Article

Relationship Between the Coordination Geometry and Spin Dynamics of Dysprosium(III) Heteroleptic Triple-Decker Complexes

Tetsu Sato ⁴, Satoshi Matsuzawa ², Keiichi Katoh ^{4,*}, Brian K. Breedlove ⁴ and Masahiro Yamashita ^{1,3,4,*}

- ¹ School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
- ² Institute for Materials Research, Tohoku University, 2–1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan; matsuzawa@imr.tohoku.ac.jp
- ³ Advanced Institute for Materials Research, Tohoku University, 2–1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- ⁴ Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan; tetsu.sato.r1@dc.tohoku.ac.jp (T.S.); breedlove@m.tohoku.ac.jp (B.K.B.)
- * Correspondence: keiichi.katoh.b3@tohoku.ac.jp (K.K.); yamasita@agnus.chem.tohoku.ac.jp (M.Y.), Tel: +81-22-795-6547 (K.K.), +81-22-795-6544 (M.Y.)

Table of Contents

•	ESI-MS data for 1: Figure S1, S2 ···································
•	ESI-MS data for 2 : Figure S3, S4
•	IR spectra for 1 and 2: Figure S57
•	UV-vis-NIR spectra for 1 and 2 : Figure S6
•	Selected crystallographic data for 1 and 2: Table S19
•	Selected crystallographic data for 1 and 2: Table S210
•	PXRD patterns for 1 and 2: Figure S711
•	Curie-Weiss plots ($1/\chi_M$ versus <i>T</i>) for 1 and 2 : Figure S8, S912
•	Frequency (ν) and temperature (T) dependences of ac magnetic susceptibilities of 1 in a
	0 kOe field: Figure S10
•	Frequency (ν) and temperature (T) dependences of ac magnetic susceptibilities of 2 in a
	0 kOe field: Figure S11
•	Frequency (ν) and temperature (T) dependences of ac magnetic susceptibilities of 1 in a
	1.3 kOe field: Figure S12
•	Frequency (ν) and temperature (T) dependences of ac magnetic susceptibilities of 2 in a
	2 kOe field: Figure S1314
•	אַא''/אָא' versus <i>T</i> (2.5–4 K) plot for 1 : Figure S14 ·····15
•	אַמ'/אָמ' versus <i>T</i> (2.5–4 K) plot for 2 : Figure S15 15
•	Extended Debye model: Eqn. S1–3
•	Argand plots (χ_M " versus χ_M) for 1 at 1.8 K: Figure S16 17

•	Argand plots (χ_M " versus χ_M) for 2 at 1.8 K: Figure S17 17
•	The equation for Arrhenius plot: Table S3
•	Argand plots (χ ^M versus χ ^M) for 1 in 1.3 kOe: Figure S18
•	Argand plots (χ_M " versus χ_M) for 2 in 2 kOe: Figure S19
•	The equation for Arrhenius plot: Table S4 20

Figure S1. ESI-MS spectrum of 1 in CHCl₃. The peak at 2062.47242 corresponds to [M-1⁺].

Figure S2. Experimental (top) and simulated (bottom) ESI-MS spectra of **1** in CHCl₃. The peak at 2062.47242 corresponds to [M-1⁺].

Figure S3. ESI-MS spectrum of 2 in CHCl₃. The peak at 1962.38956 corresponds to [M⁺].

Figure S4. Experimental (top) and simulated (bottom) ESI-MS spectra of **2** in CHCl₃. The peak at 1962.38956 corresponds to [M⁺].

Figure S5. IR spectrum for 1 (top) and 2 (bottom) by using an ATR method at 298 K.

Figure S6. UV-vis-NIR spectra for **1** (top) and **2** (bottom) in CHCl₃ (5.1×10^{-3} (**1**), and 4.7×10^{-3} (**2**)) at 298 K.

	1	2
	$C_{124}H_{72}N_{16}Cl_{12}Dy_2$	$C_{110}H_{62}N_{20}Cl_6Dy_2$
T/K	100	100
Crystal system	tetragonal	monoclinic
Space group	<i>I</i> 4/ <i>m</i>	$P 2_1/c$
<i>a</i> / Å	14.2765(3)	13.7898(4)
b∕ Å	14.2765(3)	27.5804(8)
c/ Å	25.6718(9)	23.5302(7)
α/ deg.	90 [°]	90 [°]
β / deg.	90 [°]	98.541(3)
γ/ deg.	90 [°]	90 [°]
<i>V</i> / Å ³	5232.39	8850.0(5)
Z	2	4
$R_1(I > 2s(I))$	0.0346	0.0612
wR_2 (all)	0.0822	0.1254
GOF	1.127	1.032

Table S1. Selected crystallographic data for 1 and 2

	1	2
1 st short contact (Å) (complex and complex)	2.889 (Cl1H18)	2.817 (C02GC03B)
1 st short contact (Å) (complex and CHCl ₃)	2.690 (C9H20)	2.574 (H53N10)
2 nd short contact (Å) (complex and CHCl ₃)	3.175 (Cl3H20)	2.891 (Cl03H9)

Table S2. Selected crystallographic data for 1 and 2

Short contacts in the crystal for 1 (top) and 2 (bottom)

Figure S7. PXRD patterns for 1 (top) and 2 (bottom).

Figure S8. Curie-Weiss plot for **1**. Linear approximation is performed over the entire *T* range, from which the values of Curie constant (*C*) (28.50 cm³ K mol⁻¹) and Weiss constant (θ) (–2.33 K) were obtained.

Figure S9. Curie-Weiss plot for **2**. Linear approximation is performed over the entire *T* range, from which the values of Curie constant (*C*) (28.20 cm³ K mol⁻¹) and Weiss constant (θ) (–1.97 K) were obtained.

Figure S10 Frequency (ν) and temperature (*T*) dependences of the (**a**) in-phase (χ ^M) and (**b**) out-of-phase (χ ^M) ac magnetic susceptibilities of **1** in 0 kOe.

Figure S11 Frequency (ν) and temperature (*T*) dependences of the (**a**) in-phase (χ ^M) and (**b**) out-of-phase (χ ^M) ac magnetic susceptibilities of **2** in 0 kOe.

Figure S12 Frequency (ν) and temperature (*T*) dependences of the (**a**) in-phase (χ ^M) and (**b**) out-of-phase (χ ^M) ac magnetic susceptibilities of **1** in 1.3 kOe.

Figure S13 Frequency (ν) and temperature (*T*) dependences of the (**a**) in-phase (χ ^M) and (**b**) out-of-phase (χ ^M) ac magnetic susceptibilities of **2** in 2 kOe.

Figure S14 $\chi {\mbox{\sc m}}^{\prime\prime}/\chi {\mbox{\sc m}}^{\prime}$ versus T (2.5–4 K) plot for 1

Figure S15 χ M''/ χ M' versus *T* (2.5–4 K) plot for **2**

The extended Debye model [1] (eqn. S1–S3)

The real (χ_M') and imaginary parts (χ_M'') of the ac magnetic susceptibilities are given by eqns. S2 and S3, respectively.

$$\chi_{\text{total}}(\omega) = \chi_{S} + (\chi_{T} - \chi_{S}) \left[\frac{\beta}{1 + (i\omega\tau_{1})^{1-\alpha_{1}}} + \frac{1-\beta}{1 + (i\omega\tau_{2})^{1-\alpha_{2}}} \right]$$
(S1)

$$\chi'(\omega) = \chi_{S} + (\chi_{T} - \chi_{S}) \left\{ \frac{\beta [1 + (i\omega\tau_{1})^{1-\alpha_{1}} \sin(\pi\alpha_{1}/2)]}{1 + 2(\omega\tau_{1})^{1-\alpha_{1}} \sin(\pi\alpha_{1}/2) + (\omega\tau_{1})^{2-2\alpha_{1}}} + \frac{(1-\beta) [1 + (i\omega\tau_{2})^{1-\alpha_{2}} \sin(\pi\alpha_{2}/2)]}{1 + 2(\omega\tau_{2})^{1-\alpha_{2}} \sin(\pi\alpha_{2}/2) + (\omega\tau_{2})^{2-2\alpha_{2}}} \right\}$$
(S2)

$$\chi' \quad (\omega) = (\chi_T - \chi_S) \left[\frac{\beta(\omega\tau_1)^{1-\alpha_1} \cos(\pi\alpha_1/2)}{1 + 2(\omega\tau_1)^{1-\alpha_1} \sin(\pi\alpha/2) + (\omega\tau_1)^{2-2\alpha_1}} + \frac{(1-\beta)(\omega\tau_2)^{1-\alpha_2} \cos(\pi\alpha_2/2)}{1 + 2(\omega\tau_2)^{1-\alpha} \sin(\pi\alpha_2/2) + (\omega\tau_2)^{2-2\alpha_2}} \right]$$
(S3)

Figure S16. Argand plots (χ M["] versus χ M[']) for **1** at 1.8 K in several dc magnetic fields (0-5 kOe). Black solid lines were guides for eye.

Figure S17. Argand plots (χ_M " versus χ_M ') for **2** at 1.8 K in several dc magnetic fields in the range of 0–5 kOe. Black solid lines were guides for eye.

The equation for fitting the Arrhenius plot

In H/τ plot, the contributions of the spin lattice relaxation and QTM processes were included the following eqn. 1

	$A[S^{-1}K^{-1}]$	n	B 1	B ₂	$D[S^{-1}]$
1 (Low ν)	1.69	0	3.36	0.260	0
1 (High <i>v</i>)	2.98×10^{3}	2.81	2.84×10^{10}	8.29×10^{6}	0
2 (Low ν)	0	-	3.45	3.90	1.35
2 (High <i>v</i>)	0	-	0	-	5.97×10^{3}

Table S3. Parameters for fitting the τ verses *H* plots

Figure S18. Argand plots (χ M["] versus χ M[']) for **1** in 1.3 kOe in the *T* range of 1.8–4.5 K. Black solid lines are guides for the eye.

Figure S19. Argand plots (χ M["] versus χ M[']) for **1** in 2 kOe field in the *T* range of 1.8–4.5 K. Black solid lines are guides for the eye.

The equation for Arrhenius plot

In τ verses *T* plot, contribution of each spin lattice relaxation and QTM process were assigned with following eqn.5

	$A[S^{-1}K^{-1}]$	n	C $[S^{-1}K^{-m}]$	т	$ au_{ ext{QTM}}^{-1}$ [s]
1 (Low ν)	0	-	0	-	0.161
1 (High v)	2.98×10^{3}	2.57	30.6	9	1.77×10^{22}
2 (Low v)	2.84×10^{10}	1.71	0	-	0
2 (High <i>v</i>)	0	-	0	-	2.84×10^{10}

Table S4. Parameters of fitting for τ verses *T* plot

References

- Katoh, K.; Kajiwara, T.; Nakano, M.; Nakazawa, Y.; Wernsdorfer, W.; Ishikawa, N.; Breedlove, B.K.; Yamashita, M. Magnetic relaxation of single-molecule magnets in an external magnetic field: An ising dimer of a terbium(III)-phthalocyaninate triple-decker complex. *Chem. - A Eur. J.* 2011, *17*, 117–122.
- Ding, Y.S.; Yu, K.X.; Reta, D.; Ortu, F.; Winpenny, R.E.P.; Zheng, Y.Z.; Chilton, N.F. Field- and temperature-dependent quantum tunnelling of the magnetisation in a large barrier single-molecule magnet. *Nat. Commun.* 2018, *9*, 1–10.
- 3. Liu, J.L.; Chen, Y.C.; Tong, M.L. Symmetry strategies for high performance lanthanide-based single-molecule magnets. *Chem. Soc. Rev.* **2018**, 47, 2431–2453.