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Abstract: Two dinuclear complexes [M2(H2L)2](ClO4)4·2MeCN (M = Co for Co2 and Fe for Fe2)
were synthesized using a symmetric hydrazone ligand with the metal ions in an N6 coordination
environment. The crystal structures and magnetic properties were determined by single-crystal
X-ray diffraction and magnetic susceptibility measurements. The crystal structure study revealed
that the spin centers were all in the high-spin state with a distorted octahedron (Oh) geometry.
Dynamic magnetic properties measurements revealed that complex Co2 exhibited field-induced
single-molecule magnet properties with two-step relaxation in which the fast relaxation path was
from QTM and the slow relaxation path from the thermal relaxation under an applied field.

Keywords: cobalt complex; octahedron geometry; hydrazone ligand; field-induced SMM; double
relaxation

1. Introduction

Since the discovery of the first single-molecule magnet (SMM) Mn12 cluster [1], re-
search on SMMs has aroused interest among the scientific community due to the fact of
their potential applications such as high-density information storage, quantum comput-
ing, and spintronics [2–12]. Subsequently, a large number of SMMs based on transition
mental [13–17], lanthanide [18–25], and mixed-metal ions [26–31] have been designed and
reported. For SMMs, the combination of a large negative zero-field splitting parameter
(D < 0) or strong uniaxial magnetic anisotropy (gz) and large spin ground state (S) could
result in an SMM with a large effective energy barrier (Ueff) [32]. The energy barrier
can be calculated by Ueff = |D|S2 or |D|(S2 − 1/4) for integer and half-integer spin,
respectively [33].

For transition metal complexes, crystal field splitting is much stronger than spin-orbit
coupling; therefore, the orbital angular momentum is almost completely quenched [34].
However, the zero-field splitting parameter is usually only several dozens of wavenumbers
for transition metals, and most of the complexes based on 3d ions are field-induced single-
molecule magnets, especially in the presence of quantum tunneling of magnetization
(QTM) [35–37]. The divalent cobalt ion is in the d7 configuration, and there is an important
orbital contribution to the magnetization. The coordination number of CoII ions ranges
from two coordination to eight coordination with different coordination geometries [38–44].
As a result, the CoII ion is a good candidate for the construction of SMMs due to the fact
of its magnetic anisotropy. Up to now, numerous SMMs based on CoII ions have been
reported [45–48].

By reducing the coordination number [49] or regulating the coordinated atoms [50],
it is possible to obtain a relatively weak ligand field and increase the orbital contribution.
However, low-coordination molecular magnets are usually unstable in air. Therefore,
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the design of high-coordination and stable single-molecule magnets has attracted much
attention [41,48]. Herein, we designed and synthesized a symmetrical hydrazone ligand
2,6-bis((E)-(2-(6-(1H-pyrazol-1-yl)pyridin-2-yl)hydrazineylidene)methyl)pyridine (H2L) in
which only nitrogen acts as donor atoms to coordinate with metal ions. Two new dinuclear
complexes [M2(H2L)2](ClO4)4·2MeCN (M = Co for Co2 and Fe for Fe2) were obtained from
the ligand. The crystal structures and magnetic properties were determined by single-
crystal X-ray diffraction and magnetic susceptibility measurements. The spin centers were
all in the high-spin state with a distorted octahedron (Oh) geometry. Importantly, dynamic
magnetic properties measurements revealed that complex Co2 exhibited field-induced
single-molecule magnet properties with two-step relaxation in which the fast relaxation
(FR) path was from the QTM and the slow relaxation (SR) path from the thermal relaxation.

2. Materials and Methods
2.1. Syntheses of Ligand and Complexes

All chemicals and solvents were obtained commercially without further purification.
2-Hydrazineyl-6-(1H-pyrazol-1-yl)pyridine and pyridine-2,6-dicarbaldehyde were syn-
thesized according to the previously reported literature [51,52]. As a caution, the salts
Co(ClO4)2·6H2O and Fe(ClO4)2·6H2O should be used carefully, as they are potentially
explosive.

2.1.1. Synthesis of Ligand H2L

2-Hydrazineyl-6-(1H-pyrazol-1-yl)pyridine (1.75 g, 10 mmol) was added into a so-
lution of pyridine-2,6-dicarbaldehyde (0.67 g, 5 mmol) in ethanol (50 mL). Then, the
reaction mixture was allowed to reflux overnight giving a dark orange solid. After filtering,
the product was washed with ice ethanol and dried in a vacuum, yielding the ligand
2,6-bis((E)-(2-(6-(1H-pyrazol-1-yl)pyridin-2-yl)hydrazineylidene)methyl)pyridine (H2L)
(1.78 g, 79.4%). 1H NMR (400 MHz, DMSO-d6): δ = 11.41 (s, 2H), 8.51–8.49 (m, 2H), 8.14 (s,
2H), 7.96–7.93 (m, 2H), 7.89–7.84 (m, 3H), 7.81 (d, J = 1.0, 2H), 7.35 (d, J = 7.5, 2H), 7.26 (d,
J = 8.1, 2H), and 6.58 (dd, J = 2.5, 1.7, 2H). Selected IR (solid, ATR) ṽ(cm−1): 543 (m), 566
(w), 578 (w), 588 (w), 605 (m), 644 (m), 667 (w), 688 (w), 715 (w), 728 (m), 738 (m), 769 (s),
790 (s), 811 (w), 863 (w), 883 (w), 902 (m), 916 (m), 964 (m), 989 (w), 1047 (m), 1072 (w), 1087
(w), 1130 (m), 1141 (m), 1176 (m), 1253 (m), 1270 (w), 1284 (w), 1321 (m), 1336 (w), 1346 (w),
1392 (m), 1427 (m), 1452 (s), 1508 (s), 1575 (s), 1606 (s), 2954 (w), 3089 (w), and 3317 (w).

2.1.2. Synthesis of Co2

A mixture of H2L (0.1 mmol) and Co(ClO4)2·6H2O (0.1 mmol) in acetonitrile (15 mL)
was stirred for one hour, yielding a dark red clear solution after filtering. Subsequently, the
filtrate was allowed to stand and evaporate for four days to obtain red crystals suitable for
single-crystal X-ray diffraction. Yield: 15.99 mg, (21.36%, based on metal salts). Elemental
analysis calculated for C50H44Cl4Co2N24O16 (%): C, 40.12; H, 2.96; N, 22.46. Found (%): C,
40.08; H, 2.91; N, 22.42.

2.1.3. Synthesis of Fe2

A mixture of H2L (0.1 mmol) and Fe(ClO4)2·6H2O (0.1 mmol) in acetonitrile (15 mL)
was stirred for one hour, yielding a dark red clear solution after filtering. Subsequently, the
filtrate was allowed to stand and evaporate for four days to obtain red crystals suitable for
single-crystal X-ray diffraction. Yield: 13.82 mg, (18.54%, based on metal salts). Elemental
analysis calculated for C50H44Cl4Fe2N24O16 (%): C, 40.29; H, 2.98; N, 22.55. Found (%): C,
40.23; H, 2.91; N, 22.53.

2.2. Physical Measurements

The 1H NMR spectrum of H2L was recorded on a Bruker Avance 400 MHz spectrome-
ter (Bruker, Switzerland, Figure S1). Elemental analyses (i.e., C, H, and N) were measured
on a PerkinElmer 2400 analyzer (PerkinElmer, United States). Fourier transform infrared
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spectrometer (FTIR) spectra were obtained using a Nicolet 6700 Flex FTIR spectrometer
(Thermo Fisher, United States) equipped with a smart iTR attenuated total reflectance (ATR)
sampling accessory (Figures S2 and S3). Powder X-ray diffraction (XRD) measurements
were carried out using a Bruker D8 advance X-ray diffractometer (Bruker AXS GMBH,
Germany) with Cu-Kα radiation.

2.2.1. Crystallography

Single-crystal X-ray diffraction data were collected by the Bruker D8 venture CCD
diffractometer (Bruker AXS GMBH, Germany) using graphite-monochromatized Mo-Kα ra-
diation (λ = 0.71073 Å). In the Olex2 package, the structures were solved using SHELXT [53]
(direct methods), and all non-hydrogen atoms were refined using SHELXL [54] (full-matrix
least squares techniques) on F2 with anisotropic thermal parameters. All hydrogen atoms
were introduced in calculated positions and refined with fixed geometry relative to their
carrier atoms. The crystallographic data for Co2 and Fe2 are listed in Table S1. CCDC
2116748 and 2116749 contain the supplementary crystallographic data for this paper.

2.2.2. Magnetic Measurements

Magnetic measurements were measured by using a Quantum Design MPMS-XL-7
SQUID magnetometer (Quantum Design, United States) equipped with a 7 T magnet.
Susceptibility measurements were carried out on the polycrystalline sample of the two
complexes. In the temperature range 2–300 K, the direct current (dc) susceptibility mea-
surements were obtained under an applied field of 1000 Oe. Diamagnetic corrections were
made with Pascal’s constants [55] for all constituent atoms and the contributions of the
sample holder. The field-dependent magnetizations were obtained in the field range of
0−7 T. In the frequency range of 1–1488 Hz, the alternating current (ac) susceptibility
measurements were obtained in a 3 Oe ac oscillating field under 0 and 3500 Oe dc fields.

3. Results and Discussions
3.1. Structures of Co2 and Fe2

The crystal structures of Co2 and Fe2 were determined by single-crystal X-ray diffrac-
tion at 173 and 180 K, respectively. The two complexes were isostructural; therefore, the
structure of Co2 is described here only. Co2 crystallized in the triclinic space group P1 with
the crystallographic data and refinement details shown in Table S1. The asymmetric unit of
the complex consisted of one neutral ligand H2L, one crystallographically independent
CoII center, two ClO4

− anions, and one MeCN solvent molecule in the lattice. The spin
centers were in the N6 coordination pocket from the two H2L ligands, forming a Co2 core
(Figures 1 and S5). Four perchloride anions crystallized in the crystal lattice to balance the
positive charges.

Figure 1. Crystal structure of the complex Co2. Color code: CoII, orange-red; N, blue. The hydrogen
atoms, counter-ions, and solvent molecules have been omitted for clarity.
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The Co–N bond distances were in the range of 2.05–2.25 Å, which indicates that the
CoII ions were in the high spin (HS) state (Table S2). The coordination geometry of the CoII

center was evaluated by the SHAPE software [56,57] (Figure S4 and Table S3). The coordina-
tion geometry of the CoII ion was closest to an octahedron (Oh) with a CShM value of 5.37.
Such a large value suggests a large distortion of the coordination geometry. For Fe2, the
Fe–N bond distances were in the range of 2.11–2.27 Å, which also indicates that the FeII ions
were in the HS state. The coordination geometry of the FeII ion was closest to an octahedron
(Oh) with a CShM value of 6.34, suggesting a larger distortion of the coordination geometry
than the CoII ion in Co2 (Figure S4 and Table S3). Due to the long coordination bonds,
complex Fe2 did not exhibit spin-crossover properties [58]. As depicted in Figure S5 and
S6, the intramolecular distance and the shortest intermolecular distance between two CoII

ions were 7.45 and 9.01 Å, respectively. The intermolecular interaction could be ignored
because of the relatively long intermolecular distance (9.01 Å) [59], while dinuclear cobalt
complexes with shorter Co···Co distances (3.10–3.11 Å) usually show strong ferromagnetic
interaction with the coupling parameter regulated by changing the ligand field of one CoII

center as well as the effects on the dc magnetic susceptibility [60]. The intramolecular
CoII···CoII ions distance of 7.45 Å probably induced very weak intramolecular interaction
and, thus, played a role in the magnetic properties. The intramolecular and the shortest
intermolecular Fe···Fe distances were 7.47 and 9.05 Å for Fe2, respectively. As shown in
Figure S7, the phase purity of the bulk samples of the two complexes was confirmed by
powder XRD analyses.

3.2. Magnetic Properties of Co2 and Fe2
3.2.1. Static Magnetic Properties of Co2 and Fe2

Direct current magnetic susceptibility measurements were measured on polycrys-
talline samples with a 1000 Oe field in the temperature range of 2–300 K (Figure 2). At
room temperature, the χMT values (χM is molar magnetic susceptibility) were 4.99 and
7.23 cm3Kmol−1 for Co2 and Fe2, respectively. These values were higher than the ex-
pected values for the two spin-only HS ions (CoII, S = 3/2, χMT = 1.875 cm3Kmol−1; FeII,
S = 2, χMT = 3 cm3Kmol−1), which may be due to the existence of orbital contribution.
In low-temperature regions, the χMT values decreased gradually for Co2 and sharply for
Fe2, which probably resulted from the magnetic interaction or zero-field splitting of the
spin center. The temperature-dependent magnetic susceptibility plots were approximately
simulated by using a spin Hamiltonian (Equation (1)) [61,62]:

Ĥ = −2JŜ1Ŝ2 + ∑
{

Di[S2
Z,i − Si(Si + 1)/3] + E[S2

x,i − S2
y,i]
}
+ gµB∑

→
B
→
Si (1)

where J, D, E, g, µB, and B correspond to magnetic exchange, the axial and rhombic
zero-field splitting parameter, Landé factor, Bohr magneton, and magnetic field vector,
respectively. The best fit provided large |D| values of 30 cm−1 and rhombic a parameter E
(E/D = 0.15) for Co2, indicating the presence of magnetic anisotropy, which probably relates
to the large distortion of the coordination geometry. The g values were 2.32, revealing
the presence of orbital contribution. It is worth noting that the sign of D cannot be
determined by the simulation of temperature-dependent magnetic susceptibility plots
but can be further determined by theoretical calculation or EPR measurements [63–65].
In addition, not only CoII complexes with negative D values can exhibit single-molecule
magnet properties [50,62,66,67], but some cobalt complexes with positive D values can also
act as SMMs [68–71]. The two CoII ions were ferromagnetically coupled, with J = 0.08 cm−1.
In contrast, the D values of Fe2 were smaller (|D| = 1.0 cm−1, E/D = 0.2, g = 2.2), suggesting
the possible absence of SMM properties, which is probably because of the difference in the
electron structure. Moreover, the magnetic interaction parameter (J = −0.25 cm−1) was
different from Co2, indicating the presence of weak antiferromagnetic interaction.
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S9); thus, temperature-dependent and frequency-dependent ac susceptibility were then 
carried out under this dc field (Figure 4). In the temperature-dependent out-of-phase (χ”) 
plots, the maximum appeared up to 6.0 K at a frequency of 1488 Hz, suggesting the slow 
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Figure 2. The plots of χMT vs. T of the complexes Co2 (a) and Fe2 (b) (black circles, experimental data; red lines, fits to the
data) between 2 and 300 K at 1000 Oe.

The field-dependent magnetization for Co2 was performed in the range of field 0−7 T
at 1.9, 3.0, and 5.0 K. The magnetization value did not reach saturation value (6.96 µB) at
7 T. The plots of M vs. H/T at various temperatures were non-superimposable, suggesting
the presence of magnetic anisotropy (Figure 3).
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Figure 3. Field-dependent molar magnetization measurements for Co2 at 1.9, 3.0, and 5.0 K (inset:
the M vs. H/T plots).

3.2.2. Dynamic Magnetic Properties of Co2

To investigate the dynamic magnetic properties, ac susceptibility measurements were
performed on Co2 under various applied dc fields. No out-of-phase (χ”) susceptibilities
signals were observed under a zero dc field (Figure S8), possibly due to the presence of
QTM. We then measured field-dependent ac susceptibility at 1.9 K to determine the optimal
dc field. The peak of out-of-phase (χ”) susceptibilities appealed at 3500 Oe (Figure S9);
thus, temperature-dependent and frequency-dependent ac susceptibility were then carried
out under this dc field (Figure 4). In the temperature-dependent out-of-phase (χ”) plots, the
maximum appeared up to 6.0 K at a frequency of 1488 Hz, suggesting the slow relaxation of
magnetization. In the low-temperature region, an upturning appeared, which is probably
ascribed to QTM. The peaks of frequency-dependent out-of-phase (χ”) susceptibilities
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shifted to high frequency when increasing the temperature, suggesting the typical field-
induced single-molecule magnet properties.
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From the frequency-dependent ac susceptibility data in the temperature region of
1.9–8.0 K, Cole–Cole plots were represented as χ” vs. χ′ and fitted with the double-
relaxation Debye model [72] and CC-FIT program [73] (Figure 5). The Cole–Cole plots
show two semi-circular profiles, suggesting the presence of two-step relaxation. Extracting
the relaxation time from the frequency-dependent susceptibility provided two relaxation
regimes (Table S4). The fast relaxation (FR) path showed typical thermal relaxation, while
the slow relaxation (SR) path was almost temperature-independent, which resulted from
QTM (Figure 6). To analyze the relaxation procedure, the plots of τ vs. T−1 were fitted
using the following equation [74–76]:

1
τ
=

1
τQTM

+ AT + CTn + τ−1
0 exp

(
−Ue f f /T

)
(2)

where 1/τQTM, AT, CTn, and τ0
−1exp(–Ueff/T) correspond to quantum tunneling, direct,

Raman, and Orbach relaxation processes [77,78], respectively. The best fit of the FR path in-
cluded direct, Raman, and Orbach relaxation processes with Ueff = 43 K, τ0 = 1.07 × 10−7 s,
A = 432, C = 1.72 × 10−12 s−1·K−n, n = 3. The quantum tunneling relaxation time of the SR
path was linearly fitted for the τ versus 1/T plot, giving τQTM = 0.14 s.
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Figure 5. Cole–Cole plots for Co2 under a 3500 Oe dc field in the temperature range of 1.9–8.0 K. The
red lines represent the best fits.
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The effective barrier obtained from the fitting above (approximately 43 K) for the FR
path was much lower than the energy level 2|D| = 60 cm−1. Therefore, we ignored the
Orbach relaxation process and fitted the FR path with Equation (3) (where 1/τQTM, AT,
and CTn correspond to quantum tunneling, direct, and Raman relaxation processes) for
the whole temperature region (Figure 7). The best fit gives τQTM = 1.48 × 10−3 s, A = 124,
C = 0.106 s−1·K−n, and n = 6.3.

1
τ
=

1
τQTM

+ AT + CTn (3)
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Figure 7. Plots of τ vs. T–1 for Co2 obtained under 3500 Oe dc fields. The red lines represent the best
fits using Equation (3).

4. Conclusions

In conclusion, we successfully designed and synthesized two dinuclear complexes,
Co2 and Fe2, using a symmetric hydrazone ligand with the metal ions in an N6 coordination
environment. The crystal structures of the two complexes revealed that the spin centers
were in the N6 coordinated environment with a distorted octahedron (Oh) geometry. The
analysis of the crystal structures and the dc susceptibility measurements indicated that
the spin centers were in the high-spin state. Dynamic magnetic properties measurements
revealed that complex Co2 exhibited field-induced single-molecule magnet properties due
to the magnetic anisotropy of CoII ions. The complex exhibited two-step relaxation with
the FR and SR paths resulting from QTM and thermal relaxation, respectively. This work
may open a new opportunity for the design of dinuclear 3d-SMMs based on octahedron
coordination geometry.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/magnetochemistry7120153/s1, Figure S1: 1H-NMR spectrum of H2L in DMSO-d6 at room
temperature; Figure S2: IR spectrum of H2L; Figure S3: IR spectra of the complexes Co2 (blue
curve) and Fe2 (red curve); Figure S4: Coordination polyhedrons of CoII (left) and FeII (right) in the
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