclusion principle
violating (EPV) terms in the equation on the double-excited amplitudes [162]. This results
in the scheme, which has a number of different names; some of them are the coupled
electron pair approximation (CEPA(0)) [163] and linearized coupled pair many electron
theory (L-CPMET) [164]. As a consequence of a complete exclusion of the EPV terms,
the application of the CEPA(0) approximation usually leads to the overestimation of the
effect of higher excitations by the corrected CISD method. An advanced approach was
introduced by Kelly [165,166], who first proposed the idea to approximate the effect of EPV
terms using the orbital energies. Based on the idea of representing the EPV contributions
in terms of the orbital energies, Meyer [167,168] suggested several variants of the CEPA
approximation, namely, CEPA(1) and CEPA(2). Different types of CEPA approximation
were systematically compared by Koch and Kutzelnigg [169]. Another way of correcting
for the size consistency error of truncated CI has been worked out by Ahlrichs and co-
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workers [170], who related the CISD approach to the coupled electron pair approximation
CEPA(1) and developed the coupled pair functional (CPF) approach. The CPF is based on
a correct description of separated electron pairs and uses invariance requirements with
regard to unitary transformations of equivalent orbitals of identical subsystems [159]. A
comprehensive review on the corrections for the size-consistency to the CI methods has
been published by Szalay [162].

As a matter of fact, in the calculations of NMR parameters, the CCSD model (see
Section 3.2) is far more preferrable than the CISD method or its corrected versions, because
the CCSD method is genuinely size-consistent and has a similar computational cost (~N6,
with N designating the number of basis set functions).

After singles and doubles, the most important determinants are triples and quadru-
ples. Sequential inclusion of these into the CI formalism results in CISDT and CISDTQ
models [171–174]. Harrison and Handy [160] found that the addition of triple substitutions
(CISDT) recovers approximately an additional 1% of the basis set correlation energy com-
pared to CISD (total of 95–96%), whereas the addition of all quadruples (CISDTQ) recovers
more than 99%.

If it is not possible to do without the multiconfigurational approach and the size of the
system does not allow resorting to super-expensive CI methods, there is a flexible way to
circumvent the problem. This implies using the multiconfigurational self-consistent field
(MCSCF) method [175,176], where the wavefunction is constructed in the same manner but
the orbitals are variationally optimized simultaneously with the expansion coefficients of
the determinants. This simultaneous optimization makes the MCSCF model well suited to
treat the static correlation that arises from the near degeneracy of several configurations.
In this case, the configuration coefficients depend on the molecular coefficients, which
leads to an interconnected system of equations, which is resolved by an iterative procedure.
Due to the fact that the number of possible configuration states is very large, even for
the simplest diatomic molecules, various approximations are used to simplify the calcu-
lations. Within these, the configuration space is usually restricted by choosing the sets of
upper occupied and lower vacant orbitals between which the electronic transitions are
allowed. The main problem in this case is the correct choice of the necessary configura-
tions. One of the most popular approaches is the complete active space self-consistent
field (CASSCF) [175,176]. In this method, all active orbitals participate in the FCI wave
function construction, and the resulting configurations are included in the MCSCF opti-
mization procedure. Due to taking into account all of the possible excitations within the
active space, size consistency of the CASSCF method is achieved [177]. The CASSCF is
often used to generate reference states for other, improved multi-reference methods; for
example, multi-reference configuration interaction or multi-reference perturbation theories,
by which dynamical correlation can be included. Examples of the latter are complete active
space perturbation theory (CASPT2) [178,179] or N-electron valence state perturbation
theory (NEVPT2) [180–186]. The original formulations of multi-reference perturbation
theory were not size consistent [187], including the CASPT2 method. However, with the
right choice of the zeroth-order Hamiltonian [188], the problem of size inconsistency can
be resolved, like for the NEVPT2 method, which can be formally regarded as the size
consistent method [189].

A less costly version of the CASSCF method is the so-called restricted active space self-
consistent field (RASSCF) method [190]. The RASSCF method requires manual selection of
three separate regions of active orbital space, RAS1, RAS2, and RAS3. In practice, this made
RASSCF an unpopular approach in the calculations of the NMR parameters. Moreover, the
RASSCF method is not size consistent [191].

In general, it should be noted that, despite the lower computer resource requirements,
the MCSCF methods have not gained the popularity that was expected in quantum chemical
calculations of nuclear shielding constants and SSCCs. Only a limited number of MCSCF
calculations of nuclear shielding constants/chemical shifts [192–195] and SSCCs [196–207]
have been presented so far.
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A successful attempt to incorporate the description of the relativistic effects into
the CI methods has been made by Visscher et al. [208], who proposed fully relativistic
all-electron self-consistent field calculations based on the Dirac–Coulomb Hamiltonian, per-
formed on the three lowest lying states of the PtH molecule. The resulting four-component
Dirac–Hartree–Fock molecular spinors were subsequently used in relativistic configuration
interaction calculations on the five lower states of PtH.

A formalism for relativistic four-component MCSCF calculations on molecules was
presented by Jensen [209]. The introduced formalism parallels a direct second-order
restricted-step algorithm developed for nonrelativistic molecular calculations. It was found
that the proposed efficient algorithm requires only twice the memory used by the largest
nonrelativistic calculation in the equivalent basis, due to the complex arithmetic.

The attempts to take into account the relativistic effects on NMR properties in MCSCF
calculations are very few. An interesting example was presented by Vaara et al. [118], who
performed ab initio calculations at the SCF and MCSCF levels for the 1H and 13C shielding
tensors in the hydrogen and methyl halides, considering relativistic spin-orbit (SO) effects.
The SO corrections were calculated analytically from the quadratic response functions using
self-consistent field and multiconfiguration self-consistent field reference wave functions.

3.2. Coupled Clusters Methods

The coupled clusters (CC) method [210–230] is one of the most accurate and reliable
ab initio approaches, allowing for the effects of electron correlation. The CC theory takes a
special place in quantum chemistry, because it results in a hierarchy of approximate models,
which provide a systematical convergence towards the FCI results, while maintaining the
dimensional extensivity at each hierarchical level. The CC method differs from the CI
method in the way of constructing the wave function. Within the CC framework, the wave
function is represented in an exponential form, which can also be expressed as an infinite
series of the excited determinants [231,232]:

ΨСС = eT̂Φ0 = (1 + T̂ +
1
2!

T̂2 +
1
3!

T̂3 + . . .)Φ0. (55)

The operator T̂ in Equation (55) consists of the sum of the operators of different
excitation classes:

T̂ = T̂1 + T̂2 + T̂3 + . . . , (56)

T̂1 = ∑
i,a

ta
i τ̂a

i , T̂2 = ∑
a>b

∑
i>j

tab
ij τ̂ab

ij , . . . (57)

The operators τ̂a
i , τ̂ab

ij . . . are the operators of single, double, etc., excitations, and and

ta
i , tab

ij , . . . are the coupled cluster amplitudes. In order to find the cluster amplitudes, a
system of equations is constructed by multiplying the Schrödinger equation from the left
by the excited configurations of different classes:

〈ΦS|e−T̂ ĤeT̂ |Φ0〉 = 0, (58)

〈ΦD|e−T̂ ĤeT̂ |Φ0〉 = 0, (59)

〈ΦT|e−T̂ ĤeT̂ |Φ0〉 = 0. (60)

These equations are solved iteratively until the desired accuracy is reached. Once the
cluster amplitudes are determined, one can calculate the ground state energy using the
following equation:

ECC = 〈Φ0|e−T̂ ĤeT̂ |Φ0〉. (61)

The classification of the CC models is based on the excitation classes, taken into
account within the main cluster T̂. Due to the cross-terms, which arise when expanding the
exponential operator eT̂ , the wave function ΨСС contains the configurations that correspond
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to higher excitations classes than those included in operator T̂. Thus, reducing the operator
T̂ down to a single excitation class, T̂ = T̂1, yields the so-called coupled clusters singles
(CCS) scheme. This scheme is not equivalent to the Hartree–Fock method, but to the
configuration interaction singles (CIS). Within CCS approximation, the excitation energies
for states, which are dominated by single replacements of one spin-orbital in the Hartree–
Fock reference determinant, are obtained correctly through the first order in the electron-
electron interaction. A sequential expansion of the operator T̂ with double, triple, and
quadruple excitation classes (T̂ = T̂1 + T̂2, T̂ = T̂1 + T̂2 + T̂3 and T̂ = T̂1 + T̂2 + T̂3 + T̂4)
leads to the coupled clusters singles and doubles (CCSD) [149], the coupled clusters singles,
doubles, and triples (CCSDT) [230,233] and the coupled clusters singles, doubles, triples,
and quadruples (CCSDTQ) [234–236] models, respectively. The formal computational
scaling for the CCS, CCSD, CCSDT, and CCSDTQ schemes with respect to number of basis
set functions N is as follows [217,237]: N4, N6, N8, N9. The CCSD scheme has received a
significant attention, but is often too expensive to be useful for molecules with more than
10 atoms. The CCSD provides high accuracy for many challenging response properties
and is usually considered as a very accurate method for calibration of the other inferior
computational methodologies. The CCSDT and higher-ranking pure CC schemes are out
of routine use for today due to their dramatic scaling.

To reduce the computational costs of the highly demanding coupled cluster schemes,
intermediate mixed schemes were introduced. One of the most popular approximate
schemes is the CC2 [222]. Within this model, the equations for the amplitudes for single
excitations are the same as in the CCSD method, but the equations for the amplitudes for
double excitations are approximated so that they are accurate only up to the first order
according to the perturbation theory in the fluctuation potential. Thus, the CC2 model is
intermediate between the CCS and CCSD models. The computational cost of CC2 model
can be expressed as N5 with respect to the number of basis set functions N [141]. Another
approximate model, which was built on the similar concept, is the CC3 model [238]. The
CC3 represents an intermediate model between the CCSD and CCSDT schemes, so that
the computational scalability of CC3 is N7 [217]. In general, the main principle of building
the approximate CCn (n > 1) models is based on reducing the cluster equations for the
n-fold cluster excitation amplitudes to the lowest non-vanishing order in the perturbation
theory [217].

Though the effects of triple excitations on the NMR parameters are in most cases not
particularly pronounced, for the special cases it was very important to develop a flexible
scheme which takes into account triple excitations at the lowest possible computational
costs. Apart from the CC3 scheme, which handles the triples in an iterative manner, the
so-called noniterative perturbative CCSD(T) approach for the treatment of triple excitations
was introduced. In the CCSD(T) scheme, the triples amplitudes are estimated from the
triples excitation equations as they occur in the lowest non-vanishing order for the Möller–
Plesset perturbational theory [217]. Overall, the CCSD(T) model has been proven successful
and is used for the accurate prediction of many properties nowadays. The scaling of the
CCSD(T) scheme with respect to the number of basis sets functions is the same as that of the
CC3 model, namely N7. However, the CCSD(T) has not been adopted for the calculations of
SSCCs, because it has the triplet instability issue [239,240], which occurs when calculating
the triplet FC and SD contributions to SSCCs. As opposed to the CCSD(T) model, the
second derivatives within the CC3 scheme can be computed in two different ways, namely
either with orbital relaxation effects explicitly included (the so-called “relaxed” CC3) or
with the orbital relaxation effects excluded (the so-called “unrelaxed” CC3). The “unrelaxed”
CC3 scheme circumvents possible problems with the triplet instabilities [224] and can be
successfully applied to the calculation of the triplet properties such as FC and SD terms in
SSCCs. To reduce the computational costs of CC methods, the resolution of the identity
(RI) approximation [241,242] for two-electron integrals was applied [243,244], however,
in practice, this is relevant only for the calculations of equilibrium geometries, harmonic
frequencies, energy gradients, and some other first-order properties for now.
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To calculate the second-order molecular properties, which require the summation over
the excited states within the framework of a linear response function, either the coupled
clusters linear response (CCLR) [210–214,245,246] or equation-of-motion coupled clusters
(EOM-CC) [247–249] are used.

What is currently missing from the perspective of accurate NMR studies is the relativis-
tic coupled cluster models for calculating NMR parameters at the two- or four-component
levels of theory. However, work in this direction is being pursued by Gauss and co-
workers [250,251].

The coupled cluster methods are widely used nowadays to calculate the parameters
of NMR spectra of various small and medium-sized molecular systems. Thus, of all the
models, the CCSD scheme turned out to be the most popular for calculating various types
of SSCCs [205,252–254]. The introduction of the GIAO formalism into the coupled cluster
theory was originally presented by Gauss et al. [255,256] at the CCSD level. The imple-
mentation of the GIAO formalism to the CCSD(T) and CCSDT models was proposed by
Gauss and Stanton in works [219,257] and [258], respectively. The GIAO-CCSD(T) scheme
proved to be particularly effective and has been widely used in the calibration calculations,
in particular, for the purpose of establishing the accurate absolute scales for the NMR
shielding constants [259], as well as for resolving entangled structural problems [260–262].

Among the recent works reporting on the CC calculations of the NMR properties is
the work by Faber and Sauer [263]. They investigated the basis set convergence of nuclear
SSCCs at the CCSD level of theory for 10 difficult molecules. Test molecules were chosen as
each molecule has fluorine atom(s) and/or double or triple bonds, which are typically asso-
ciated with large non-contact contributions. The results were obtained using Benedikt’s hi-
erarchy of basis sets (aug-)ccJ-pVXZ, X = D, T, Q, 5 [264] and Jensen’s (aug-)pcJ-n, n = 1, 2, 3
basis sets [265]. The aug-ccJ-pVXZ basis sets were constructed manually in that work, by
adding the diffuse functions taken from the aug-cc-pVXZ basis set [266] to the original
ccJ-pVXZ basis set. The accuracies of commensurate basis sets were compared to each
other in the CCSD calculations of the one-, two-, and three-bond SSCCs of different types,
involving 1H, 13C, 15N, 17O, and 19F nuclei. The CCSD method applied in conjunction
with the uncontracted aug-ccJ-pVTZ basis set was found to be very accurate for calculating
the 1JCF. This follows from the fact that the estimated errors for the spin–spin coupling
constants 1JCF turned out to be about 2.0 Hz, given that the values of this type of coupling
constants usually exceed 200 Hz. For the two- and three-bond couplings involving 1–2 row
elements, it was found that it is quite important to add diffuse functions. With the diffuse
functions added to the ccJ-pVXZ and pcJ-n basis sets, the CCSD method gives very good
results. In particular, for the 2JCF SSCCs, calculated at the CCSD/aug-ccJ-pVTZ level, the
typical error was found to be only 0.6 Hz. It was also shown that if the higher accuracy is
needed within the CCSD framework, the basis set error can be reduced by roughly a factor
of two by going to the quadruple zeta basis set.

The molecules discussed in [263] have previously been investigated by
Del Bene et al. [253,267], using the EOM-CCSD method in conjunction with the qzp [268]
basis set. The results presented by Faber and Sauer occurred to be similar to those ob-
tained by Del Bene et al., with the exception of the 1JCN in HCN and the SSCCs of F2CO,
where the results of Del Bene deviated significantly from those of Faber and Sauer and the
experimental data.

The importance of triples contributions to NMR spin–spin coupling constants com-
puted at the CC3 and CCSDT levels was investigated by Faber, Sauer, and Gauss [269]. The
analytical implementation of CC3 second derivatives method using the spin-unrestricted
approach was presented at the first time. This allowed for calculation of the SSCCs at
the CC3 level of theory in a fully analytical manner. The calculations of one-, two-, and
three-bond SSCCs in a number of small molecules and their fluorine substituted derivatives
were carried out at the CCSD and CC3 levels using the aug-ccJ-pVTZ basis set. To study the
triples effects beyond the CC3 level, the calculations of different types of SSCCs involving
1–2 row atoms were performed using the CC3 and CCSDT methods using the ccJ-pVDZ
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basis set. The CC3 triples correction (JCC3-JCCSD) and the residual triples correction (JCCSDT-
JCC3) to various one-bond nuclear spin–spin coupling constants are illustrated in Figure 1.
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Reproduced from Ref. [254] with permission from American Chemical Society.

The change in the one-bond SSCCs when going from CCSD to CC3 level was found
to be approximately 1–3%, with the exceptions of 1JCN in FCN and 1JOF in OF2, where the
correlation corrections to the CCSD results due to the triple excitations (triples) inclusion
effect occurred to be as much as 15.7% and 6.4%, correspondingly. The changes in geminal
and vicinal SSCCs due to the triples effect were found to be rather more significant as
compared to the one-bond SSCC, with the differences of up to 10%, and even more—
13.6%—for the 3JFH in fluoroacetylene. In these calculations, it was established that the
most important contributions arising from the connected triple excitations in the coupled
cluster expansion are accounted for at the CC3 level. Thus, the CC3 method is expected to
become a standard approach for the calculation of reference values of the nuclear spin–spin
coupling constants.

Jaszuński et al. [270] investigated the NMR shielding and spin–spin coupling constants
of dinitrogen difluoride (N2F2), which represents an extremely challenging test for modern
quantum chemical methods, within the CCSDT and CC3 models, respectively. For adequate
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comparison with the experiment, vibrational and relativistic corrections were calculated.
Coupled cluster methods were used with very large basis sets and complete basis set (CBS)
extrapolations. Namely, for the calculation of NMR shielding constants, basis sets as large
as aug-cc-pCV7Z were used. Spin–spin coupling constants have been determined with
specialized versions of the correlation consistent basis sets ccJ-pVXZ, further augmented
with diffuse functions. Calculated values of spin–spin coupling constants turned out to
be in very good agreement with the experiment. To be more precise, for the trans isomer
of dinitrogen difluoride, the final calculated values of 1JNN (−18.25 Hz), 1JNF (172.98 Hz)
and 2JNF (−61.97 Hz) differ from the experimental values (−18.5, 172.8, and −62.8 Hz,
respectively) by less than 1 Hz, while the calculated three-bond fluorine-fluorine spin–spin
coupling constant, 3JFF (−303.61 Hz), was found to deviate from the experimental datum
(−316.4 Hz) by only 12.79 Hz (that is 4% of the experimental value). For the cis isomer,
the differences occurred to be consistently larger: between 2 and 4 Hz for the one- and
two-bond couplings, 1JNN, 1JNF, 2JNF, and about 19 Hz for the three-bond coupling, 3JFF.
The deviation between calculated (gas phase) and experimental (solvated) 19F shielding
constants of the cis and trans isomers was found to be 15.7 and 11.1 ppm, respectively.

3.3. Density Functional Theory

The electron density functional theory (DFT) has become extremely popular in recent
years in the application to the calculations of the second-order molecular properties, such
as chemical shifts and SSCCs. DFT method takes into account electron correlation effects
via the exchange-correlation (XC) potential and has moderate computational requirements
at that. In this sense, one can hardly expect to find a more balanced approach than the
DFT method.

The main idea of the density functional theory is to use an electron density matrix
rather than a many-particle wavefunction when describing an electronic system. This
leads to a significant simplification of the problem, since the many-particle wavefunction
depends on 3N variables, where N is the number of electrons, while the electron density is
a function of only three spatial coordinates.

The formalism of the DFT theory is based on two Hohenberg–Kohn theorems [271].
According to the first Hohenberg–Kohn theorem, the ground state of a system of interacting
particles is a unique functional of the electron density ρ(r). From this theorem it follows that,
for a given many-particle system, the external potential ν(r) and, thus, the Hamiltonian
and thereby every ground state property of this system are determined only by the electron
density ρ(r). The second Hohenberg–Kohn theorem establishes a variational principle of
quantum mechanics, which states that the electron density that minimizes the energy of
the overall functional E[ρ(r)] is the true electron density. This can be rephrased as follows:
the energy of a given N-electron system, E[ρ(r)], has a minimum equal to the ground state
energy E0, which implies that for any trial electron density function, such that

∫
ρtrial(r)d3r

= N, the energy of the system, E[ρtrial(r)], must satisfy the inequality E[ρtrial(r)] ≥ E0. The
Kohn–Sham (KS) computational scheme [272] is based on the Hohenberg–Kohn theorems.
In that scheme, the exact function of the ground state electron density of a given many-
particle system is replaced by a function of non-interacting particles. In KS theory, the total
energy is written as:

E(ρ) = −
occ

∑
i

∫
d3rϕ∗i (r)

∇2

2
ϕ∗i (r) +

∫
d3rνext(r)ρ(r) +

1
2

∫
d3r
∫

d3r′
ρ(r)ρ(r′)
|r− r′| + Exc. (62)

where the terms are, respectively, the non-interacting Kohn–Sham kinetic energy (Ts),
the interaction energy with the external field (Eext), the Hartree (EH) and the exchange-
correlation (XC), Exc, energies. Thus, Exc is nothing more but the sum of errors originating
from using the approximation of non-interacting particles to describe the kinetic energy
term and EH instead of a real interelectronic interaction energy:

Exc[ρ] = (T[ρ] − Ts[ρ]) + (Eee[ρ] − EH[ρ]) (63)
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The variational principle applied to the energy functional gives a system of Kohn–
Sham equations:[

−1
2
∇2 + νext(r) +

∫
ρ(r′)
|r− r′|dr′ + Vxc(r)

]
ϕi(r) = εi ϕi(r), (64)

ρ(r) =
N

∑
i
|ϕi(r)|2, (65)

Vxc(r) =
δExc[ρ]

δρ
. (66)

This system of nonlinear equations describes the behavior of non-interacting electrons
in some effective local potential. For an exact exchange-correlation (XC) functional and,
consequently, an exact local potential, the resulting orbitals give the exact energy and
electron density function of the ground state. The Kohn–Sham equations have the same
structure as the Hartree–Fock equations with the exchange potential replaced with the local
exchange-correlation potential. Thus, the Kohn–Sham equations are also solved iteratively,
i.e., through the self-consistency procedure. Since the exact exchange-correlation functional
is unknown, there are a great number of approximations for it; detailed reviews on this
topic can be found in the books [273–277]. Existing XC functionals can roughly be divided
into four groups: the local density approximations (LDAs) [278–280], the generalized
gradient approximations (GGAs) [281–284], the hybrid functionals [285,286], and meta-
GGA functionals [287]. In addition, efforts have been made [288–292] to model the current
dependency in the XC functional [293–296].

The simplest approximation is the local density approximation (LDA), within which
it is assumed that the electron density is a function that changes slowly in space, in other
words, an inhomogeneous system is approximated by a homogeneous density distribution.
The GGAs depend not only on density, but also on its gradient. Such functionals provide a
higher-order approximation that considers the change in the electron density when going
from one point of space to another. The hybrid functionals incorporate a part of the exact
Hartree–Fock (HF) exchange. The meta-GGAs depend on the electron density (ρ), its
gradient (∇ρ) and on the corresponding Laplacian (∇2ρ).

The first implementation of the Kohn–Sham theory for the calculation of indirect
nuclear spin–spin coupling constants was made by Malkin et al. [297–299] at the LDA
and GGA levels of theory. They calculated the FC contribution to SSCCs using the finite
perturbation theory (FPT), omitting the SD term. The PSO term was approximated by
the sum-overstates approach. Dickson and Ziegler [300] also proposed early Kohn–Sham
implementation of spin–spin coupling constants within the LDA approximation, neglecting
the SD term. Their code exploited the Slater atomic orbitals, and has subsequently been
made fully analytical at the GGA level of theory (with the SD term included).

Sychrovsky et al. [301] and Helgaker et al. [302] introduced the first fully analytical
Kohn–Sham implementations of indirect spin–spin coupling constants, including four
Ramsey contributions. Both implementations included hybrid DFT, in addition to LDA
and GGA. A few years later, Watson et al. [303] presented the implementation of SSCCs at
the hybrid level of theory using the Slater orbitals, with all four Ramsey terms included.
The DFT-based perturbation theory was applied to compute spin–spin coupling tensors
in extended systems, subject to periodic boundary conditions [304]. For reviews of the
Kohn–Sham theory for the calculation of indirect nuclear spin–spin coupling constants, see
the reviews by Malkin et al. [290] and the more recent ones by Alkorta and Elguero [305]
and by Helgaker and Pecul [6–8].

Modern applications of the DFT theory to the calculation of NMR chemical shifts have
been pioneered by Malkin et al. [288–290,306], using the IGLO method, and by Schrecken-
bach and Ziegler [69,307–310], using the GIAO approach. A number of other implementa-
tions, mostly based on the GIAO method, have also been presented [70,71,291,292].
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An assessment of the aptness of various exchange-correlation functionals for calcula-
tion of the NMR parameters can be found in several sources, in particular, in Refs. [311–313]
for chemical shifts and [314–318] for SSCCs.

The following XC functionals are commonly used for the prediction of the NMR
properties in modern quantum chemical DFT calculations:

GGAs:
BP86 [281,282], PBE [319,320], BLYP [281,283], PW91 [321], B97-D [322], KT1 [323], KT2 [323,324],
KT3 [324], HCTH93 [325], HCTH147 [326], HCTH407 [327], OPTX [328,329], OLYP [329],
OPBE [330], OPW91 [328,331];
Hybrid GGA functionals:
O3LYP [329], B3P86 [281,282], B3PW91 [281,332], B3LYP [283,286], mPW3PBE [319,320,333],
B97-1 [325,334], B97-2 [334,335], B97-3 [334,336], X3LYP [337], PBE0 [338–340], mPW1PW91 [332,333],
mPW1LYP [283,333], mPW1PBE [319,320,333], B98 [334,341], B1LYP [342], PBEh1PBE [343],
and BHandH [286];
Meta-GGA functionals:
TPSS [287], τHCTH [344], VSXC [345], M06-L [346], M11-L [347];
Hybrid meta-GGA functionals:
TPSSh [287,348], τHCTHhyb [344], M06-2X [349], B1B95 [350];
and
Long-range corrected hybrid functionals:
ωB97 [351],ωB97X [351],ωB97X-D [352], CAM-B3LYP [353] and LC-ωPBE [354].

Of the listed functionals, the Keal–Tozer functionals, KTn (n = 1–3), were optimized specifi-
cally for the uncoupled isotropic and anisotropic NMR shielding constants. They give the
values for a series of challenging molecules involving first- and second-row atoms that are
two to three times more accurate than those of commonly used GGAs [323].

The first Keal–Tozer functional, KT1, is expressed in the form:

EKT1
xc = EKT1

LDA + γ∑
σ

∫ |∇ρσ(r)|2

ρ4/3
σ (r) + δ

d3r (67)

In this expression, the index σ designates α- and β-spin densities ρσ. The parameters
γ and δ were optimized so as to reproduce the NMR shielding constants of a wide range of
molecules as accurately as possible. As a result, the final values of the parameters γ and
δ are −0.006 and 0.1, respectively. The functionals KT2 and KT3 have more complicated
forms and depend on more variational parameters as compared to the KT1. They were
created on the basis of KT1 in order to improve the description of other properties, such as
ionization potentials, electron affinity, proton affinity, bond angles, bond lengths, electronic
polarizability, thermodynamic properties, etc. Extensive testing carried out by Keal and
Tozer [324] showed that, despite significant modifications, the KT2 and KT3 functionals are
not inferior in accuracy relative to KT1 functional in the calculations of shielding constants.

The performance of the KT1 and KT2 exchange-correlation functionals have also
been assessed by Keal, Tozer, and Helgaker [355] as compared to the other well-known
popular functionals on the prediction of NMR shielding constants and indirect nuclear
spin–spin coupling constants. The authors selected 14 different molecules with significant
electron correlation effects, containing light main group nuclei. In line with previous
observations, the KT1 and KT2 gave a significant improvement for NMR shielding con-
stants over the conventional functionals. In particular, for isotropic shieldings, the KT1
and KT2 functionals outperformed the functionals BLYP and B3LYP by far, providing
results more than twice as accurate as those of BLYP and B3LYP. They proved to be very
successful for both charged and neutral species, and for equilibrium and non-equilibrium
geometries. The improvement has been traced almost exclusively to the paramagnetic
contribution. These functionals were also used to determine SSCCs for 11 molecules. The
results occurred to be of variable quality and there was no improvement observed over the
conventional functionals.
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Zhang and his colleagues [330] have shown that the OLYP and OPBE, which use the
OPTX as the exchange functional, exhibit remarkably good performance in the prediction
of NMR shielding constants of 13C, 15N, 17O and 19F nuclei. At that, the OPBE was found
to be the best method among the considered functionals, namely the B3LYP, PBE0, BLYP,
PBE, OLYP, and OPBE. Moreover, since the parameters of OPTX functional were optimized
by fitting to the unrestricted HF energies of the first- and second-row atoms, this functional
(and so as the other functionals based on it) can be expected to give reliable excited state
triplet properties in the sense of triplet instability issue.

The PBE0 functional appears to be the one of the most robust functionals among the
hybrid functionals for the calculation of NMR chemical shifts. This hybrid functional is
constructed from the PBE GGA functional, in which all parameters (except those related
to the local spin density) are fundamental constants, and of 25% fraction of the Hartree–
Fock exchange functional. The accuracy provided by the PBE and PBE0 functionals in
the calculations of chemical NMR shifts has been studied in detail on a wide range of
compounds by Adamo and Barone [356]. It was concluded that the PBE0 functional
provides accuracy comparable to that of the MP2 method in the case of “well-behaving”
systems and provides significant advantages over the other known functionals in cases
with significant correlation effects.

Thirty-nine different exchange-correlation functionals covering several steps of Jacob’s
ladder [357] were tested in the DFT calculations of 1H and 13C NMR chemical shifts of six
neutral and protonated alkylpyrroles by Zahn et al. [312] very recently. The considered
functionals included 9 GGA functionals, 16 hybrid GGA functionals, 5 meta-GGA func-
tionals, 4 hybrid meta-GGA, and 5 long-range corrected hybrid functionals. As stated by
the authors, the aim of their study consisted in finding a DFT method that can outperform
the MP2 and B3LYP methods in accuracy at predicting the chemical shifts for neutral and
protonated alkylpyrroles. For 13C chemical shifts, it was found that most of the functionals
perform better than B3LYP, with the hybrid meta-GGA functional TPSSh demonstrating
the best performance. At that, there was no single functional found to outperform the
MP2 method. For the 1H chemical shifts, it was found that all the considered functionals
outperformed the MP2 and B3LYP methods, with the best performance demonstrated by
TPSSh, likewise in the case of 13C chemical shifts.

An extensive analysis of performance of different functionals for the calculations of
SSCCs has been performed recently by Sauer and his colleagues [317,318]. In particular,
for the one-bond JFC SSCCs, it was shown that meta-GGA functional M06-L demonstrates
surprisingly high accuracy, outperforming any other investigated functional, including the
PBE0, otherwise considered one of the most reliable for this type of SSCCs. Although the
computation of nuclear magnetic resonance (NMR) parameters involving F is known to
be a challenging task [38], even with a rather small basis, such as pcJ-1, M06-L provided
the results with a MAD = 11.7 Hz, whereas the MAD for the PBE0 results was assessed
as much as 60.0 Hz. Providing that the JFC cover the range of about 300 Hz, the achieved
accuracy can be considered as particularly remarkable. It was found that the accuracy of the
M06-L/pcJ-1 scheme does not stem from a well-suited exchange or correlation part of the
functional. Instead, Sauer et al. assumed that that high accuracy can arise from a fortuitous
cancellation of errors, as revealed by investigating the convergence of the basis set. Their
findings also indicated that 1JFC constants are highly dependent on the amount of exact
exchange included in the expression of the functional, with large fractions being critically
important to achieving satisfactory results. Sauer et al. have also studied the effects of the
geometry on the 1JFC and found that optimizing the geometry at the same level of theory
as used for the calculation of SSCCs generally improves the quality of the results.

In another work of Jaszuński, Świder, and Sauer [318] the through-space SSCCs in-
volving fluorine atom(s) were investigated using the density functional theory with a
special accent placed on the performance of various functionals against the experimen-
tal data. Namely, a diverse set functionals, including KT2, PBE, BP86, B97-D, BHandH,
B3LYP, CAM-B3LYP, CAM-B3LYPx, and PBE0 were tested in the calculations of the through-
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space F–F, F–N, F–C, F–P, and F–Se SSCCs in o-fluorobenzaldehyde oxime, flubenzimine,
2-trifluoromethylphenyl-difluorophosphine, and 8-Fluoro-1-(methylselanyl)naphthalene.
The authors used the so-called J-oriented basis sets, specifically optimized for the calcula-
tions of SSCCS. In that way, they partially excluded one of the plausible sources of error
making the choice of the functional more important than the choice of the basis set. As
a result, they found noticeable differences between the performance of the studied DFT
functionals that have been observed for the through-space and through-bond coupling
constants. For the through-space couplings, the hybrid functionals and, in particular,
the functionals with the highest amount of Hartree–Fock exchange, namely, the PBE0,
CAM-B3LYPx, BHandH, and CAM-B3LYP, were found to perform the best. At that, the
most popular B3LYP functional gave the worst results for the through-space coupling
constants as compared to the other hybrid functionals. On the other hand, for the set of
the considered through-bond couplings, the PBE0, B3LYP, and, to a minor degree, B97-D,
functionals gave on average the best agreement with the experimental data, implying that
there is no correlation with the amount of Hartree–Fock exchange in the functional. Overall,
Jaszuński, Świder, and Sauer concluded that the PBE0 functional appears to be the most
robust functional. Moreover, they stated that when using any of the J-oriented triple-zeta
basis sets the choice of the functional becomes much more important than the choice of
the basis set, and the performance of the functional, in its turn, depends on the type of the
considered SSCC.

It is well known that indirect nuclear spin–spin coupling constants calculated using the
restricted Hartree–Fock theory are unreliable since the usually dominant FC contribution
and less significant SD contribution suffered from the triplet instability problem [239,240].
This problem originates from the fact that for some systems the unrestricted HF method
yields lower ground-state energy than the ordinary restricted HF method. Any computa-
tional model that provides an unbalanced description of the ground state and the most
important excited states of a given symmetry, also provides a poor description of the
molecular property of interest that depends on these states. In this sense, the restricted
Hartree–Fock theory proved to be totally unreliable. Although, in most cases the restricted
Kohn–Sham theory produces a fairly accurate prediction of SSCCs, in some distinguished
cases, such as near-biradical o-benzyne molecule [358], this theory might show the “symp-
toms” of triplet instability problem. A very important investigation of this issue has been
performed by Lutnæs et al. [316]. They examined the sensitivity of spin–spin coupling
constants to triplet instabilities in Kohn–Sham and Hartree–Fock theories by correlating the
quality of the spin–spin coupling constants with the quality of the lowest triplet excitation
energy for a number of small molecules. In general, it was found that the most stable
results for the FC contributions are provided by the LDA approximation. Slightly less
stability of the results was reached within the GGA approximation. The hybrid GGA
theory was found to give results rather more susceptible to triplet instabilities than that
of the pure GGA theory. For the calculations of SSCCs, Lutnæs et al. recommend the
Perdew–Burke–Ernzerhof GGA exchange-correlation functional, PBE, which provides a
good compromise of accuracy and robustness in the sense of triplet instability problem.

Taking into account the relativistic effects in the DFT theory for NMR properties
when dealing with heavy element compounds has become a top priority for today. This is
connected with the fact that DFT methods provide a fairly reliable description of the electron
correlation effects in the calculations of NMR parameters at the computational cost similar
to that of the Hartee–Fock method. As opposed to many computationally demanding ab
initio correlated wavefunction-based approaches, the DFT can be regarded as the most
promising methodology for the extension to the relativistic domain, as the computational
scaling of the relativistic methods exceeds that of the nonrelativistic analogies by times or
even dozens of times.

Komorovsky, Repisky, and their colleagues proposed one of the most general rela-
tivistic four-component density functional theories (4DFT) for the calculations of NMR
shielding constants [359] and spin–spin coupling constants [360]. These theories are based
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on the matrix formulation of the Dirac–Kohn–Sham (DKS) method and on the use of the
restricted magnetic balance (RMB) condition for the small MO components.

The relativistic theories start from the expressions for the total energy in the presence

of external magnetic perturbations
→
X and

→
Y , with

→
X =

→
B ,
→
Y =

→
µ

M
for σ and
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M
,

→
Y =
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N
for J, within the framework of the four-component Dirac–Kohn–Sham approach:
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The first term on the right-hand side represents the relativistic kinetic energy of the
system in the presence of the magnetic fields.
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The second term in Equation (68) represents the potential energy, which is expressed
in terms of large and small components of MOs:
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The key point in the calculation of second-order properties in 4DFT theory is to
obtain the linear response of the four-component molecular orbitals due to the magnetic
perturbations. For that, they are expanded in a power series:
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To determine the derivatives of the four-spinors in Equation (73), their dependence on

the magnetic fields is specified. The large component of the ith molecular orbital ϕ
L(
→
X,
→
Y)

i is
expressed as the linear combination of the basis functions χλ with the expansion coefficients

CL(
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λi depending on two magnetic perturbations,
→
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expressed as the linear combination of the magnetically balanced (restricted condition, in

the simplest approximation) basis functions χ
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λ with the field-dependent coefficients

CS(
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λi . Thus, the four-component molecular orbitals depend on the magnetic perturba-
tions via both MO coefficients and basis functions. Due to this fact, the linear responses of
MOs in Equation (73) can be expressed as follows:
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where ϕ
r(1,0)u
i and ϕ

m(1,0)u
i represent the regular and magnetic parts of the four-spinor. The

first one depends on the magnetic field only via the MO coefficients, whereas the second
part contains unperturbed MO coefficients and the dependence on the magnetic field comes
via explicit field-dependent basis functions for the small component. The regular parts are
expressed in the basis of the unperturbed molecular orbitals {ϕ

(0,0)
p }p through the usual

linear-response expansion coefficients:
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where X is a primary perturbation (
→
X =

→
B and

→
µ

M
), and βXu

pi are the linear-response
expansion coefficients of the perturbed MOs in the basis of the unperturbed MOs. The

magnetic term ϕ
m(1,0)u
i arises as a consequence of exploiting the magnetically balanced

basis set, and it does not contain any unknown coefficients.
Thus, in accordance with the standard definition of the shielding tensor as the second

derivative of energy with respect to the external magnetic field and nuclear magnetic
moment (Equation (5)), the main expression for the tensor σuv can be presented as follows:

σuv = σD
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In the nonrelativistic limit σuv
D turns into the classical diamagnetic term, σuv

P1 vanishes,
and σP1

uv becomes the standard paramagnetic contribution with summation only over
unoccupied positive-energy MOs.

At the same time, the tensor KMN
uv , defined by Equation (16), can also be presented in

the basis of unperturbed MOs:
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In the non-relativistic limit, KD(M,N)
uv becomes the classical diamagnetic term, KP0(M,N)

uv

vanishes and KP1(M,N)
uv becomes the sum of the standard FC, PSO, SD contributions and the

FC-SD cross-terms with summation only over unoccupied positive energy MOs.
The Equations (76)–(83) are further transformed into a matrix form, by replacing the

unperturbed four-spinors with their bi-spinor form, so that the final expressions contain

the unperturbed MO coefficients CL/S(
→
X,
→
Y)

λi , the linear-response coefficients, βXu
pi and the

property integrals over the atomic orbitals χλ. The unperturbed MO coefficients for the
large and small components are usually obtained during the self-consistent-field (SCF)
procedure. The linear-response coefficients of the occupied molecular orbitals are derived
from the normalization condition, and that for the unoccupied molecular orbitals are
obtained within the perturbation theory.

The mDKS-RMB methodology of Komorovsky and Repisky et al. has been im-
plemented within the ReSpect program package including the property module MAG-
ReSpect [361]. At the present moment, their methodology can be regarded as one of the most
efficient approaches to the calculation of the NMR parameters within the four-component
DFT method.

Apart from the mDKS-RMB methodology, there is another approach for the relativistic
DKS calculations of nuclear shielding tensors, which was proposed by Xiao et al., namely
the orbital decomposition approach (ODA) [102,103]. The ODA also goes beyond the kinetic
balance and treats the magnetic part of the response of the small components. However, in
contrast to mDKS-RMB methodology, the ODA approach starts from the operator form
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of the DKS equations and introduces the basis set only at the stage when the response
equations are written via the basis for the large component only. This results in more
complicated equations due to the occurrence of a nontrivial operator with a denominator
depending on the potential and on one-electron energies. An advantage of the ODA
approach is that one can use the basis set for the large component only, however, the
resulting response equations are very complicated and very time consuming. The ODA
method has been implemented within the BDF program package [362,363].

Cheng et al. [104] worked out the magnetically balanced gauge-including atomic
orbitals MB-GIAOs, in which each magnetically balanced atomic orbital has its own local
gauge origin placed on its center. The MB-GIAOs methodology has been implemented
into the BDF package at the coupled-perturbed Dirac–Kohn–Sham level, and can be com-
bined with the ODA, mDKS-RMB, and two–component external field-dependent unitary
transformation (EFUT) [364] formalisms.

A simple and efficient scheme (called as sMB) for simulating the magnetic balance
between the large and small components of a molecular four-component spinor in the
presence of an external magnetic field as applied to the calculation of NMR shielding tensors
within the four-component relativistic Kohn–Sham density functional theory including
non-collinear spin magnetization and employing London atomic orbitals (LAOs) was
proposed recently by Olejniczak et al. [365]. The main idea proposed in the cited article is
to optimize the zeroth-order orbitals using the RKB condition and then extend the RKB
coefficients by the unrestricted kinetic balance (UKB) complement for use in the subsequent
calculations of NMR shieldings in combination with LAOs. The authors have implemented
the presented scheme, sMB, into the DIRAC code [366]. They tested the sMB scheme in
the DFT and SDFT calculations of isotropic shielding constants of hydrogen halides HX
(X = F, Cl, Br, I, At) against various balance schemes, RKB, and UKB. It was found that
convergence of results is slow when using the RKB scheme: in order to saturate the space
of small-component functions, extensive basis sets for the large component have to be used.
On the contrary, the simple scheme for magnetic balance, sMB, has proved to be a useful
and computationally economic way to calculate the NMR shielding tensor, yielding results
comparable with the mDKS-RMB-GIAO method.

To attain more computational benefit from the DFT methodology in the relativistic
domain, a great deal of two-component approaches to the calculation of the NMR parame-
ters have been developed. Sun et al. [107] have published a thorough review, devoted to
the two-component schemes for calculating the NMR parameters, surveying in detail vari-
ous types of two-component Hamiltonians, both the exact two-component (X2C) and the
approximate two-component (A2C). It is generally accepted that X2C schemes imply that
the eigenvalues of a given two-component Hamiltonian exactly reproduce the solutions of
the four-component analogue. According to recent reviews by Autschbach [367] and Peng
and Reicher [368], one can distinguish two different types of X2C schemes, namely those
which split the Hamiltonian in large and small subblocks in one- and more-than-one-step
procedure.

Among the most well-known X2Cs are the following schemes: normalized elimi-
nation of the small component (NESC) [369–376], the infinite-order Douglas–Kroll–Hess
(DKH) [377], and the Barysz–Sadlej–Snijders (BSS) or the infinite-order two-component
(IOTC) approach [378–381].

All other two-component schemes that are theoretically unequal to the original four-
component problem are called as quasi-relativistic or approximate two-component schemes,
A2C. These include the following most well-known approaches: zero-order regular approx-
imation (ZORA) [101,382–384], second-order regular approximation to normalized elimina-
tion of the small component (SORA-NESC) [385], finite-order Douglas-Kroll-Hess approxi-
mations (DKH) [386–393], and the infinite-order regular approximation (IORA) [394,395].

As applied within the DFT method, among the two-component approaches mentioned
above, it was ZORA which attained the most popularity in the calculations of NMR
properties, especially in the solid-state NMR [396–399].



Magnetochemistry 2022, 8, 50 27 of 72

3.4. Polarization Propagator Methods

From a physical point of view, the most natural way to determine the spectroscopic
NMR parameters is to use linear response theory. Within the linear response theory, NMR
parameters are calculated from the response of an electronic system to a perturbation
caused by an external electromagnetic field. This can be expressed through the polarization
propagator [11,400], which is also called as the linear response function:

<< P̂; Q̂ >>r
E+ iε= lim

ε→0
∑

n 6=0

[
〈0|P̂|n〉〈n|Q̂|0〉

E− En + E0 + iε
− 〈0|Q̂|n〉〈n|P̂|0〉

E + En − E0 + iε

]
. (84)

The response function << P̂; Q̂ >>r
E+ iε embodies the first-order change in the ground

state average value of the quantum operator operator P̂ under the action of the perturbation
Q̂. Accordingly, the physical interpretation of the propagator is determined by the physical
meaning of the operators P̂ and Q̂. In the case of NMR properties, these are one-electron
NMR-active hyperfine operators. Thus, for the NMR properties, the polarization propagator
describes the propagation of a disturbance in an electronic system caused by the magnetic
perturbations generated by the nuclear magnetic moments or an external magnetic field.

As can be seen from expression (84), the exact excitation energies, E = ±(En − E0), rep-
resent the real parts of its poles, while the transition moments 〈0|X̂|n〉, 〈n|X̂|0〉 (X̂ = P̂, Q̂)
are its residues. Obviously, knowing the exact excitation energies and transition moments
would make it possible to find the exact values of the NMR parameters by evaluating the
function << P̂; Q̂ >>r

E+ iε at E = 0 (this condition means a static case when the perturba-
tions applied to the system do not depend on time, which is the case of NMR operators).
However, the polarization propagator approach does not resort to a direct evaluation of
<< P̂; Q̂ >>r

0+ iε. In general, polarization propagator is found from the equation of motion
(EOM). The iterative solution of EOM using the superoperator formalism [401] and the
technique of Inner Projection (IP) [402] give rise to the expression for the polarization
propagator in a compact form [11]:

<< P̂; Q̂ >>r
E= (P̂+

∣∣∣∣ĥ) ( ˆ̃h
∣∣∣EÎ − Ĥ0

∣∣∣ĥ)−1
( ˆ̃h
∣∣∣∣Q̂). (85)

In Equation (85) the (P̂
∣∣Q̂) = 〈0|[P̂+, Q̂]|0〉 designates the superoperator product, and

it is accepted that Ĥ0Q̂ ≡ [Ĥ0, Q̂]. The complete excitation operator manifold ĥ consists of
an infinite number of sets of elementary (not reduced by spin) operators of single, double,
etc. excitations and deexcitations:

ĥ =
{

ĥ2, ĥ4, ĥ6, . . .
}

, (86)

where

ĥ2 =
{

q̂+, q̂
}
=
{

a+m aa, a+a am
}

, ĥ4 =
{

q̂+q̂+, q̂q̂
}
=
{

a+m a+n aaab, a+b a+a anam
}

, ... (87)

In the polarization propagator formalism, the << P̂; Q̂ >>r
E is expressed as a product

of matrices [11]:

<< P̂; Q̂ >>r
E= (P+

a , P+
b , . . .)

 Maa Mab . . .
Mba Mbb . . .
. . . . . . . . .

−1 Qa
Qb
. . .

, (88)

with
Pa = (P̂

∣∣∣ĥa) and Mab = (ĥa

∣∣∣EÎ − Ĥ0

∣∣∣ ˆ̃hb), (89)

Eventually, finding the << P̂; Q̂ >>r
E is equivalent to the determination of the re-

solvent matrix M−1 using the spectral theorem, which assumes solving the generalized
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eigenvalue problem for the matrix M. In general, the calculation of NMR properties within
the framework of the polarization propagator approach can briefly be described as a se-
quence of several steps: (a) solving the unperturbed Hartree–Fock problem in order to find
the molecular coefficients, orbital energies, and the ground state energy; (b) calculating the
elements of the effective matrices; (c) solving the generalized eigenvalue problem for the
matrix M; (d) evaluating the polarization propagator through Equation (88).

In order to obtain useable approximations, the operator manifold ĥ is truncated to a
subset of operators, {ĥ2} or {ĥ2, ĥ4} or {ĥ2, ĥ4, ĥ6}, . . . and so on. Thus, narrowing down the
manifold ĥ to a set of one-electron excitations/deexcitations, {ĥ2}, leads to the random phase
approximation (RPA) [113]. This gives results identical to those of the CPHF method (both
methods take into account the effects of electron correlation in the first order of fluctuation
potential, which is considered to be an “uncorrelated” level). The computational scaling of
the RPA equations is of the fourth power of the basis set size (N4).

The next approximation is the method of the second-order polarization propagator
approach (SOPPA) [403–409]. In the SOPPA method, the manifold is restricted to the subset
ĥ = {ĥ2, ĥ4}. The SOPPA method demonstrates a noticeable improvement in the accuracy
of the calculations of both singlet and triplet NMR properties. One of the advantages of the
SOPPA method is that the projection manifold and the reference state are uniquely deter-
mined, so that the question concerning the choice of the configuration space does not exist.
In addition, the SOPPA method assumes a simple systematic extension to higher orders,
implying a sequential improvement in the description of the electron correlation effects.

There are two modifications of the SOPPA method—the SOPPA(CC2) [410] and
SOPPA(CCSD) [411]. They were created to improve the accuracy of the calculation of the
SSCCs relative to the original SOPPA method. Within the framework of these modifications,
all coefficients from the Møller–Plesset perturbation theory, which are used to calculate the
matrix M in the SOPPA approach, are replaced with the coupled cluster amplitudes from
the corresponding CC scheme, which makes it imperative to solve the system of cluster
equations within the CC-modified SOPPA models. This complicates calculations, and, in
the case of the SOPPA(CCSD) scheme, this even increases the scalability of the method by
an order of magnitude in terms of the number of basis set functions N, i.e., from N5 for
SOPPA to N6 for SOPPA(CCSD). The SOPPA method and its modifications have become
very popular approaches in the calculations of SSCCs of various types [406,407,412–415].

The RPA model, which corresponds to the coupled Hartree–Fock calculation in the
static regime, is feasible for large molecules (it scales as N4), and that is quite an advantage
as compared to SOPPA methods and its modifications. However, it neglects the electron
correlation effects, which is problematic, especially for the triplet NMR properties resulting
in triplet instabilities [416,417]. In this way, there is a need for the correlated wavefunction-
based approaches to the calculation of NMR molecular properties, which would have less
computational demands as compared to SOPPA or its modifications and yet would be
more reliable than the RPA method. Recent developments of Sauer’s group pointed at
resolving the issue. In particular, the higher RPA (HRPA) model [418–420] could have
become one of the plausible extensions of the RPA method. It includes the second-order
correction to the matrix M of SOPPA, while the contributions of the double excitations
found in the SOPPA model are omitted. This turned out to be an obstacle, as the importance
of double excitations has already been acknowledged by that moment and methods such
as CIS(D) [158,421,422], RPA(D) [420,423], and HRPA(D) [420] have been developed for the
excitation energy calculations with promising results [420–427]. Thus, Schnack–Petersen
et al. [428] presented two new modifications of the RPA method for the calculations of NMR
indirect nuclear spin–spin coupling constants recently, namely the RPA(D) and HRPA(D).
In these models, the double excitation contribution is treated noniteratively as a correction
to the results of RPA or HRPA levels. The idea of the D-extended approaches consists in
the solution of the generalized eigenvalue problem using the pseudoperturbation theory.
That means expansion of the matrix M and the vectors P and Q in a kind of perturbation
series, based on the deficiency in relation to the corresponding SOPPA matrices and vectors.
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Thus, the SOPPA matrices and vectors can be partitioned into the contributions of different
(pseudo-)order terms, where the zeroth-order matrices are chosen as those corresponding
to a smaller problem, namely RPA or HRPA approximations.

In terms of the number of occupied orbitals, O, the number of basis functions, N, and
the number of virtual orbitals, V = N − O, the RPA(D) and HRPA(D) both have the most
demanding term with scaling factor of N4O1 due to the fact that both methods require
transformation with the SOPPA matrices. In O-N-V terms, the RPA equations scale as N4,
while the leading terms in the SOPPA approach scale as a partial two-electron integrals
transformation, N4O1. According to the authors’ statement, within the RPA(D) model, only
the RPA equations are solved iteratively and the N4O contribution are calculated once
using the converged RPA vectors. Thus, the savings of RPA(D) relative to SOPPA for a
large system is proportional to the number of iterations required to converge the SOPPA
equations. The HRPA(D) method, on the other hand, requires the same amount of N4O
terms as a SOPPA iteration, though the calculation of some mostly demanding terms can
be avoided. The savings of HRPA in terms of the computational cost of an iteration is thus
quite small in the typical case of V >> O. The test calculations of different types of SSCCs in
a number of small inorganic molecules performed in [428] showed that both the RPA(D)
and HRPA(D) models yield the results of good accuracy compared to the SOPPA model
with noticeable time savings.

The performance of RPA(D) and HRPA(D) models has extensively been examined on
the calculation of carbon–carbon spin–spin coupling constants for 39 saturated carbocycles
in the next work of Sauer’s group [429]. It was found that the HRPA(D) method provides
accuracy similar to that of the SOPPA method with 65% reduction in computation time at
best (this varies substantially with the investigated molecule, namely in the range 15–65%,),
while the RPA(D) demonstrates an essential improvement over the RPA method with
approximately 60–85% time saving as compared to the SOPPA method. The RPA(D) model
yields the results with ever so slightly lower accuracy than SOPPA. However, the RPA(D)
model was found to suffer from the triplet instability problems, which was not observed
for the HRPA(D) model. In the author’s opinion, the HRPA(D) may prove beneficial in the
predictions of the coupling constants of large molecules, while the RPA(D) method, despite
less computation times, may not be thought of as a reliable alternative to either SOPPA or
HRPA(D) methods.

Other useful models for a deeper understanding of the electronic origin and transmis-
sion mechanisms of the spectroscopic NMR parameters, are based on the inner projections
within the polarization propagator (IPPP) and contributions from the localized orbitals
within the polarization propagator approach (CLOPPA) methods [11,22,430,431]. Origi-
nally implemented at the semiempirical levels [432–436] into the RPA method, they are
nowadays embedded into the RPA [437] and SOPPA models [438] at the ab initio level.
The IPPP and CLOPPA approaches were developed mainly to analyze the NMR SSCCs in
terms of the “local” contributions. In particular, CLOPPA is based on the decomposition of
SSCC as a summation of contributions from individual coupling pathways involving two
virtual excitations i→a and j→b with i, j (a, b) occupied (vacant) localized MOs (LMOs) that
belong to the local fragment of interest (L):

JMN = ∑
ia,jb

JL
MN;ia,jb. (90)

This allows one to extract some crucial information on the transmission mechanisms
involved in the propagation of a given specific magnetic perturbation, the FC, SD, or PSO.

The implementation of the gauge invariant atomic orbitals (GIAO) approach within
the RPA approach (which is equivalent to the CPHF level in the static limit) for the chemical
shifts calculations was first carried out by Ditchfield [60], followed by others [30,33,35,36].
The RPA calculations of NMR chemical shifts are rather scarce nowadays. The SOPPA
calculations of the NMR shielding constants are practically absent. The problem lies in the
inefficiency of solving the gauge origin problem within the SOPPA method. To solve the



Magnetochemistry 2022, 8, 50 30 of 72

gauge origin problem within the SOPPA method, the continuous transformation of origin
of the current density whereby the diamagnetic contribution to the current density is set
to zero (CTOCD-DZ) [439] was proposed in the application to SOPPA and SOPPA(CCSD)
formalisms [440–442]. The CTOCD-DZ method is based on the ideas of the Keith–Bader
numerical approach of a continuous set of gauge transformations (CSGT) [443–445], in
which the current density induced by an external magnetic field is calculated at each point
of space, provided that the origin of the coordinate system is placed at the point under
consideration. Then, the magnetic properties are calculated using the well-known relations
of classical electrodynamics in the form of three-dimensional integrals involving the current
density. In fact, the CTOCD-DZ method represents a transformation of the Keith–Bader
numerical approach to an analytical form. The SOPPA method applied in conjunction with
the CTOCD-DZ formalism to the calculation of shielding constants is prone to demonstrate
very slow convergence over the basis sets. This means that in order to obtain an adequate
result within the CTOCD-DZ-SOPPA method, very large basis sets are required.

A new method of algebraic diagrammatic construction (ADC) [446,447] based on the
formalism of polarization propagator has been proposed for the calculations of SSCCs
recently. In the ADC approach, the polarization propagator is represented in the non-
diagonal form:

Π(ω) = f+(ω−M)−1f, (91)

which is a generalization of the familiar spectral representation of Π(ω):

Π(ω) = x+(ω−Ω)−1x, (92)

where Ω is the diagonal matrix of excitation energies:

Ωn = En − E0, (93)

and x is the matrix of “spectroscopic amplitudes”:

xn
rs = 〈Ψn|c+r cs|Ψ0〉. (94)

In the ADC approach, the quantities M and f are found by comparison of Equation (91)
with the Feynman–Goldstone diagrammatic series for Π(ω) through a given order n of the
perturbation theory. For this purpose, the matrices M and f are expanded in the power
series in the fluctuation potential:

M = M(0) + M(1) + M(2) + . . . , (95)

f = f(0) + f(1) + f(2) + . . . (96)

Alternatively, the ADC schemes are introduced using a concept of specifically con-
structed ADC basis states, within the so-called intermediate states representation (ISR) [448]
and is expressed in terms of effective values decomposed in a series by the fluctuation
potential. A second-order scheme, which takes into account single and double excitations,
ADC(2) [447], has been developed and implemented for SSCCs. The scalability of ADC(2)
scheme is the same as that of SOPPA method, i.e., N5.

The ADC approach possesses transparent computational procedure operating with
Hermitian matrix quantities defined with respect to physical excitations. It is size-consistent
and easily extendable to higher orders via the hierarchy of available ADC approximation
schemes. The ADC(2) method was tested on the series of small molecules HF, N2, CO,
H2O, HCN, NH3, CH4, C2H2, PH3, SiH4, CH3F, and C2H4. The calculated indirect nuclear
spin–spin coupling constants occurred to be in a good agreement with the experimental
data, which means that this method may happen to be promising for applications to
larger molecules.
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The extension of the RPA method to the four-component relativistic domain was first
discussed by Pyykkö [449] who presented the coupled perturbated Dirac–Hartree–Fock
(CP-DHF) theory in application to the calculations of the SSCCs, which is equivalent to
the four-component RPA (4RPA) method. Then, it was developed further in detail by
Aucar and Oddershede [113], whose work was followed by a plethora of calculations
of SSCCs within the framework of 4RPA formalism [112,450–452]. For nuclear shielding
constants, Iliaš and co-authors developed the theory of relativistic localized atomic orbitals,
LAO (London Atomic Orbitals), and implemented it into the CP-DHF (4RPA) approach,
demonstrating the efficiency of the presented methodology on the example of calculating
the σ(1H) and σ(127I) in the HI molecule [130]. It should be noted that this was preceded by
the developments of Quiney et al. [453–455], who showed the applicability of the London
orbitals to the CP-DHF theory. Further, the developments of the 4RPA method were
concentrated on the correct inclusion of the magnetic balance condition in the formalism of
relativistic localized atomic orbitals, which is necessary for all relativistic four-component
methods for calculating NMR shielding constants. Cheng et al. [104] presented the theory
of the so-called magnetically balanced gauge-including atomic orbitals theory (MB-GIAOs),
in which each “magnetically balanced” atomic orbital has its own local origin located in its
center. Cheng and co-authors refuted an accepted statement that the magnetic balance (MB)
condition is incompatible with the four-component relativistic polarization propagator
theory 4c-PPT [456]. They believed that the statement is rather counterintuitive as its
random phase approximation is, in the static limit, fully equivalent to the CP-DHF theory,
and, in its turn, the CP-DHF theory is known to be compatible with the formalism of
magnetically balanced localized orbitals. Thus, they showed that the MB-GIAO scheme
can be combined with any four-component electronic structure calculation method, in
particular, with the 4PPT methods. However, the first demonstration of the efficiency of the
theory of relativistic MB-GIAO was carried out on the example of the shielding constants
calculated within the framework of the Dirac–Kohn–Sham theory (DKS) or four-component
DFT (4DFT) method [457,458]. The calculations of nuclear shielding constants within the
4RPA formalism were presented in a number of papers [112,452,459], however, this method
has not received as much popularity as the Dirac–Kohn–Sham approach.

A real breakthrough in the computational NMR was made by the scientific group
of Sauer [127] very recently, who presented the second-order-polarization-propagator-
approximation (SOPPA) method within the relativistic framework. The equations for
relativistic SOPPA were deduced in their most general form, i.e., in a non-canonical spin-
orbital basis, which can be reduced to the canonical case. The obtained equations are
one-index transformed, giving more compact expressions that correspond to those already
available for the four-component RPA. Thereby, a possible scheme has been outlined for
the implementation of the presented equations in a program that already contains an RPA
code that allows for the evaluation of the non-canonical RPA equations in a spin-orbital
basis. This will allow the NMR spectroscopic properties of molecules containing heavy
elements to be calculated within the relativistic SOPPA method.

3.5. Methods Based on the Many-Body Perturbation Theory

Perturbation theory has been used since the early days of quantum chemistry to obtain
electron correlation-corrected descriptions of the electronic structure and properties of
molecules [460]. The calculation of NMR chemical shifts at the simplest correlated level
of second-order many-body perturbation theory, MBPT(2), or the second-order Møller-
Plesset, MP2 theory [461,462], is one of the most attractive methods, since it offers a good
compromise between the accuracy and computational costs (scaling as N5, with N being
the number of basic functions). The correlation energy in MP2 is determined by the
following equation:

E(MP2) =
1
4∑

ij
∑
ab

tab∗
ij 〈 ab‖ ij〉 , (97)
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where 〈 pq‖ rs〉 are the antisymmetric two-electron spin-orbit integrals and tab
ij are the

amplitudes of the two-particle excitation:

tab
ij = 〈 ab‖ ij〉/( fii + f jj − faa − fbb). (98)

Molecular orbitals |p〉 are the eigenfunctions of the Fock operator with corresponding
eigenvalues f pp. Indexes i, j, k, l, . . . refer to occupied spin orbitals, while a, b, c, d designate
the vacant (unoccupied) spin-orbitals. The general indices p, q, r, s, . . . are the spin-orbitals
that can be either occupied or vacant. The MP2 expressions for the shielding tensor are
obtained by differentiating the Equation (97) with respect to the nuclear magnetic moment,
and then with respect to the magnetic field. The resulting expression has the form [463]:

σN;ji(MP2) = ∑
µν

Dµν
∂2hµν

∂Bi∂µN;j
+ ∑

µν

∂Dµν

∂Bi

∂hµν

∂µN;j
, (99)

where Dµν represents the elements of a one-particle density matrix at the MP2 level in the
basis of atomic orbitals, while hµν are the elements of the one-electron Hamiltonian in the
basis of atomic orbitals. Thus, the calculation of σN;ji(MP2) requires the knowledge of the
perturbed integrals (which can usually be calculated in a simple way using the standard
methods), as well as the perturbed and unperturbed MP2 density matrix, ∂Dµν

∂Bi
and Dµν.

The pioneering works on the implementation of the GIAO formalism into the MP2
theory have been commenced by Pulay and his colleagues [65,464]. Initially, the problem
consisted in the calculation of the perturbed two-electron integrals in the GIAO formalism,
however, Pulay et al. have shown that such integrals can be calculated in a fairly simple
way using the similarity of the perturbed GIAO integrals with derivatives of ordinary
two-electron integrals. In their work, it was also shown that at the initial stage of cal-
culations, which implies the framework of the GIAO-CPHF method, the storage of the
perturbed GIAO integrals is not required. It has also been shown that perturbed integrals
are calculated very quickly, which is an important feature for any computational method.
The method proposed by Pulay was applicable only in the case of non-contracted Gaussian
basis sets. To date, the perturbed GIAO-molecular integrals are easily calculated within
the framework of standard methods, such as the Dupuis’ polynomial approach [465], the
McMurchie–Davidson scheme [466], or within the framework of recursive Obara–Saika
methods [467].

Gauss presented the first rigorous scheme for calculating the NMR chemical shifts
at the MP2 (or MBPT(2)) level based on the GIAO ansatz [468,469]. Subsequent calcula-
tions using the GIAO-MP2 approach demonstrated the importance of electron-correlation
effects in the NMR chemical shifts calculations. A number of problems concerning the
interpretation of experimental spectra of boranes [470], carboranes [470,471], and carbo-
cations [472–475] were resolved using the MP2 approach. The GIAO-MP2 approach has
been subsequently extended to the third- and fourth orders of perturbation theory [476],
based on the MP3 [477,478] and MP4 [478–481] theories. All these developments were
made using the analytic second-derivative techniques. The GIAO-MP3 and GIAO-MP4
methods [476] are substantially more costly than the GIAO-MP2 approach (N6 and N7,
respectively, against N5), but if applied with the approximation of the resolution-of-the-
identity (RI) [241,482], the calculations with these models could become more feasible.
In practice, Gauss suggested the GIAO-SDQ-MBPT(4) approximation for the GIAO-MP4
approach [476], specifically for the cases when triple correlation effects play a minor role in
a given system. The computational cost of the GIAO-SDQ-MBPT(4) approach scales as N6.

It should be noted that the MBPT(n) methods are not recommended for the calculation
of the SSCCs for the same reason as the CCSD(T) method, which consists in resorting to the
relaxed Hartree–Fock orbitals.
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The relativistic MBPT theory is presented elsewhere [483–486] and most recently
in [487]. In the relativistic representation, the original Hamiltonian is generalized as
follows [483]:

H = H0 + VC + B, (100)

H0 =
N

∑
i=1

(
→
α i ·

→
p i + βim)−

N

∑
i=1

Zα

ri
, (101)

VC =
1
2 ∑

i 6=j

α∣∣∣→r i −
→
r j

∣∣∣ , (102)

B = −α

2 ∑
i 6=j

→
α i ·

→
α j +

→
α i · r̂ij

→
α j · r̂ij∣∣∣→r i −

→
r j

∣∣∣ . (103)

However, this Hamiltonian is known to result in degeneracy collapse or the Brown–
Ravenhall disease [488,489], when an intermediate state with zero excitation energy can
appear. The standard way to avoid that is to restrict the excitations to positive-energy
orbitals by means of projection operators, suggested by Sucher [490–492]. This approach is
usually referred to as the no-(virtual)-pair approximation (NVPA).

The quasirelativistic second-order Møller–Plesset perturbation theory for the magnetic
shielding constants was proposed by Fukuda [99]. In that work, the quasirelativistic
generalized unrestricted Hartree–Fock method for the magnetic shielding constants [97,98]
has been extended to include the electron correlation effects at the MP2 level of theory. The
finite-perturbation method was applied to calculate the magnetic shielding constant at the
quasirelativistic MP2 level of theory. The method was applied to the calculation of the NMR
shielding constants and chemical shifts of 125Te nucleus in various tellurium compounds.
It was shown that the calculated magnetic shielding constants and NMR chemical shifts
are well reproduced by the relativistic MP2 theory as compared to the experimental values.

For SSCCs, the development of the relativistic MBPT theory makes no sense for the
same reason as in the nonrelativistic case.

4. Computational Factors Influencing the Accuracy of NMR Spectrum Modeling
4.1. Specialized Basis Sets

One of the most important aspects of any quantum chemical calculation of NMR
parameters is the choice of an atomic basis set. The basis set should be flexible enough to
fully describe orbitals in an important region in terms of the distance to the nuclei in the case
of a specific molecular property. However, the vast majority of commonly used basis sets
have been developed by minimizing the parameters of the basis set with respect to atomic
or molecular energies. Therefore, the calculation of molecular properties that directly
depend on energy, such as dissociation energy, equilibrium geometry parameters (the first
derivatives of energy in nuclear coordinates), and harmonic oscillation frequencies (the
second derivatives of energy in nuclear coordinates), are described within the framework of
energy-optimized basis sets very well. However, other molecular properties that strongly
require the exact description of orbitals in specific areas, which are not so important for
energy, require either very large standard energy-optimized basis sets or specialized basis
sets, optimized for these certain molecular properties. Nuclear shielding constants and
spin–spin coupling constants are prominent representatives of such molecular properties
that directly depend on the quality of the description of orbitals in specific areas.

Despite the inefficiency of energy-optimized basis sets for calculating NMR properties,
they are usually used on atoms that are of no interest in a specific NMR calculation. This is
an example of the so-called local dense basis set (LDBS) scheme [414,493,494]. Its original
meaning consisted in using large high-quality basis sets on specific atoms, which are
important in the calculation, and significantly smaller basis sets on other parts of the
molecules. This, to a certain extent, reduces the calculation time, and, with the correct
configuration of LDBS, it is possible to achieve an accuracy of the result that is practically
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the same as in the case when one type of a large high-quality basis set is set on all atoms
of the molecule. With the advent of specialized property-oriented basis sets, the original
meaning of the LDBS concept has undergone some changes and become more general.
In that way, if a specialized basis set is installed on the atoms of interest, and the rest of
the molecule is described with the non-specialized basis sets, then such a scheme is also
regarded as LDBS.

4.1.1. Specialized Basis Sets for Calculating Spin–Spin Coupling Constants

The so-called J-oriented basis sets reflect the features of the SSCCs determined by
their simplest nonrelativistic formulation by Ramsey [51] as the sum of four different
contributions: Fermi-contact (FC), spin-dipole (SD), paramagnetic spin-orbital (PSO), and
diamagnetic spin-orbital (DSO). The Fermi-contact contribution depends on the electron
density on the nuclei, and its correct description requires tight s-type functions expressed
with large exponents. The PSO, DSO, and SD contributions include matrix elements that
have maximum values in the inner region of the wave function, which description requires
tight functions with nonzero angular momentum, p-, d-, etc. [265]. Specifically, for the
PSO contribution, it is known that tight functions of p-type are important. In contrast
to the PSO contribution, the SD contribution is sensitive to the addition of p, d, and f
functions [265]. On the other hand, the FC, PSO, and SD contributions are the response
properties determined by the summation over excited states. The representation of the
excited states in the response part, on the other hand, is expected to be sensitive to the
quality of the wave function in the region far from the nucleus. Thus, they also depend on
both tight and diffuse exponents. It is typical that the DSO term is vanishingly small for the
vast majority of SSCCs. Therefore, studies on its dependence on basis sets have not been
systematically conducted. However, based on the general considerations, it can be assumed
that since the DSO contribution is calculated as the mathematical expectation value of the
DSO operator for the undisturbed wave function of the ground state, then the accuracy of
its description should be determined by the quality of the description of the ground state,
and this requires the same optimal exponents as for the total energy of the ground state.
Thus, it is plausible that the usual energy-optimized basis sets will be effective for the DSO
contribution as well. In general, the situation with the dependence of the full SSCCs on
various types of functions is quite complicated, because it is determined by a superposition
of dependencies of four contributions that are different in physical nature, therefore, the
development of new J-oriented basis sets is a very challenging task.

At the moment, there are a limited number of ways to create J-oriented basis sets. The
simplest way to obtain a J-oriented basis set is to consistently expand the angular spaces
of standard, energy-optimized basis sets with additional functions until the convergence
of total SSCC or some of its dominant contributions is achieved. Within this method, the
exponents of additional functions are usually calculated in the form of subsequent elements
of a geometric progression ζi = αβi, where α is the last exponent in the original basis set
(ζn), and β is the ratio of the two last exponents β = ζn/ζn-1. Such a way of building
additional exponential sets leads to the even-tempered functional series, for which the
ratio between two neighboring exponents is a constant: ζi/ζi-1 = β = const. In most cases,
dealing with the design of the nonrelativistic J-oriented basis sets, the energy-optimized
correlation consistent Dunning’s basis sets [266,495–498] are usually taken as starting basis
sets, though, there are several examples of using medium-size polarized Sadley’s basis
sets MSP [499–502] or small Huzinaga basis sets [62,503], although the latter two are much
less popular.

The first investigations of the influence of the even-tempered expansion of the basis sets
on the SSCCs were carried out by Enevoldsen et al. and Helgaker et al. Enevoldsen et al. [406]
investigated the influence of expansion of the correlation-consistent basis sets of Dunning
aug-cc-pVXZ (X = D, T, Q) on the example of SSCCs 1J(13C,1H) and 2J(1H,1H) in the CH4
molecule. It was proposed to use fully uncontracted aug-cc-pVTZ basis set, augmented by
four additional tight s-type functions, minus one f -function, on the carbon and hydrogen
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atoms. Helgaker et al. [200] analyzed the basis set dependence of 1J(H,F) and 1J(O,H)
in two simple molecules, HF and H2O, respectively, using the complete active space
self-consistent field (CASSCF) method with a large active space. The Dunning’s basis
sets cc-pVXZ (X = D, T, Q, 5, 6) were decontracted completely in the s-space, resulting in
cc-pVXZ-su0 sets, then a sequence of n tight s functions with the exponents forming a
geometric progression was added, resulting in a series of basis sets cc-pVXZ-sun. His group
also conducted the investigation [302] on how the expansion of the s-space of Huzinaga’s
basis sets, HIII [503], affects the SSCCs with leading FC contribution calculated at the DFT-
B3LYP level. Overall, it was shown that the sequential saturation of the s shell provides a
gradual improvement of the description of the FC contribution to the coupling constants.

This work was systematically continued by Provasi, Sauer, and their colleagues, who
presented the J-oriented basis sets named as aug-cc-pVTZ-J for various elements: H, C-
O [406,416], B, Al [406,504], F [406,505], Si [412,440,504], P, Cl [504], S [416], Sc-Zn [506], Ga,
Ge, As, Se, and Br [507]. Rusakov and Rusakova have also presented J-oriented basis sets
acvXz-J (X = 2, 3, 4) for Se, Te [508] and Sn [509], designed on the basis of even-tempered
approach, starting from relativistic energy-optimized Dyall’s basis sets dyall.acvXz (X = 2,
3, 4) [510,511].

Another way of expanding functional sets was presented by Kjær and Sauer [512],
who introduced a recurrent formula for generating an exponential sequence in such a way
that the ratio between two adjacent exponents increases monotonically, in contrast to the
constant ratio of exponents in the case of even-tempered functional series. Kjaer and Sauer
used the formula:

ζi−1 =
(ζi/ζi+1)

2

ζi+1/ζi+1
ζi, (104)

in order to expand the s-angular space of the uncontracted Pople’s basis sets 6-31G [513] and
6-311G [514] for elements H, C, N, and O. The resulting contracted basis sets were called
6-31G-J and 6-311G-J. These contain twice the number of contracted s-type functions but the
same number of contracted p-type functions as the original Pople’s basis sets. The obtained
sets were then augmented with standard diffuse and polarization functions, resulting in
basis sets named 6-31+G*-J and 6-311++G**-J. These J-oriented basis sets are purposed for
the fast and efficient calculations of SSCCs involving 1H, 13C, 15N, and 17O nuclei with
leading Fermi-contact contribution within the framework of nonrelativistic DFT approach.

Another way to generate J-oriented basis sets involves the optimization process. In
particular, Jensen et al. proposed the (aug)pcJ-n (n = 0–4) [265,515,516] basis sets, which
are suitable for the calculation of the spin–spin coupling constants involving 1–3 row
nuclei (H-Ar) with the density functional methods, applicable to quite large systems at
a favorable computational cost. Jensen’s basis sets were developed on the grounds of
previously proposed series of energy-optimized polarization-consistent basis sets (aug)pc-n
(n = 0–4) [517–521] by augmenting these with tight s, p, d, and f functions and determining
the additional optimum exponents with a variational procedure for the sum of the absolute
values of all four contributions. It was in Jensen’s work where tight s and p functions were
shown to be required for the correct description of the FC and PSO terms, respectively,
while tight p, d, and f functions were shown to be necessary to converge the SD contribution.

Another series of J-oriented basis sets for H, He, and B-Ne, called ccJ-pVXZ (X = D, T,
Q, 5) [264] has been developed by Benedikt et al. for high-quality wave function calculations
such as those resorting to the coupled cluster methods. These were made by extension
of the uncontracted Dunning’s basis sets, cc-pVXZ(uc), with the high-exponent functions,
followed by the optimization of the added exponents with a variational procedure for the
sum of the absolute values of all four contributions.

Another interesting approach is based on the completeness function [522]. This ap-
proach automatically generates a universal, element-independent exponential set spanning
the desired range with a completeness profile as close to unity as wanted with as few
functions as possible. For magnetic properties, such as SSCCs, this scheme was introduced
by Manninen and Vaara [523], who suggested the optimization procedure for a system-
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atical approach to the complete basis set (CBS) limit using the completeness profile. This
concept was applied to several molecular properties by Lehtola and co-authors in a limited
series of works [524–526]. The completeness-based approach is rarely used and is not fully
investigated in the problem of generating compact J-oriented basis sets.

A completely different approach of generating property-oriented basis sets, named the
property-energy consistent (PEC) approach, was presented by Rusakov and Rusakova [527]
very recently. The PEC method is based on the consistent optimization of the exponents
using the Monte Carlo (MC) simulations [528–530] with respect to the property under
consideration and total molecular energy. The approach was introduced on the example
of generation of pecJ-n (n = 1, 2) basis sets for the FC dominating SSCCs involving the
nuclei of the most popular 1

2 spin NMR isotopes of 1–2 row elements: 1H, 13C, 15N, and 19F.
It was mentioned that the PEC method is aimed at the generation of very efficient small
property-oriented basis sets, which provide more accurate results as compared to the other
property-oriented basis sets of similar sizes, while, for the larger basis sets, the accuracy of
the results is expected to be comparable to that provided by the other property-oriented
commensurate basis sets. The first calculations of SSCCs involving the nuclei 1H, 13C, 15N,
and 19F in a wide row of small molecules, performed with the pecJ-n (n = 1, 2), ccJ-pVXZ
(X = D, T) and pcJ-n (n = 1, 2) basis sets at the CCSD level of theory with taking into
account solvent and vibrational corrections, confirmed the above-mentioned statement. In
particular, the accuracy of 1J(C,C) SSCCs, calculated with the pecJ-1 and pec-2 basis sets
was characterized by the MAPE of 3.1% and 2.6%, respectively, against the experiment.
At the same time, the MAPEs of the theoretical corresponding data, obtained with the
ccJ-pVDZ and pcJ-1 basis sets were found to be approximately 9.8% and 10.6%, and for the
ccJ-pVTZ and pcJ-2 basis sets, these figures occurred to be 3.7% and 2.3%, correspondingly.

4.1.2. Specialized Basic Sets for Calculating NMR Chemical Shifts

For the nuclear shielding constants/chemical shifts, the choice of a basis set is very
much determined by the method used to solve the gauge-origin problem. When using
different methods for solving the gauge-origin problem (IGLO, LORG, GIAO, CTOCD),
the convergence of NMR shielding constants, observed within different families of basis
sets, also have to be different. From this side, the issue has not been studied systemati-
cally, but rather, more frequent are the studies on the convergence of shielding constants
calculated using certain families of basis sets within a particular computational proto-
col [62,65,71,469,531,532]. For instance, Helgaker et al. [7] presented a systematical study
on the convergence of nuclear shielding constants in nine simple molecules CH4, NH3,
H2O, SiH4, PH3, H2S, CO2, C2H4, and C2H2 calculated at the GIAO-CPHF level with five
different families of basis sets, namely, the Pople’s basis sets 6-31G, 6-311G with and with-
out polarization and diffuse functions [513,514,533–538], Ahlrich basis sets (Karlsruhe-XZP,
X = D, T, Q) [268,539], basis sets of Schindler and Kutzelnigg (IGLO II, III, IV) [61,62], Wid-
mark basis sets (ANO(Lund)) [540–542], and correlation-consistent basis sets of Dunning,
(aug)cc-pVXZ (X = D, T, Q) [266,495–498] against the GIAO-CPHF CBS limit. The fastest
convergence was demonstrated within the family of IGLO basis sets, with the mean relative
error less than 3% for the two largest representatives of this family, IGLO III, IV. However,
they are not apt for the medium and large molecules due to their large sizes. The important
conclusion made by the authors consists of the following: for an accurate calculation of
nuclear shielding constants, a basis set of at least valence triple-ζ quality and with at
least one set of polarization functions is needed. This conclusion is in accordance with
Carmichael’s observation [543] that, for the reliable calculations of the shielding constants,
there is a need for flexibility in the outer-core inner-valence regions. Basis sets with tightly
contracted core orbitals, such as the correlation-consistent basis sets and the small ANO sets,
have little flexibility in the core region and perform poorly in the calculations of nuclear
shielding constants. In general, just as in the case of SSCCs, standard, energy-optimized,
single-electron basis sets are ineffective for the nuclear shielding constants, since in order
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to approach the CBS limit within the framework of a particular method, it is necessary to
use rather large, non-specialized basis sets.

A real breakthrough in the development of basis sets for nuclear shielding constants
was provided by Jensen, who presented his famous specialized (σ-oriented) basis sets
(aug)-pcS-n and pcSseg-n (n = 0–4) [544,545] for elements of 1–3 periods (H-Ar). He was
guided by the rule that the rate of convergence over the basis set directly depends on
the saturation of p-shell of basis sets. This conclusion was first derived by Jensen [544]
on the basis of a general expression for the paramagnetic contribution to the shielding
tensor, see Equation (8), which, in addition to the matrix elements of the orbital Zeeman
operator, includes the matrix elements of the PSO operator. Therefore, based on the idea
that saturation of the tight p-region of basis sets results in a faster convergence of the PSO
term of the SSCCs, Jensen suggested that the same tendency would also take place in
the case of paramagnetic contributions to the nuclear shielding constants. To confirm the
assumption, Jensen performed a systematic analysis of the convergence of the nuclear
shielding constants calculated within the GIAO-DFT formalism using the B3LYP and KT3
functionals on the standard energetically optimized polarization-consistent uncontracted
basis sets pc-n (n = 0–4), expanded with additional diffuse and tight functions. He showed
that only tight p-functions have a significant effect on the values of the nuclear magnetic
shielding constants. Indeed, this is coherent with his original assumption about the PSO
contribution. Diffuse functions in some cases also have a significant effect, which may be
due to the Zeeman orbital operator or simply to the fact that polar systems with lone electron
pairs require diffuse functions for a correct description. The diamagnetic contributions did
not reveal any additional requirements for basis sets. Jensen has found that additional tight
p-functions also affect the shielding constants of light s-block nuclei, though to a much
lesser extent than the shielding constants of p-block elements. However, when creating
pcS-n basis sets, he added one tight p-type function to the pc-n basis sets of all the elements,
for the sake of systematic improvement.

To determine the optimal parameters for the additional tight p-type functions, Jensen
used an optimization procedure similar to that used when creating his J-oriented basis sets,
which consisted in maximizing the deviation of the NMR shielding constants relative to
the value obtained with the pc-n basis sets. The contraction of the pcS-n basis sets was
carried out in accordance with the general contraction scheme [546], using atomic orbital
coefficients, and the contraction rate was determined based on the criterion according to
which the contraction error should not exceed the error of the decontracted basis set relative
to the CBS limit. The pcSseg-n series proposed by Jensen [545] also represents a family of
σ-oriented, segmented-contracted basis sets for the elements H-Ar and K-Kr optimized for
calculating NMR shielding constants. In general, both series are suitable not only for the
DFT calculations, but also for the calculations within the framework of correlated wave
function methods.

At the moment, there are no more specialized σ-oriented basis sets obtained at the
nonrelativistic level, however, a publication has recently appeared in which, for the first
time, the segmented-contracted relativistic basis sets x2c-SVPall-s and x2c-TZVPall-s were
presented for the calculations of NMR shielding constants [547] of almost all nuclei: H-Rn,
La-Lu. These sets were developed on the basis of relativistic Karlsruhe basis sets x2c-XVPall
(X = S, TZ) [548]. The property-tailored basis sets, x2c-SVPall-s and x2c-TZVPall-s, were
constructed in several steps focusing on the valence and the core region. At first, errors in
the valence region of the existing all-electron relativistic Karlsruhe basis sets with respect
to the reference even-tempered basis set (with a factor of 101/4 between its exponents)
were determined for a large set of more than 250 molecules. For the heavy elements,
functions with larger exponents were added to flexibilize the description of the density
in the outer-core region. The exponents were optimized in several cycles reducing the
mean absolute error in the NMR shielding constants. To improve the description of the
inner-most shells, tight p functions were introduced, namely a single additional p function
was added for each element. Therefore, the exponent of the inner-most primitive function
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of the parent x2c-SVPall or x2c-TZVPall sets was scaled with a factor of 6.5 and the outer-
most primitive was excluded from the segment and utilized as augmenting function to
increase the flexibility. The contraction coefficients of the new segment were re-optimized
at the X2C level of theory in atomic calculations resorting to quasi-Newton algorithm based
on the variational principle. The x2c-SVPall-s and x2c-TZVPall-s basis sets were further
compared to the segmented-contracted Jensen’s basis sets pcSseg-n (n = 0–4) based on the
percent-wise error [545] measured against the large reference even-tempered basis set.

4.2. Vibrational Corrections

The molecular rotational and vibrational motions determine both the vibrational
spectrum and the vibrationally averaged molecular properties. Even at the temperature of
absolute zero, the molecules have the so-called zero-point vibrations (ZPV), which affect
the NMR properties. Many approaches were developed for taking into account vibrational
effects on molecular properties. Among the most important methodologies are those
which use the perturbation expansions to obtain vibrational frequencies and vibrationally
averaged molecular properties [549–580] and those which resort to a conceptually different
variational approach [581–586].

The most effective approach for the calculation of the vibrational wavefunction and
zero-point vibrational corrections to molecular properties of polyatomic molecules was
presented by Ruud, Åstrand, and Taylor [587,588]. This was implemented into the Dalton
program package [589], which provides an efficient automated procedure for calculating
the rovibrationally averaged molecular geometries and a large number of second-order
molecular properties, including the NMR shieldings and SSCCs, using the SCF and MCSCF
wave functions. A brief description of the approach introduced by Ruud, Åstrand, and
Taylor, is presented further.

To take into account the effect of vibrations on a specific property P, it is necessary to
average the property over the vibrational wave function Ψ:

< P >=
〈Ψ|P|Ψ〉
〈Ψ|Ψ〉 . (105)

The property P is expanded in a Taylor series around an arbitrary expansion point rexp
as follows:

P(q1, q2, . . . , qN) = ∑
m

Pm = P(0)
exp +

N

∑
i=1

P(1)
exp,iqi +

1
2

N

∑
i,j=1

P(2)
exp,ijqiqj + . . . , (106)

where qi is a mass-weighted displacement of the nuclei from the expansion geometry along
the normal coordinate i (qi = ri − rexp,i), and N is the number of normal coordinates, namely,
3K–6 in general case, or 3K–5 for linear molecules, with K being the number of atoms in
the molecule. P(n)

exp,i1,i2,...,in represents the nth derivative of the property at the expansion

point with respect to normal coordinates; P(0)
exp is the property at the expansion point.

To find the vibrational wave function Ψ, a standard Rayleigh–Schrödinger vibrational
perturbation theory is applied. The vibrational perturbation theory uses the harmonic
oscillator Hamiltonian as the zeroth-order Hamiltonian. The latter represents the sum of
the nuclear kinetic energy operator and the quadratic term of the potential energy surface
expansion in terms of deviations qi:

H(0) =
1
2

N

∑
i=1

[
− ∂2

∂2qi
+ V(2)

exp,iiq
2
i

]
, (107)
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where V(2)
ii is the second derivative of the potential with respect to the normal coordinates

at the expansion point. The remaining terms of the expansion of the potential can be
considered as perturbations to H(0):

H(1) =
N

∑
i=1

V(1)
exp,iqi +

1
6∑

ijk
V(3)

exp,ijkqiqjqk, (108)

H(2) =
1
24

N

∑
ijkl=1

V(4)
exp,ijklqiqjqkql . (109)

The Hamiltonian for the harmonic oscillator H(0) has the eigenvalues:

E(0) =
N

∑
i=1

[
ni +

1
2

]
ωi, ωi =

√
V(2)

ii , (110)

and the corresponding eigenfunctions are the products of Hermite polynomials:

Ψ(0) =
N

∏
i=1

ψni =
N

∏
i=1

Nni Hni (ξi)e−
1
2 ξ2

i , ξi =
√

ωiqi. (111)

The Rayleigh–Schrödinger perturbation theory gives the corrections E(n) and Ψ(n)

to E(0) and Ψ(0). In the first order, E(1) = <Ψ(0)|H(1)| Ψ(0)> equals to zero, as H(1) (see
Equation (108)) contains only the odd terms with respect to at least one geometrical dis-
placement qi. The second-order energy can be regarded as an energy functional:

Ẽ(2) =
〈

Ψ(0)
∣∣∣H(2)

∣∣∣Ψ(0)
〉
+ 2
〈

Ψ(0)
∣∣∣H(1) − E(1)

∣∣∣Ψ̃(1)〉
+
〈

Ψ̃
(1)
∣∣∣H(0) − E(0)

∣∣∣Ψ̃(1)〉
, (112)

where
∣∣∣Ψ̃(1)〉

is the trial function, which can be expressed in the harmonic oscillator
eigenfunctions as follows:

Ψ̃
(1)

=
N

∑
i=1

∞

∑
r=1

a(1)r,i φr,i +
N

∑
i,j=1;i 6=j

∞

∑
r,s=1

b(1)rs,ijφrs,ij +
N

∑
i,j,k=1;i 6=j 6=k

∞

∑
r,s,t=1

c(1)rst,ijkφrst,ijk, (113)

with φrs...t,ij...k = ψr,iψs,j . . . ψt,k, i 6= j 6= k.
Taking into account the expansions for P and Ψ, the averaged molecular property

(Equation (105)) is expressed as a power series with formal perturbational parameter λ:

〈P〉 = ∑
mn

〈
P(n)

m

〉
= ∑

mn

[
∞

∑
k=0

〈
λkΨ(k)

∣∣∣Pm

∣∣∣λn−kΨ(n−k)
〉]
×
[

1 +
∞

∑
m=1

∞

∑
l=1

(−1)m
〈

λlΨ(l)
∣∣∣λlΨ(l)

〉m
]

. (114)

The leading term of the normalization factor of the wave function in Equation (114)
is noted to contribute to the second order in λ, thus the zeroth- and first-order terms in
property expansion are read as follows:

〈
P(0)

〉
exp

= P(0)
exp +

1
4

N

∑
i=1

P(2)
exp,ii

ωi
, (115)

〈
P(1)

〉
exp

=
〈

P(1)
1

〉
exp

+
〈

P(1)
3

〉
exp

+ . . . , (116)

where
〈

P(1)
1

〉
exp

and
〈

P(1)
3

〉
exp

represent the summations of the products of the first and

third derivatives of the property P, correspondingly, with respect to the normal coordinates
with the coefficients from the expansion of Equation (113) and someωi-depending multipli-
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ers (for the exact equation, see [587]). Thus, in the second-order of vibrational perturbation
theory, the ZPV correction to a property can be written as [590,591]:

∆ZPV P =
1
4

N

∑
i=1

1
ωi

P(2)
exp,ii−

1
4

N

∑
i=1

1
ω2

i
P(1)

exp,i

N

∑
j=1

V(3)
exp,ijj

ωj
, (117)

where V(3)
exp,ijj = Fexp,ijj are the semi-diagonal cubic force constants at the expansion point.

Ruud, Åstrand, and Taylor proposed to use the effective geometry as the expansion
point. An effective geometry is chosen such as to minimize the energy functional:

Ẽ(0) = V(0)
exp +

〈
Ψ̃
(0)
∣∣∣H(0)

∣∣∣Ψ̃(0)〉
. (118)

At the effective geometry the gradient of Ẽ(0) is zero, and the differentiation of the
right-hand side of Equation (118) with respect to the expansion point gives the following
relationship at the effective geometry:

V(0)
eff,i +

1
4

N

∑
j=1

V(3)
eff,ijj

ωj
= 0. (119)

In this case,
〈

P(1)
1

〉
exp
≡
〈

P(1)
1

〉
eff

= 0, because of the condition (119).

The major contribution to the zero point vibrationally averaged property from the
anharmonicity of the potential as calculated at the equilibrium geometry thus vanishes
when the effective geometry is used as an expansion point. The vibrational correction to a
molecular property P from zero-point vibrational motion (ZPV) can be calculated from the
zeroth-order vibrational wave function as follows:

〈P〉0,0 =
(

P0
eff − P0

e

)
+

1
4

N

∑
i=1

P(2)
eff,ii

ωi
, (120)

where P0
e f f and P0

e designate the property calculated at the effective and equilibrium ge-
ometry, respectively. For the nonzero temperatures, the vibrational averaging includes the
excited states of the vibrational wave function involving the averaging over the vibrational
states of the molecule with the Boltzmann distribution. Equation (120) does not imply
that there is no anharmonicity of the potential included in the calculation of vibrationally
averaged properties. Instead, the anharmonicity is included through the use of the effective
geometry instead of the equilibrium geometry as an expansion point for the vibrational
wave function.

In brief, the complete determination of the ZPVCs can be done in a two-step procedure:
(1) determining the effective (vibrationally averaged) geometry by the calculation of parts
of the cubic force field; (2) at the effective geometry, determine the harmonic force field and
calculate the second derivatives of the molecular properties of interest using the numerical
differentiation along the normal coordinates.

At non-zero temperatures, there is a portion of molecules that are in the excited
vibrational states. In most cases, these are usually neglected. However, temperature
effects can be taken into account by calculating the thermal average of the VPT2-corrected
properties. In the chapter presented by Faber, Sauer, and Kaminský [17] it is said that
the thermal averaging can be performed by applying the Boltzmann distribution. Thus,
the expression, which represents an approximation to the vibrational correction (with



Magnetochemistry 2022, 8, 50 41 of 72

taking into account rotational contributions) at a finite temperature, can be presented as
follows [17]:

∆VPT2P = −1
2∑

i

1
ωi

∂P
∂qi

∣∣∣∣
q=0

(
1
2∑

j
kijjcoth

(hcωj

2kT

)
− kT

2πc

√
1

hcωi
∑
α

aαα
i

Ie
αα

)
+

+
1
4∑

i
coth

(
hcωi
2kT

)
∂2P
∂q2

i

∣∣∣∣∣
q=0

, (121)

where Ie
αα are the diagonal components of the moment of inertia tensor, aαα

i are the linear
expansion coefficient of the moment of inertia in the normal coordinates.

4.2.1. Vibrational Corrections to Spin–Spin Coupling Constants

In some cases, the vibrational corrections to the SSCCs can reach significant val-
ues, since this property has a very strong dependence on the geometry of the molecule.
Therefore, the vibrational corrections are among the most important factors of accuracy
of quantum chemical calculations of SSCCs. In particular, for the SSCCs involving non-
relativistic nuclei, the difference between the theoretical and experimental values is often
explained by unaccounted vibrational corrections, which can reach up to 10% of the total
values of SSCCs [407,592,593].

Within common vibrational perturbation theory, the coupling constant in the vibra-
tional ground state, 〈J〉0 can approximately be calculated from the value at the equilibrium
geometry, Jeq, and zero-point vibrational correction (ZPVC), ∆Jvib, as follows [561,590,591]:

〈J〉0 = Jeq + ∆Jvib = Jeq +

{
−1

4

N

∑
i=1

1
ω2

i
J(1)eq,i

N

∑
j=1

Feq,ijj

ωj
+

1
4

N

∑
i=1

1
ωi

J(2)eq,ii

}
, (122)

where J(1)eq,i and J(2)eq,ii are the first and second derivatives of the coupling constants with
respect to displacements qi; ωi are the harmonic vibrational frequencies, and Feq,ijj are
the semi-diagonal cubic force constants. Thus, the calculation of vibrational corrections
requires the calculation of the geometric derivatives of the potential energy surface and the
SSCCs by nuclear coordinates. This results in the large number of repeated calculations of
the SSCCs for different molecular geometries. In general, this is a very time-consuming
procedure, which requires large computational effort. At that, due to the particular form
of the of the operators representing the interaction between the nuclear spins and the
electronic spin and angular momentum, SSCCs require specialized J-oriented basis sets and
computational approaches that circumvent the triplet instability problems manifesting in
the calculations of the FC and SD contributions. Therefore, the calculation of the vibrational
corrections to the NMR spin–spin coupling constants is generally considered to be more
challenging task than the calculation of those to any other linear response property.

A lot of efforts have been made to take into account the vibrational effects on SSCCs.
In particular, an exceptionally large value of the ZPVC correction of −25 Hz to SSCC of
hydrogen fluoride molecule was calculated by Astrand et al. [594] at the MCSCF level.
Wigglesworth et al. [407] calculated vibrational corrections to SSCCs in acetylene at the
SOPPA(CCSD) level. Stanton and Sneskov [595] performed the calculations of vibrational
corrections to SSCCs of various types in acetylene, ethylene, ethane, and cyclopropane at
the CCSD level of theory. According to their results, the value of the vibrational corrections
ranged from 8 to 32% for the carbon-proton SSCCs and from 1 to 7% for the carbon-carbon
SSCCs of the total values. Kirpekar et al. [596] carried out the calculations of vibrational
corrections to one-bond SSCCs in XH4 molecules (X = C, Si, Ge, Sn) at different temperatures
at the RPA, SOPPA, and CASSCF levels. According to their results, the value of the
vibrational corrections to the considered SSCCs, was found to be about 1–3%, in average,
of the total values of SSCCs. Yachmenev et al. [597] estimated the vibrational corrections to
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nitrogen-proton and proton-proton SSCCs at different temperatures, namely 0 and 300 K,
in ammonia isotopomers. For nitrogen-proton and deuterium-proton SSCCs, it was shown
that the total vibrational corrections are about 0.6% and 5% of the total values, respectively.
The effect of non-zero temperature was found to be insignificant, amounting in hundredths
of Hz. Jordan et al. [598] calculated the vibrational corrections for nitrogen–nitrogen SSCC
through the hydrogen bond in model hydrogen-bonded complex, CNH:NCH. In that paper,
the expectation values of <2J(N,N)>0,vib were obtained from the two-dimensional potential
energy surface for CNaH:NbCH, generated in the Na-H and Nb-H distances at the MP2
level and the global SSCC surface, which was calculated at the EOM-CCSD level of theory.
Despite the fact that only two vibrational modes were considered, the property calculations
were performed for 108 single-point molecular geometries, which illustrates the extremely
high computational cost of the vibrational problem. Del Bene et al. [599] carried out the
calculations of the vibrational effects on the F-F SSCCs (2hJF-F) for the FHF- molecule. The
coupling constant surface was generated at the EOM-CCSD level, and two-dimensional
wavefunctions for the symmetric and asymmetric stretching vibrations were obtained from
the potential energy surface evaluated at the CCSD(T) level of theory. The effect of FHF-

bending mode was also investigated using the one-dimensional calculations along the
bending normal coordinate. In the ground vibrational state, the expectation value of F-F
SSCC, <2hJ(F,F)>0,vib, was found to be 212.7 Hz, which is significantly less, namely, by
41.7 Hz, than that at the equilibrium geometry (254.4 Hz). At the same time, the effect of
the bending mode was found to be unessential, namely, in the ground vibrational state
of the bending mode, the average value of 2hJ(F,F) is 253.2 Hz, which is very similar to
the equilibrium value of 254.4 Hz. This small effect was explained by the large difference
in masses of the hydrogen and fluorine atoms, which leads to the fact that the bending
vibration principally involves the motion of the hydrogen atom, leaving the F-F distance
practically unchanged.

A great deal of computations of vibrational effects on SSCCs were performed within
the density functional theory by the main developers of VPT approach. In particular, Ruden,
Lutnæs, Helgaker, and Ruud [591] investigated the convergence of ZPVCs to various SSCCs
in small molecules (H2, HF, CO, N2, H2O, HCN, NH3, CH4, C2H2) on the basis set at the
DFT(B3LYP) level. They considered two series of Huzinaga basis sets. The first sequence
consisted of the Huzinaga sets HII, HIII, and HIV [503] with the polarization functions
and contraction patterns of van Wüllen and Kutzelnigg et al. [600], and the second series
included the Huzinaga’s basis sets, possessing enlarged flexibility in the inner core region,
namely the HX-sun basis sets (X = II, n = 2; X = III, n =3; X = IV, n = 4). They have
found that the HIV-su4 basis set gives the vibrational corrections close to the CBS limit,
achievable within the DFT model. Therefore, it was recommended to use the HIV-su4
basis set only in very precise calculations of vibrational corrections to SSCCs in very small
systems. At the same time, smaller basis sets such as HIII-su3, also give very good accuracy,
therefore, it was recommended to use them in the routine calculations of vibrational effects
on the SSCCs of larger systems. The ZPVCs obtained in ref. [591] were compared with
those calculated in previous works [404,405,407,412,592,594,601–603]. It was found that
the DFT vibrational corrections are in good agreement with those calculated using the
other correlated non-empirical methods, except for two cases of striking differences—the
1JNN in N2 and 3JHH in C2H2. Although the obtained B3LYP results turned out to be
close to experiment, the authors did not attach much significance to this fact since, for the
particular systems, the B3LYP might predict much too low equilibrium coupling constants.
In general, it is well known that restricted Kohn–Sham theory is known to manifest the
triplet instability problem [316], which leads to an unbalanced description of the ground
state and the most important excited states of a given symmetry, thus, providing a poor
description of the molecular property of interest that depends on these states. In the case of
SSCCs, the triplet instability results in incorrect calculation of the SD and FC terms (which
are the triplet second-order properties) and may sometimes give an error of several orders
of magnitude.
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In the subsequent work, Ruden et al. [604] presented a systematical comparison of
the SSCCs in allene, cyclopropane, cyclopropene and cyclobutene, calculated at different
levels of electronic theory, namely using the CCSD, SOPPA, MCSCF, and DFT(B3LYP)
approaches with taking into account the vibrational corrections, against the experimental
data. The ZPV corrections to the spin–spin coupling constants were calculated at the
B3LYP level of theory, using the theory of Ruden et al. [591]. In the paper by ref. [604], the
Fermi-contact contribution to the ZPV correction was calculated using the HIIsu2 basis set,
whereas the HII basis was used for the other three contributions. Based on the idea that
the spin–spin vibrational corrections are typically of the same order of magnitude as the
differences between theory and experiment, Ruden et al. estimated the accuracies of the
considered methods from the comparison of two types of values: the differences between
the experimental SSCCs and the vibrational corrections and the theoretical values of those
SSCCs computed at different levels of theory. In general, it was found that the effects of
electron correlation are underestimated by MCSCF theory, somewhat better described by
SOPPA, and well described by CCSD theory. Hybrid B3LYP was found to perform as well
as SOPPA for the one-bond coupling constants, while, for the other constants, it provided
results of similar quality as CCSD.

4.2.2. Vibrational Corrections to NMR Shielding Constants

Besides spin–spin coupling constants, nuclear shielding constants are also dependent
on the molecular geometry to a high extent. In general, it has been shown that the effects
of nuclear motion can be as important for the shielding constants as the effects of elec-
tron correlation [407,588,605–607]. For instance, as was shown by Ruud et al. [588], that
the Hartree–Fock value of the nitrogen shielding constant in ammonia is approximately
262 ppm. Taking into account the effects of electron correlation increases this value up to
274 ppm. Taking into account ZPV effects decreases this to 267 ppm. The experimental
value is about 265 ppm. Thus, one can see that the effects of electron correlation and
vibrational degrees of freedom to large extent compensate each other, so that the Hartree–
Fock method applied without taking into account any corrections may seem deceptively
sufficient for an adequate prediction of the nitrogen shielding constants and chemical shifts.

Within the second-order VPT approach, the averaged nuclear shielding constant over
the vibrational ground state, can approximately be presented as follows [590]:

〈σ〉0 = σeq + ∆σvib = σeq +

{
−1

4

N

∑
i=1

1
ω2

i
σ
(1)
eq,i

N

∑
j=1

Feq,ijj

ωj
+

1
4

N

∑
i=1

1
ωi

σ
(2)
eq,ii

}
, (123)

The ZPVCs to the NMR shielding constants of a wide range of NMR-active nuclei
have been studied systematically over the past 40 years [608–614].

Fukui et al. [615] calculated NMR shielding constants in the first- and second-row
hydrides, taking into account the electron correlation effects within the finite-field Møller–
Plesset perturbation theory through the third order (FF-MP2, FF-MP3) and the rovibrational
corrections. For the polyatomic molecules, rotational motions were neglected because of the
earlier finding that the centrifugal distortion due to molecular rotational motions is usually
one order of magnitude smaller than the effect due to anharmonic vibrations [614]. It was
shown that the calculated isotropic shielding constants at the experimental geometries are
higher than the experimental values, but the vibrational corrections are generally negative
and improve the calculated shielding constants.

Sundholm et al. [259] calculated NMR shielding tensors for H2, HF, N2, CO, and F2 at
the coupled cluster singles and doubles level augmented by a perturbative correction for
triple excitations, CCSD(T). The shielding constants for the lowest rovibrational states of
the considered diatomic molecules were obtained by solving the rovibrational Schrödinger
equation with the finite-element techniques followed by evaluating appropriate expectation
values. Temperature effects have been accounted for by applying the Boltzmann averaging.
The total calculated shielding constants were in good agreement with the available exper-
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imental values, except for the F2 molecule. The deviations observed for the F2 molecule
turned out to be about 4 ppm smaller than the experimental value.

Lonila et al. [616] investigated the vibrational and temperature effects on the carbon
and selenium shielding constants in carbon diselenide, CSe2. The shielding tensors of 13C
and 77Se nuclei, with and without taking into account the vibrational and rotational degrees
of freedom, were calculated using several ab initio methods in conjunction with the GIAO
formalism. The results obtained at the CHF, MCSCF (RAS, CAS), and DFT (LDA, BLYP
and BPW91) levels were compared with theoretical data taken from other different sources.
Thus, according to the results, obtained within the CAS and DFT(BPW91) methods, the
vibrational-rotational corrections (T = 300 K) to σ(77Se) in the 77SE=13C=80Se isotopomer
is about 2–2.5% relative to the full values. The vibrational-rotational corrections to the
σ(13C) were found to be about 5.5–6%. Overall, it was found that the effect of rotational
degrees of freedom does not exceed hundredths of a percent of the total value of both
shielding constants. In the particular case of the CSe2 molecule, the authors have come
to a conclusion that taking into account vibrational and rotational degrees of freedom
worsens the agreement of theoretical values with the experiment. This observation has
been explained by the lack of relativistic and solvent corrections.

The effect of hydrogen binding and vibrational motions on the oxygen and hydrogen
nuclear magnetic shielding constants of the OH− and H3O2

− were investigated by means
of ab initio calculations at the RPA and SOPPA levels by Sauer et al. [617]. The effective
shielding constants were obtained by averaging of the property over the rovibrational
wavefunctions, which are the solutions of the one-dimensional radial Schrödinger equation,
solved numerically [618]. The dependence of the nuclear magnetic shielding constants in
H3O2

− on the anharmonic symmetric and antisymmetric O . . . H . . . O stretching motions
and on the internal rotation motion of the outer hydrogens was studied with the non-
rigid bender model Hamiltonian [619] at the RPA level. The dependence of the shielding
constants in OH− on the bond length was investigated at RPA and SOPPA levels. For all
atoms of H3O2

−, with the exception of the outer hydrogen atoms, a strong dependence on
the vibrational quantum number was found for the nuclear magnetic shielding constants.
Namely, the NMR shielding constant of the oxygen atom in H3O2

− and OH− were found
to increase and decrease, respectively, with the vibrational quantum number. For the
hydrogen shielding constants, the opposite behavior was found.

Minaev et al. [620] examined the dependence of the electronic spin–orbit coupling
contribution to the proton shielding constant of hydrogen iodide on the internuclear
distance using the quadratic response theory. The calculations of proton shielding constant
were performed using a complete active space self-consistent field (CASSCF) wavefunction
at different internuclear distances. It was shown that spin–orbit coupling correction to the
1H shielding constant manifests strong dependence on the internuclear separation. The
zero-point vibrationally averaged shielding constant was calculated as the averaged Taylor
series expansion:

σ(H) = σe + σr < r− re >
0 K +

1
2

σrr < (r− re)
2 >0 K, (124)

in terms of the deviation of internuclear distance (bond length, r) from its equilibrium value
re. The first and second derivatives of the shielding constant, σr and σrr were determined
by fitting the fourth-order polynomial to the shielding constants calculated in the bond-
distance interval 1.4–1.8 Å, with points separated by 0.05 Å. The averages of the bond length
extension and its square were calculated using the harmonic and cubic force constants, Frr
and Frrr by fitting the fourth-order polynomial to the total SOC corrected energies. It was
found that the total nonrelativistic vibrationally averaged 1H shielding constant for HI
is slightly increased compared to the value calculated at the equilibrium distance (tenth
of ppm). At that, a heavy atom SOC induced effect was shown to reverse the sign of the
vibrational contribution to the 1H shielding.
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For the H2O molecule, the vibrational effects on nuclear shielding constants were
studied thoroughly [561,574,588,615,621–624]. A pioneering study was performed by
Fowler and Raynes [574], using an empirical force-field with HF shielding surfaces to
obtain a ZPVC of −13.1 ppm to σ(17O) of H2

17O. Then, the correlated study of rovibra-
tional effects on the nuclear shielding constants in the water molecule was performed by
Vaara et al. [625]. The restricted active space self-consistent field (RASSCF) wave function
with large RAS and large basis sets were used to calculate the rovibrational corrections
and the related temperature and isotope dependencies with high accuracy. It was shown
that the rovibrational effects are as important as those of electron correlation. In particular,
the rovibrational corrections were found as 3.7% and 1.8% for the isotropic oxygen and
hydrogen shielding constants, respectively, in the 1H2

17O isotopomer at 300 K. On the basis
of the calculations presented in ref. [625] and the CCSD(T) results of Gauss et al. [259,626],
a new absolute shielding scale for the 17O nucleus was proposed, namely the value of the
oxygen shielding constant of H2

17O isotopomer in the gas phase at 300 K was established
as 324.0 ± 1.5 ppm. Wigglesworth et al. [621] have also performed ab initio calculations of
hydrogen and oxygen shielding surfaces for the water molecule at the MCSCF level. The
rovibrationally averaged shielding constants of the various isotopomers of water and their
temperature dependences were obtained. To determine the relevant coefficients for the
expansions of the σ(H) and σ(O) around the equilibrium geometry in terms of the symmetry
coordinates, describing the displacements from equilibrium geometry, the calculations of
shielding constants at 49 distinct locations on the proton surface and 37 distinct locations
on the oxygen surface were carried out. Wigglesworth et al. obtained ZPVC to σ(17O) of
H2

17O as −9.9 ppm.
The temperature dependences for σ(H) in H2

16O and σ(O) in H2
17O were simulated

as follows:

σ(H) = 30.232− 9.7× 10−5(T − 300) + 4× 10−8(T − 300)2, (125)

σ(O) = 333.723− 1.18× 10−3(T − 300) + 1.7× 10−7(T − 300)2. (126)

An excellent agreement was observed between the shielding surfaces of totally in-
dependent studies of Vaara et al. and Wigglesworth et al. However, the σe(17O) for
equilibrium value occurred to be substantially different. The value of σe(17O) proposed
by Wigglesworth et al. was 333.723 ppm, while that of Vaara et al. was 324.0 ± 1.5 ppm.
Wigglesworth et al. [605] continued the investigation of the rovibrational effects on carbon
and hydrogen NMR shielding constants on example of acetylene molecule. The calculations
were performed at the correlated MCSCF level of theory using gauge-including atomic
orbitals and a large basis set.

Later studies, such as those of Ruud et al. [588], Auer [622], and Kupka et al. [623],
used general approaches based on normal coordinate expansions of the surfaces. The most
thorough study of the nuclear shielding of water was performed by Puzzarini et al. [624] as
an attempt to redefine the absolute shielding scale of 17O. They used the CCSD(T) method
with a large basis set and an accurate numerical description of the vibrational problem to
compute the ZPVC of −11.7 ppm. Komorovsky et al. [627] combined previously published
high-quality experimental spin–rotation data, accurate coupled cluster calculations of Puz-
zarini and personal relativistic four-component Kohn–Sham density functional calculations
of the shielding and spin–rotation constants of H2

17O, and revised the absolute shielding
value for the 17O nucleus of H2

17O as 328.4(3) ppm at 300 K.
Faber et al. [628] have investigated the question of the convergence of zero-point

vibrational corrections to nuclear shielding constants and shielding anisotropies towards
the complete basis set limit on the example of water. The calculations of ZPVCs at the HF,
MP2, CCSD, CCSD(T), and DFT(B3LYP) levels with the cc-pVXZ, aug-cc-pVXZ, cc-pCVXZ,
aug-cc-pCVXZ (X = D, T, Q, 5, 6), and aug-pc-n and aug-pcS-n (n = 1, 2, 3, 4) series of basis
sets were carried out. None of the basis sets exhibited a monotonic convergence for the
ZPVC. Four of the five calculations using varying basis sets series agreed on the final value



Magnetochemistry 2022, 8, 50 46 of 72

of the ZPV correction to σ(1H) and σ(17O), whereas aug-pc-n predicted a slightly smaller
absolute value.

For both, the equilibrium geometry and the vibrationally averaged values of shielding
constants, the basis set convergence, observed when using the non-augmented basis sets,
was rather slow (it was not achieved until the sextuple zeta level). Adding the diffuse
functions significantly accelerated the convergence, so that it was reached already at the
quintuple zeta level. For ZPVC to oxygen shielding constants, it was found that the
convergence is not monotonic in most cases, which means that one cannot accurately
extrapolate this ZPVC to the CBS limit from calculations with smaller basis sets.

The vibrational corrections to 125Te NMR chemical shifts were recently calculated by
Rusakova et al. [629]. In that paper, the main factors affecting the accuracy and compu-
tational cost of the calculation of 125Te NMR chemical shifts in medium-size organotel-
lurium compounds were analyzed at the GIAO−DFT level. The LDBS schemes, relativistic
corrections, solvent effects and vibrational corrections were considered as the primary
accuracy factors.

For the benchmark series of six tellurium compounds, the average relativistic correc-
tions to tellurium chemical shifts were found to be about 22% in relation to their total values.
The solvent and vibrational corrections amounted to 8% and 6%, in average. As can be seen
from Figure 2, the MAPE calculated within the series of six tellurium compounds, gradually
decreases from 24% for the values obtained at the nonrelativistic GIAO-DFT(PBE0) level to
4% for the values obtained at the full four-component relativistic level, with solvent and
vibrational corrections taken into account.
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Figure 2. MAPEs of 125Te NMR chemical shifts of six organotellurium compounds calculated
at the GIAO-PBE0 level, taking into account solvent, relativistic, and vibrational corrections in
comparison with the experiment. Reproduced from Ref. [629] with permission from the American
Chemical Society.

4.3. Solvation Models

The nuclear shielding and spin–spin coupling constants are sensitive to the electronic
structure of a molecule. At the same time, these parameters are also sensitive to the inter-
molecular interactions and solvent effects. It is generally known that spin–spin coupling
constants are less influenced by solvent effects than the nuclear shielding constants. The
solvent effects on SSCCs are usually small, as they hardly exceed a few per cent of the
total value in most cases, while the nuclear shielding constants are extremely sensitive to
the molecular environment, and especially to hydrogen-bonding effects. For producing
high-quality predictions of NMR parameters, it is important to take into account the media



Magnetochemistry 2022, 8, 50 47 of 72

effects during both the geometry optimization and the quantum chemical calculations of
NMR properties. Overall, this increases the precision of modelling of the NMR spectra
and provides a valuable improvement in determining chemical structures, since most
experimental NMR studies take place in solution.

In general, one can discern four distinct contributions to the changes of SSCCs due
to solvent effects. This includes [630]: (1) magnetic shielding of the nuclear spin–spin
coupling by magnetic moments induced in the neighboring molecules by the nuclear
dipoles [631,632], which is proportional to the volume magnetic susceptibility of the so-
lution; (2) contributions arising from intermolecular dispersion effects; (3) the effect of
intermolecular electrostatic interactions, which will have its smallest value for the case of
nonpolar solutes in nonpolar solvents, and have its greatest value for the case in which
both the solute and the solvent are electrolytes; (4) specific interactions between solute and
solvent molecules, such as charge transfer or hydrogen bonding.

The effects of a solvent on nuclear shieldings can also be divided into four different
types [633]: (1) the change in the local magnetic field experienced by the nucleus due
to the isotropic magnetizability of the solvent molecules, which is proportional to the
magnetizability of the solvent; (2) a change in the local magnetic field due to the magnetiz-
ability anisotropy of solvent molecules in the close vicinity; (3) the change in the electronic
structure of the solute due to van der Waals interactions with solvent molecules; (4) the
contribution from the electrostatic polarization of the solute’s charge distribution.

In ab initio calculations, different contributions to solvent corrections to NMR parame-
ters cannot be easily separated and defined, though, some models were presented to study
some of the contributions [634]. Overall, there are no models that ensure the absence of the
overlap between different contributions for now.

The influence of the solvent effects on NMR parameters can be implemented within
the framework of two conceptually different classes of models, according to the microscopic
description of the solvent [635]. The first class comprises the continuum (or implicit) models,
which explicitly treat only the degrees of freedom associated with the solute, while replacing
the solvent with a structureless continuum characterized by its bulk properties. The second
class is the discrete (or explicit) models, which treat degrees of freedom associated with the
solvent molecules and the solute explicitly.

The most popular continuum model is the polarizable continuum model (PCM) [636–638]
and its new version, the integral equation formalism PCM, IEF-PCM [639–643]. In the polar-
izable continuum model, the solvent is represented by a homogeneous continuum medium,
which is polarized by the solute placed in a cavity built in the dielectric medium. From
basic electrostatics, it is known that the response of a homogeneous dielectric continuum
to any charge distribution of the solute produces the charge distribution on the cavity
surface, arising from the polarization of the dielectric medium. The main problem consists
in the calculation of the screening charge density on the cavity surface. For the arbitrarily
shaped surfaces, this cannot be determined by analytical means, and different numerical
approaches are needed. For spherical and ellipsoidal cavities, the screening charge density
can be found analytically, in particular, within the Onsager model [644]. The PCM method
assumes that the solute charge density is entirely encapsulated in the cavity, however, this
is often not the case, and the electron distributions often extend beyond the cavity. The
IEF-PCM performs well in this respect, in contrast to the PCM model. Computational mod-
eling of the solvent–solute effect on NMR molecular parameters by polarizable continuum
model was thoroughly reviewed by Sadlej and Pecul [645].

The conductor-like screening model, COSMO [646–649], is another popular repre-
sentative of the class of continuum models. This is an approximate, but very accurate,
non-iterative approach for the solution of equation on the screening charge density for
arbitrarily shaped cavities. This calculates the dielectric screening charges and energies
on the van der Waals-like molecular surface in the approximation of a conductor (the di-
electric permittivity (ε) is set to infinity), which is highly accurate and much more efficient
compared to the solution of the dielectric boundary conditions. This formalism is to some
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extent similar to the approach of Hoshi et al. [650], which is based on the Green’s function
and allows one to express the screening charge distribution as a linear function of the solute
charge distribution. However, in contrast to Hoshi model, the COSMO algorithm leads to
rather simple explicit expressions for the screening energy and its analytic gradient with
respect to the solute coordinates. The COSMO algorithm was modified to the COSMO-RS
(COSMO for realistic solvents) [651] model, which takes into account the ability of the
solvent to screen the surface charge on the cavity of the solute. Moreover, it has become
possible to take into account the solvent effects via the cluster approach in the COSMO
model, i.e., to treat the first solvation shell explicitly at the same level of theory as the solute
on the ad hoc basis.

Another continuum-like model is the reaction-field method [652–655], also known as
the multipole-expansion MPE method [656,657]. In MPE method, the atom, molecule, or
supermolecule is assumed to be surrounded by a linear, homogeneous, cand ontinuous
medium described by its macroscopic dielectric constant. A spherical or ellipsoidal [658]
cavity is used for the solute and the interaction with the medium is calculated by a multi-
polar expansion. In general, the reaction-field method performs worse than the IEF-PCM
method, most likely because of the less realistic cavity shape than what is adopted in the
IEF-PCM.

A purely continuum description might fail in some cases, especially when specific
solute–solvent interactions take place. In general, it is believed that reaction field (or contin-
uum) methods provide an effective description of the long-range electrostatic interactions,
while specific short-range interactions can be effectively described by the discrete mod-
els [635]. A supermolecule approach belongs to the discrete-type models. It treats the solute
molecule in the surrounding of a number of explicitly treated solvent molecules. Within
the supermolecule approach, it is possible to perform the thermodynamic averaging by a
molecular dynamical (MD) or random Monte Carlo (MC) sampling of the relevant states.
However, such calculations are still very time-consuming, even on the fastest computers,
but they benefit considerably from the present trend to parallel computing.

Alternatively, quantum mechanics/molecular mechanics (QM/MM) methodologies [659–679]
treat the chemically important part of the system with a quantum mechanical approach, while
the rest part is treated with standard molecular mechanics, using molecular force field.
Most QM/MM methods describe interactions between the QM molecular system and the
environment using either the simple mechanical embedding scheme or the more accurate
electrostatic embedding [680]. The regular QM/MM methods aim to derive effective
operators which include the environmental effects in the QM region as opposed to a full
quantum mechanical treatment of the whole system.

For spin–spin coupling constants, most simulations of solvation are carried out by
means of polarizable continuum models. It is believed that the continuum method is, in
principle, more suited for the calculations of solvent effects on the spin–spin coupling
constants than on the shielding constants, since the spin–spin coupling constants depend
primarily on the electron density at the nuclei, which makes them less susceptible to the
specific solvent–solute interactions. Among the most popular models that have been
adopted for taking into account solvent effects on spin–spin coupling constants are the
following: the reaction-field method MPE, the IEF-PCM (integral equation formalism
polarizable continuum model) [640,681], and the COSMO. The implementation of the
QM/MM model to the calculation of the NMR indirect spin–spin coupling constants was
presented by Møgelhøj and co-workers [679] as the extension of the explicitly polarizable
QM/MM model within the density functional theory, although the elaborated theory
is applicable to an arbitrary formalism. However, this complicated model received less
popularity in the calculations of SSCCs by taking into account solvent effects as compared
to the polarizable continuum model.

The PCM model has also become very popular in simulating solvent effects on nuclear
magnetic shielding constants, despite the fact that the nuclear magnetic shielding tensors
are much more sensitive to the local environment than SSCCs, especially when there are
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specific intermolecular interactions such as hydrogen bonding or charge transfer. The
theory of polarizable continuum for the gauge invariant atomic orbital (GIAO) calculation
of nuclear magnetic shieldings for solvated molecules was presented by Cammi [682].

The QM/MM approaches have also received much popularity in calculations of nu-
clear magnetic shielding constants accounting for the solvent effects. One of the examples
of the application of the QM/MM approach to the calculation of NMR shielding tensor
of any nuclei was presented by Cui and Karplus [683]. In their approach, the solute and
a number of solvent molecules (“solute-solvent cluster”) were described with QM/MM,
while the bulk solvent was treated with the IEF-PCM model. Both the MM atoms, repre-
sented by fixed partial charges, and the QM atoms, were contained in a generalized cavity
embedded in the continuum. It was concluded that an appropriate QM/MM partition is
capable of giving good descriptions of the environmental effects on chemical shift tensors.
Kongsted et al. [678] also presented a gauge-origin independent hybrid quantum mechan-
ics/molecular mechanics model for the calculation of nuclear magnetic shielding tensors
of molecules placed in a structured and polarizable environment. The method is based
on a combination of DFT or Hartree–Fock wave functions with molecular mechanics. The
proposed method complies with the main requirements for an accurate calculation of the
nuclear magnetic shielding constants: (1) it includes electron correlation effects, (2) uses
gauge-including atomic orbitals to give gauge-origin independent results, and (3) the effect
of the environment is treated self-consistently using a discrete reaction-field methodology.

The formulation of the four-component relativistic Hartree–Fock and Kohn–Sham the-
ories for a molecular solute described within the framework of the polarizable continuum
model has been presented by Di Remigio et al. [684]. The linear response function for the
four-component PCM-SCF state was derived, allowing the four-component calculations
of the NMR parameters, by taking into account the solvent effects within the PCM model.
The algorithm was implemented into the DIRAC program package [366].
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