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Abstract: A method is proposed to extend the zero-temperature Hall-Klemm microscopic theory
of the Knight shift K in an anisotropic and correlated, multi-band metal to calculate K(T) at finite
temperatures T both above and into its superconducting state. The transverse part of the magnetic
induction B(t) = B0 +B1(t) causes adiabatic changes suitable for treatment with the Keldysh contour
formalism and analytic continuation onto the real axis. We propose that the Keldysh-modified version
of the Gor’kov method can be used to evaluate K(T) at high B0 both in the normal state, and by
quantizing the conduction electrons or holes with Landau orbits arising from B0, also in the entire
superconducting regime for an anisotropic, multiband Type-II BCS superconductor. Although the
details have not yet been calculated in detail, it appears that this approach could lead to the simple
result KS(T) ≈ a(B0) − b(B0)|∆(B0, T)|2, where 2|∆(B0, T)| is the effective superconducting gap.
More generally, this approach can lead to analytic expressions for KS(T) for anisotropic, multiband
Type-II superconductors of various orbital symmetries that could aid in the interpretation of
experimental data on unconventional superconductors.

Keywords: Knight shift; Type-II superconductor; nuclear magnetic resonance; anisotropy;
electron correlations

1. Introduction

In nuclear magnetic resonance (NMR) measurements of a nuclear spin, there is a difference
between the resonance frequency of that spin when it is in a metal from when it is in vacuum or in an
insulator. This is known as the Knight shift [1]. Although the temperature T dependence of the Knight
shift in a superconductor KS(T) has long been considered to be a probe of the spin state of the paired
electrons [2–4], the only theoretical basis for that assumption was the 1958 Yosida model that assumed
the probed nuclear spins could be entirely neglected [5], and that the only quantity of interest was
the T dependence of the zero-magnetic-field H limit of the electron spin susceptibility of an isotropic
and uncorrelated Type-I superconductor [5]. This led for a BCS singlet-pair-spin superconductor to
KS(T) ∝ x/(1 + x), where x = (β/∆) d∆

dβ , β = 1/T, ∆(T) is one-half the BCS energy gap, and we set
kB = 1, so that KS(T)→ 0 as T → 0, unlike most experimental results [5].

For isotropic Type-I superconductors in the Meissner state, crushing the sample to a powder of
crystallites the cross-sections of which were less than the magnetic penetration depth was usually
found to provide a reasonable method for that conventional theory to be applicable [2–4]. In the first
years following the BCS theory, a few elemental transition metal superconductors were found to behave
somewhat differently, as KS(T) did not vanish as T → 0 [6], and it was thought that surface impurity
spin-orbit scattering could explain the near-cancelation of KS(0) in transition metals [6,7]. However,
surface impurity spin-orbit scattering could not explain the observed non-vanishing KS(0) results
observed in clean materials. It is now understood that there is also a component to the Knight shift
due to the orbital motion of the electrons in a superconductor, and for an anisotropic superconductor,
this orbital contribution to the Knight shift depends upon the magnetic induction B direction.
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There have since been many examples of unexplained behaviors of the Knight shift in exotic
superconductors. Since one possibility of a T-independent Knight shift result would be a parallel-spin,
triplet pair-spin superconducting state, the use of the Knight shift has been considered to be a principal
tool for the identification of a triplet pair-spin state. Some examples of triplet-pair-spin or some
other types of exotic behavior claimed to exist in unusual materials based upon the unconventional
Knight shift T-dependence are listed in the bibliography [8–14]. However, one of those materials
was a quasi-one-dimensional organic superconductor [10,11], some examples of which often exhibit
spin-density waves [15], and another was the very dirty sodium cobaltate hydrate material [12–14].
In the latter example, the upper critical field parallel to that layered compound is Pauli-limited,
which normally only occurs when the magnetic field breaks the oppositely-oriented pair spins [16,17].
Since dirt drastically suppresses p-wave superconductivity [18], the sodium cobaltate hydrate Knight
shift results, if correct, are likely to arise from some other mechanism.

Moreover, in highly anisotropic Type-II superconductors, such as the cuprates and heavy fermion
materials, other significant breakdowns in the Yosida theory have been found to exist. In the first
Knight shift measurements on the cuprate YBa2Cu3O7−δ, Bennett et al. found that the Yosida theory
appeared to work for the 63Cu spins in the CuO chains for all applied H directions, although the
orbital contributions are different for each of those three orthogonal H directions, and it also appeared
to work well for the 63Cu spins in the CuO2 planes when the strong constant H was applied parallel
to the CuO2 layers. However, when H was applied normal to the CuO2 layers, no T dependence
to the Knight shift was observed in that cuprate [19]. This result was later described by Slichter as
possibly being due to a “fortuitous” cancelation of the effect from an isolated planar 63Cu spin by
its interaction with its near-neighbor planar 63Cu spins [20]. Subsequently, in a number of layered
correlated superconductors, the T dependence of the Knight shift probes of the nuclear spins in
the layers with the field applied normal to the layers has been observed to vary strongly with field
strength, approaching a constant KS(T) in the large normal field strength limit, as first observed by
Bennett et al. [19–24].

Especially in the case of Sr2RuO4, numerous Knight shift measurements of the 17O, 99Ru, 101Ru,
and 87Sr have all led to temperature-independent Knight shift measurements [25–27], as did polarized
neutron scattering experiments [28]. These experiments were all interpreted as evidence for a
parallel-spin pair state in that material. However, several upper critical field measurements with the
field parallel to the layers showed strong Pauli limiting effects [29,30], which is inconsistent with a
parallel-spin pair state[31,32]. In addition, the fact that T-independent Knight shift measurements
were obtained for the field both parallel and perpendicular to the RuO2 layers is incompatible with any
of the crystal point-group-compatible p-wave states. Thus, the only way for a T-independent Knight
shift to legitimately arise from a parallel-pair-spin state in both field directions is for the d-vector
(the vector describing the components of the three triplet spin states) to rotate with the magnetic
field [33,34]. This argument was used to show that while the upper critical field of Sr2RuO4 is strongly
Pauli limited for the field applied parallel to the layers, it could possibly be consistent with one or
more p-wave helical states, provided that the d-vector is allowed to rotate freely with the magnetic
field direction [32]. This means that spin-orbit coupling with the lattice would have to be negligible.
However, there is strong evidence that spin-orbit coupling in Sr2RuO4 is very strong at some points on
the Fermi surface, ruling out such d-vector rotation possibilities[35]. More worrisome for the Knight
shift measurement results is the fact that carefully performed scanning tunneling measurements of
the electronic density of states provided very strong evidence of a nodeless superconducting order
parameter orbital symmetry in Sr2RuO4 [17,36], consistent with a nearly isotropic gap function that
is essentially identical on all three of its Fermi surfaces. Since the theories behind the Pauli limiting
effects and the BCS gap density of states are very well established, but the Knight shift measurement
interpretations rely entirely on the complete neglect of the probed nuclear spins, the development of
a microscopic theory of the T dependence of the Knight shift in anisotropic and correlated Type-II
superconductors is sorely needed.
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We further note that the time dependence of a spin-1/2 particle in a classic magnetic resonance
experiment is now a textbook example of an exactly soluble first quantization quantum mechanics
problem giving rise to a Berry phase [37,38]. In that case, the Berry, or geometric, phase is a combination
of the resonance profile with the frequency of the oscillatory transverse applied magnetic field.
In higher spin I systems, there are 2I combinations of those two quantities, giving rise to a multiplet of
Berry phases, as discussed in the following. Note that the probed nuclear spins of Sr2RuO4 are either
5/2 or 9/2. Since nothing was known about the Berry phase in 1958, its possible implications for the
interpretation of Knight shift measurements have been generally and perhaps completely ignored in
the literature.

In fairness to the pioneering work of Yosida [5], there have been a few cases in which a complete
lack of any T-dependence to the Knight shift has been confirmed by other experiments consistent
with a parallel-pair-spin superconducting state [39–41]. These are for the uranium-based compounds
UCoGe and UPt3, for which the T-independent Knight shift in UCoGe is in agreement with the
general assessment of the upper critical field and muon depolarization experiments [18,40]. In UPt3,
the seeming incompatibility of the Knight shift and the upper critical field appears to have been
resolved by polarized neutron diffraction experiments [41], favoring a parallel-spin pair state in all
three superconducting phases. In the ferromagnetic superconductors UGe2, UCoGe, and URhGe,
the weak Ising-like ferromagnetism appears to allow for a parallel-spin, p-wave superconducting order
parameter in the plane perpendicular to the ferromagnetism, but the Knight shift measurements have
not yet been made on URhGe and UGe2, the latter of which is only superconducting under pressure.
In these three ferromagnetic superconductors, there is at least a plausible mechanism for a parallel-spin
pair superconducting state, and in URhGe the upper critical field fits the predictions for all three crystal
axis directions of a parallel-spin p-wave polar state fixed to the crystal a-axis direction normal to the
c-axis Ising ferromagnetic order [40,42], and there is a reentrant, high field phase that violates the Pauli
limit by a factor of 20 [40]. In order to obtain further evidence that the classic Yosida interpretation
of a T-independent KS(T) can correctly imply a parallel-spin superconducting state, we urge that
73Ge, with a strong nuclear moment, (or possibly 103Rh, with a much weaker nuclear moment) KS(T)
measurements on URhGe be carefully performed in the low-field superconducting phase.

2. The Model

The first microscopic model of the Knight shift at T = 0 in anisotropic and correlated metals
was recently presented by Hall and Klemm [43]. This model assumed that the applied magnetic
fields probe the nuclear spins, and the spins of the electrons orbiting the nucleus interact with the
nucleus via the hyperfine interaction in the form of a diagonal D tensor with two distinct components
Dx = Dy 6= Dz. The assumption Dx = Dy was made to simplify the calculations, as discussed in more
detail in the following. After interacting with the nuclear spins, the orbital electrons can be excited into
one of multiple bands, each of which was assumed to have an ellipsoidal Fermi surface of arbitrary
anisotropy and shape. The orbital motion of the electrons in each of these bands was constrained by
the strong, time-independent part B0 of the magnetic induction B(t) to be in Landau levels, and the
electron spins also could interact weakly with B0. It was found that the self-energy due to Dz led to
the Knight shift, and that due to Dx = Dy led to the first formulas for the linewidth changes associated
with the Knight shift at T = 0. However, since those calculations were made at T = 0, they could not
be used to probe the superconducting state. In the following, a method is proposed to do so.

Following Haug and Jauho [44], we write the Hamiltonian as H = H0 + Hint + H′(t),
where H0 +Hint is the time-independent part and H′(t) is the time-dependent part due to the
oscillatory (or pulsed) magnetic field transverse to the constant applied magnetic field H0, and the
time-independent part consists of the simple (or exactly soluble) part H0 and the interaction part
Hint that involves the interactions between the particles that must be treated perturbatively. In the
case at hand, there are four types of particles: (1) the nuclear spins probed in the NMR experiment,
which are assumed to have the general spin I 6= 0 with (2I + 1) substates denoted mI ; (2) the local
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orbital electrons surrounding each of the nuclei probed in the NMR experiment; (3) the conduction
electrons or holes that propagate from the local nuclei throughout the metal/superconductor; and (4)
the superconducting Cooper pairs of electrons or holes. We note that complicated materials such as
Sr2RuO4 contain multiple Fermi surfaces, which can be a mix of electron and hole Fermi surfaces.
In this model, we do not account for competing ferromagnetism or charge-density wave (CDW)
or spin-density wave (SDW) formation, at least one of which is normally present in the transition
metal dichalcogenides, the organic layered superconductors, the cuprates, the iron pnictides, and the
ferromagnetic superconductors. Such competing effects will be the subjects of future studies.

2.1. The Simple HamiltonianH0

Since in an NMR experiment, the applied magnetic field can be applied in any direction,
we assume the resulting constant magnetic induction B0 = B0(sin θ cos φ, sin θ sin φ, cos θ) = B0r̂
with respect to the crystalline Cartesian x, y, z axes. We then quantize the spins along B0. We thus write

H0 = Hn,0 +He,0 +Hcond,0 , (1)

where

Hn,0 = −ωn ∑
i,mI

mI a†
i,mI

ai,mI
, (2)

He,0 = ∑
i,q,σ

[εq − σωe/2]b†
i,q,σbi,q,σ , (3)

Hcond,0 = ∑
j,σ

∫
d3rjψ

†
j,σ(rj)

( 3

∑
ν=1

1
2mj,ν

[∇j,ν/i− eAj,ν(rj)]
2 − σω′j,e/2

)
ψj,σ(rj) , (4)

where e is the electronic charge, a†
i,mI

creates a nucleus of spin I in the subspin state mI = −I,−I +
1, . . . , I − 1, I at the atomic position i, b†

i,q,σ creates an electron with energy εq and spin-1/2 eigenstates
indexed by σ = ±1 orbiting that nucleus at site i, where q ∈ (n, `, m) is nominally its weak-spin-orbit
local electron orbital quantum number set [or its fully relativistic set (n, j)], ψ†

j,σ(rj) creates an electron

or hole with spin eigenstate σ = ±1 at position rj in the jth conduction band, ωn = µn · B0, ωe = µe · B0,
ω′j,e = µe · gj · B0 are respectively the Zeeman energies for the probed nucleus, local orbital electrons,
and conduction electrons, respectively, µn is the nuclear magneton for the probed nucleus (the value of
which can be positive or negative), |µe| = µB is the Bohr magneton, gj · B0 defines the quantization
axis direction for the anisotropic but assumed diagonal gj tensor in the jth of the Nb conduction bands
with effective mass mj,ν in the νth spatial direction, Aj,ν(rj) is the νth component of the magnetic vector
potential at the position rj of the conduction electron in the jth band, B0 = ∇j,ν × Aj,ν is the magnetic
induction that is independent of j, ν, and the time t, i =

√
−1, and we set h̄ = 1. Here we use the

previous notation [43], but rearrange the terms in the overall Hamiltonian in order to properly take
account of both the t and T dependencies essential for probing the superconducting state. We note
that for integer or half-integer I, the nuclei would normally be expected to obey Bose-Einstein or
Fermi-Dirac statistics, but since different nuclei correspond to different atoms and do not come in
contact with one another, that statistics is not expected to be an important feature of the Knight shift.
Equation (1) is the extension to arbitrary nuclear spin I of the bare Hamiltonian studied previously,
except thatHcond,0 was the time independent part of HA,2 [43]. We note that for a diagonal gj tensor,

ω′j,e = µBB0[gj,xx sin2 θ cos2 φ + gj,yy sin2 θ sin2 φ + gj,zz cos2 θ]1/2. (5)

As a starting point, we assume B0 is uniform in the probed material, but when the material goes
into the superconducting state, and B0 is in an arbitrary direction with respect to the crystal axes,
this is only true at the upper critical field Hc2 above which the superconductor becomes a normal
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metal [17,45]. However, in the mixed state for which the time-independent part of the applied magnetic
field H0 satisfies Hc1 < H0 < Hc2, if H0 is along a crystal axis, the direction of B0 is the same as the
direction of H0 [17,46].

2.2. The Time-Independent Interaction HamiltonianHint

We write the time-independent interaction partHi of the Hamiltonian as

Hint = Hh f +He,int +He,cond +Hsc , (6)

where

Hh f = −Dz

4 ∑
i,q,σ,mI

mIσa†
i,mI

ai,mI
b†

i,q,σbi,q,σ −
Dx

2 ∑
i,q,σ,mI

Aσ
I,mI

a†
i,mI+σai,mI

b†
i,q,−σbi,q,σ , (7)

He,int =
1
2 ∑

i,q,σ
Uqn̂i,q,σn̂i,q,−σ = ∑

i,q
Uqb†

i,q,↑bi,q,↑b
†
i,q,↓bi,q,↓, (8)

He,cond = ∑
i,q,j,σ

∫
d3rj

(
νi,q,jψ

†
j,σ(rj)bi,q,σ + H.c.

)
δ(3)(rj − ri) , (9)

where Aσ
I,mI

=
√

I(I + 1)−mI(mI + σ), and depending upon what is calculated, the superconducting
pairing interaction may be written either in real space as

Hpos
sc =

1
2 ∑

j,j′ ,σ,σ′

∫
d3rj

∫
d3r′j′ψ

†
j,σ(rj)ψ

†
j′ ,σ′(r

′
j′)Vj,j′ ;σ,σ′(rj − r′j′)ψj′ ,σ′(r

′
j′)ψj,σ(rj) , (10)

or in momentum space as

Hmom
sc =

1
2 ∑

j,j′ ,σ,σ′

∫ d3kj

(2π)3

∫ d3k′j′
(2π)3 ψ†

j,σ(kj)ψ
†
j′ ,σ′(k

′
j′)Vj,j′ ;σ,σ′(kj − k′j′)ψj′ ,σ′(k

′
j′)ψj,σ(kj) . (11)

Although it appears at first sight to be easier to extend the calculation of the Knight shift
into the BCS superconducting state by using Hpos

sc in order to include the Zeeman terms,
we have included the momentum-space pairing interaction Hmom

sc for p-wave superconductors
in magnetic fields [18,42], for which the simplest single-band parallel-spin pairing interaction
Vj,j′ ;σ,σ′(kj − k′j′) = −V0δj,j′δj,1δσ,σ′k1 · k′1 [18], and a modification of Hmom

sc more naturally treats the
pairing of conduction electrons (or holes) in the presence of a strong B0.

We note that σ = ±1 present in Aσ
I,mI

corresponds to the correct matrix elements for raising and
lowering the mI value and also corresponds to our description of the spin-1/2 electron spins [43].
Of course, mI and σ are restricted by −I ≤ mI , mI + σ ≤ I. The first three of these terms were
presented previously [43], except for a slightly different normalization factor proportional to Nb,
and respectively represent the hyperfine interaction between the nuclear and surrounding orbital
electrons, the effective local electron correlation interaction, and the effective Anderson interaction
that allows an orbital electron to leave a local atomic site and jump into a conduction band [47].
The last term Hsc is responsible for superconducting pairing, and in the form presented allows for
pairing between electrons or holes in different bands and with either the same (σ′ = σ) or different
(σ′ = −σ) spins. In most superconductors, interband pairing is generally considered to be less
important than is intraband pairing, but such complications might be important in cases such as
Sr2RuO4, for which two of the bands are nearly identical. For standard BCS pairing, we would have
Vσ,σ′(rj − r′j′) → −V0δσ′ ,−σδj,j′δ

(3)(rj − r′j), at least in the standard approximation. For parallel-spin
p-wave superconductors, one cannot assume the paired electrons are at the same location, but different
approximations have been found to give reliable results for the upper critical induction in ferromagnetic
superconductors [18,32,42,48,49].
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2.3. The Time-Dependent HamiltonianH′(t)
The crucial part of a magnetic resonance experiment arises from the time-dependent

field transverse to the stronger constant magnetic field. In a conventional NMR experiment,
the time-dependent induction B1(t) oscillates in the plane normal to the strong, constant magnetic
induction B0. For B0 = B0(sin θ cos φ, sin θ sin φ, cos θ) = B0r̂, one may then write
B1(t) = B1{cos[ω0(t− t0)]θ̂− sin[ω0(t− t0)]φ̂}, where θ̂ = (cos θ cos φ, cos θ sin φ,− sin θ) and
φ̂ = (− sin φ, cos φ, 0) in the same Cartesian coordinates, and in order not to get confused with the
time contours, we may choose B1(t0) to be along θ̂. This is the classic way to obtain a resonance in the
power spectrum associated with flipping an electron or proton spin from up to down, or in a spin I
nucleus, to obtain a regular pattern of resonance frequencies associated with changes in the multiple
Zeeman-like nuclear spin levels. Since one generally takes B1 � B0, this classic case is generally
adiabatic [37,38], and is the simplest case to treat analytically.

For the above classic NMR case of a single angular frequency ω0 in B1(t), we then have

H′(t) = H′n(t) +H′e(t) +H′cond(t) , (12)

H′n(t) = −Ωn

2 ∑
i,mI ,σ

eiσω0(t−t0)Aσ
I,mI

a†
i,mI+σai,mI

, (13)

H′e(t) = −Ωe

2 ∑
i,σ

eiσω0(t−t0)b†
i,σbi,−σ , (14)

H′cond(t) = −1
2 ∑

j,σ
eiσω0(t−t0)

∫
d3rjψ

†
j,σ(rj)Ω′j,eψj,−σ(rj) , (15)

where Ωn = µnB1, Ωe = µeB1, and Ω′j,e = µe · gj · B1, and Aσ
I,mI

is given by Equation (11) [43].

3. The Keldysh Contours

Following Haug and Jauho [44] and with regard to the contours, Rammer and Smith [50], we may
treat the time and temperature dependence of the particles together in the same formulas, as long
as we properly order the time integrations around the appropriate contours. When there is only one
type of particle, which we take to be a fermion, the fields at the three-dimensional positions r1 and r1′

evolve in time according to the simple Hamiltonian H0,

ψH0
(r1, t1) ≡ ψH0

(1) = eiH0t1 ψ(r1)e−iH0t1 , (16)

ψ†
H0

(r1′ , t1′) ≡ ψ†
H0

(1′) = eiH0t1′ψ†(r1′)e
−iH0t1′ , (17)

with its density matrix also involving only H0 (and the number operator N̂ in the grand canonical
ensemble statistics),

ρ̂0 =
e−β(H0−µN̂ )

Tr[e−β(H0−µN̂ )]
, (18)

and the Green function is given by the two contour integration paths C and Cint sketched in Figure 1,

G(1, 1′) = −i
Tr
{

ρ̂0TC
[
SCintS ′CψH0

(1)ψ†
H0

(1′)
]}

Tr
[
TC(SCintS ′C)

] , (19)

S ′C = exp
[
−i
∫

C
dτH′H0

(τ)
]
, (20)

SCint = exp
[
−i
∫

Cint

dτHint,H0(τ)
]
, (21)
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where the operators inH′H0
(τ) andHint,H0(τ) evolve in time via the easily soluble HamiltonianH0.

The Greek letter τ implies that one needs to consider it as being just above or just below the real axis
until the contours merge into one. Roman lettering (t) indicates the integrals are on the real axis.

C t0 

t1 

t1’ 

Cint t0 

t1 

t1’ 

t0 - i  

Figure 1. (a) Sketch of the “closed path” contour C; (b) Sketch of the “interaction” contour Cint.

For the case of the time-dependent HamiltonianH′(t) making adiabatic changes, as in the case
considered here, the two contours C and Cint respectively shown in Figure 1a,b merge into contour C
shown in Figure 1a. We use the standard short-hand notation

G(1, 1′) = −i〈TC[ψH(1)ψ†
H(1

′)]〉, (22)

where the particle type, its position, and its energy are still undefined. In order to treat the various
time orderings on the contour C, we define the following in the Heisenberg representation for the full
HamiltonianH,

G>(1, 1′) = −i〈ψH(1)ψ†
H(1

′)〉, (23)

G<(1, 1′) = +i〈ψ†
H(1

′)ψH(1)〉, (24)

GC(1, 1′) = −i〈T[ψH(1)ψ†
H(1

′)]〉 = Θ(t1 − t1′)G
>(1, 1′) + Θ(t1′ − t1)G<(1, 1′), (25)

GC̃(1, 1′) = −i〈T̃[ψH(1)ψ†
H(1

′)]〉 = Θ(t1 − t1′)G
<(1, 1′) + Θ(t1′ − t1)G>(1, 1′), (26)

where the ordinary time-ordering operator T and inverse-time-ordering operator T̃ describe
opposite directions in time, as sketched by lines C1 and C2 in Figure 2. We note
that GC(1, 1′) + GC̃(1, 1) = G<(1, 1′) + G>(1, 1′), so only three of these Green functions are
linearly independent.

C1  

C2

 

Figure 2. Sketch of the Keldysh contour CK .

Here we need to describe three particles, all of which are effectively fermions.

3.1. Bare Nuclear Contour Green Functions

We first consider the nuclei, which are assumed not to interact with one another, as they are fixed
in the crystalline locations, which if there is more than one isotope of a particular type with spin I,
may be at a random selection of crystalline sites. In the presence of the constant magnetic induction
B0, it can be in any one of the 2I + 1 manifold of nuclear Zeeman states, but because each of these local
states at the probed nuclear site i can be either unoccupied or singly occupied, this manifold of local
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nuclear spin states is precisely that of a fermion with (2I + 1) states. Its occupancy in the local state mI
on site i in the grand canonical ensemble is therefore easily seen to be

〈n̂n
i,mI
〉 =

1

eβ(εmI−µncp) + 1
, (27)

where εmI = −ωnmI and µncp is the nuclear chemical potential. We then have for the bare nuclear
Green functions withH = H0,n,

G(0,n),<
i,i′ ;mI ,m′I

(1, 1′) = +iδi,i′δmI ,m′I
eiεmI (t1−t1′ )〈n̂n

i,mI
〉, (28)

G(0,n),>
i,i′ ;mI ,m′I

(1, 1′) = −iδi,i′δmI ,m′I
eiεmI (t1−t1′ )[1− 〈n̂n

i,mI
〉], (29)

and G(0,n),C
i,i′ ;mI ,m′I

(1, 1′), G(0,n),C̃
i,i′ ;mI ,m′I

(1, 1′) are constructed from these according to Equations (25) and (26).
There are only three distinct bare neutron Green functions. This is also true when interactions are
included [44]. Although it is somewhat surprising that the nuclear occupation density has the Fermi
function form even for integral spin I, this is due to the nuclear Zeeman magnetic level occupancy
being either 0 or 1 for each level on a given probed nuclear site.

3.2. Bare Orbital Electron Contour Green Functions

For the surrounding orbital electrons, we assume that the magnetic induction B0 + B1(t) is
sufficiently weak that it does not change the electronic structure of the orbital electrons or lead to
transitions between the orbital electron states and energy levels. Thus, we assume that it only interacts
with the orbital electron spins. We note that this is expected to be a good approximation, as the total
charge of the nucleus plus its orbital electrons is on the order of one electron charge (for an ion), and the
mass of the ion is so large that any Landau levels describing the orbital electrons and their central
nucleus is completely negligible in comparison with the Landau levels of the conduction electrons.
The only point then to consider for the interaction of B0 with the orbital electrons is that there can be
either 0, 1, or 2 electrons in a given orbital energy εq, and two possible magnetic energies for up and
down spins. Hence, it is elementary to show that the average orbital electron occupation number in
the grand canonical ensemble is

〈n̂e
i,q,σ〉 =

1

eβ(εq−σωe/2−µecp) + 1
, (30)

where µecp is the orbital electron chemical potential. It is then easy to show that the bare orbital electron
Green functions are

G(0,e),<
i,i′ ;q,q′

σ,σ′
(1, 1′) = +iδi,i′δq,q′δσ,σ′ e

i(εq−σωe/2)(t1−t1′ )〈n̂e
i,q,σ〉, (31)

G(0,e),>
i,i′ ;q,q′

σ,σ′
(1, 1′) = −iδi,i′δq,q′δσ,σ′ e

i(εq−σωe/2)(t1−t1′ )[1− 〈n̂e
i,q,σ〉], (32)

and the time-ordered and inverse-time-ordered bare orbital electron Green functions are obtained
analogously using Equations (25) and (26). Only three of the bare orbital electron Green functions are
linearly independent. This is also true when interactions are included [44].

3.3. Bare Conduction Electron Contour Green Functions

In a normal metal (above the superconducting transition of all superconductors including the
cuprates and the record high transition temperature superconductor hydrogen sulfide, which probably
transforms to H3S under the 155 GPa pressure that causes it to become superconducting at 203 K [51]),
the conduction electrons or holes propagate throughout the metal with wave vectors on or nearly
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on one or more Fermi surfaces. Both the spins and the charges of the conduction electrons interact
with B0, the spins via the Zeeman interaction and the charges couple to the magnetic vector potential,
leading to Landau orbits. Here we assume each of these potentially multiple Fermi surfaces has an
ellipsoidal shape, but the shapes and orientations of each of the Fermi surfaces can be different from
one another.

We first use the Klemm-Clem transformations to transform each of the ellipsoidal conduction
electron band dispersions into spherical forms [43,45]. For each ellipsoidal band, the anisotropic
scale transformation that preserves the Maxwell equation ∇ · B0 = 0 transforms the elliptical Fermi
surface into a spherical one, but rotates the transformed induction differently in each band. Then, one
rotates these bands so that the rotated induction is along the z direction in each band [43]. In the jth
band, the conduction electrons behave as free particles with wave vector k j,|| along the transformed
ẑ direction, but propagate in Landau orbits indexed by the harmonic oscillator quantum number nj.
Thus, we need to requantize the conduction electron fields as ψ̃j,nj ,σ(k j,||).

We therefore rewrite the transformed H̃cond,0 as

H̃cond,0 = ∑
j,σ

gL,j

∞

∑
nj=0

∫ dk j,||
2π

ψ̃†
j,nj ,σ(k j,||)[ε j(nj, k j,||)− σω̃′j,e/2]ψ̃j,nj ,σ(k j,||), (33)

ε j(nj, k̃ j,||) =
k̃2

j,||
2mjα

2
j
+

(nj + 1/2)eB0αj

mj
, (34)

ω̃′j,e = µBB0β j(θ, φ), (35)

where nj = 0, 1, 2, . . . are the two-dimensional simple harmonic oscillator quantum numbers of the
Landau orbits for band j, k j,|| are the free-particle dispersions along the transformed induction direction,

αj(θ, φ) = [mj,1 sin2 θ cos2 φ + mj,2 sin2 θ sin2 φ + mj,3 cos2 θ]1/2, (36)

mj = (mj,1mj,2mj,3)
1/3, (37)

mj,ν =
mj,ν

mj
, (38)

β j(θ, φ) = [g2
j,xxmj,1 sin2 θ cos2 φ + g2

j,yymj,2 sin2 θ sin2 φ + g2
j,zzmj,3 cos2 θ]1/2, (39)

for a diagonal gj tensor describing the spins of the jth conduction band, and

gL,j =
eB0αj

2π
(40)

is the spatially-transformed Landau degeneracy for a single electron in the jth band. We may then
write the conduction electron occupation number as

〈n̂cond
j,k̃j,||,nj ,σ

〉 =
1

eβ[ε j(nj ,k̃j,||)−σω̃′j,e/2−µcond,cp] + 1
, (41)

where µcond,cp is the chemical potential of the conduction electrons. We note that all of the bands that
cross this conduction electron chemical potential make important contributions to the Knight shift.

The bare conduction electron Green functions can then be found to be
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G(0,cond),<
j,j′ ;k̃j,|| ,k̃′j′ ,|| ;

nj ,n
′
j′ ;σ,σ′

(1, 1′) = +iδj,j′δk̃j,|| ,k̃′j′ ,||
δnj ,n′j′

δσ,σ′gL,je
i[ε j(k̃j,|| ,nj)−σω̃′e/2](t1−t1′ )〈n̂cond

i,k̃j,||,nj ,σ
〉, (42)

G(0,cond),>
j,j′ ;k̃j,|| ,k̃′j′ ,|| ;

nj ,n
′
j′ ;σ,σ′

(1, 1′) = −iδj,j′δk̃j,|| ,k̃′j′ ,||
δnj ,n′j′

δσ,σ′gL,je
i[ε j(k̃j,|| ,nj)−σω̃′e/2](t1−t1′ )[1− 〈n̂cond

i,k̃j,|| ,nj ,σ
〉], (43)

and the contour-ordered and inverse-contour-ordered bare conduction electron Green functions are
obtained as in Equations (25) and (26), so that there are only three independent bare conduction
electron Green functions.

Furthermore, due to the strong B0, we also need to spatially transform all of the other terms in
the Hamiltonian that contain the conduction electrons. Thus, we have [43]

H̃′cond(t) = −1
2 ∑

j,σ
gL,jeiσω0(t−t0)

∞

∑
nj=0

∫ dkj,||
2π

ψ̃†
j,nj ,σ(kj,||)Ω̃

′
j,eψ̃j,nj ,−σ(kj,||), (44)

Ω̃′j,e ≈ µBB1γj(θ, φ), (45)

γj(θ, φ) = [g2
j,xx(mj,2 sin2 θ sin2 φ + mj,3 cos2 θ)

+g2
j,yy(mj,1 sin2 θ cos2 φ + mj,3 cos2 θ) + g2

j,zz(mj,1 cos2 φ + mj,2 sin2 φ)]1/2. (46)

4. Transformations in Time of the Operators with the Bare Hamiltonian

In order to proceed with the perturbation expansions, we first need to transform the nuclear,
orbital electronic, and conduction electronic operators in real time, using the bare Hamiltonian in
Equation (1). For the nuclear and orbital electronic operators, this is elementary. We have

ai,mI
(t) = eiHn,0tai,mI

e−iHn,0t

dai,mI (t)
dt

= i
[
Hn,0, ai,mI

(t)
]

= +iωnmI ai,mI
(t), (47)

and integrating the elementary differential equation, we immediately find

ai,mI
(t) = eiωnmI tai,mI

(0) = eiωnmI(t−t0)ai,mI
(t0), (48)

in order to use this in Equation (16). The quantity a†
i,mI+σ(t) is instantly obtained from the Hermitian

conjugate of Equation (52) and letting mI → mI +σ, and hence a†
i,mI+σ(t) = e−iωn(mI+σ)(t−t0)a†

i,mI+σ(t0),
so that the time-transformed Equation (16) becomes

H′n,Hn,0
(t) = −Ωn

2 ∑
i,mI ,σ

eiσ(ω0−ωn)(t−t0)Aσ
I,mI

a†
i,mI ,σ(t0)ai,mI (t0). (49)

Similarly, for the local orbital electron operators, we have

bi,q,σ(t) = eiHe,0(t−t0)bi,q,σ(t0)e−iHe,0(t−t0) (50)

= e−i(εq−σωe/2)(t−t0)bi,q,σ(t0), (51)

and

H′e,He,0
(t) = −Ωe

2 ∑
i,q,σ

eiσ(ω0−ωe)(t−t0)b†
i,q,σ(t0)bi,q,−σ(t0), (52)
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For the spatially-transformed conduction electron operators,

ψ̃j,nj ,σ(k j,||, t) = eiH̃cond,0(t−t0)ψ̃j,nj ,σ(k j,||, t0)e−iH̃cond,0(t−t0) (53)

= e−i[ε j(nj ,kj,||)−σω̃′j,e/2](t−t0)ψ̃j,nj ,σ(k j,||, t0), (54)

so that the time-transformed Equation (44). becomes

H̃′cond,H̃cond,0
(t) = −1

2 ∑
j,σ

gL,j

∞

∑
nj=0

∫ dkj,||
2π

eiσ(ω0−ω̃′j,e)(t−t0)ψ̃†
j,nj ,σ(kj,||, t0)Ω̃′j,eψ̃j,nj ,−σ(kj,||, t0).

(55)

We note that all three of these transformed Hamiltonians correspond to spin-dependent external
field interactions, where the fields are

Un,i,i′ ;mI ,m′I
(t) = −Ωn

2
δi,i′ ∑

σ=±1
δm′I ,mI+σ Aσ

I,mI
eiσ(ω0−ωn)(t−t0), (56)

U e,i,i′ ;q,q′
σ,σ′

(t) = −Ωe

2
δi,i′δq,q′δσ′ ,−σeiσ(ω0−ωe)(t−t0), (57)

U cond,j,j′ ;nj ,n
′
j

kj,|| ,k′j,|| ;σ,σ′
(t) = −

Ω̃′j,e
2

δj,j′δnj ,n′j
δkj,||,k′j,||

δσ′ ,−σeiσ(ω0−ω̃′j,e)(t−t0), (58)

Then, we time transform the difficult (interaction) parts of the full Hamiltonian. The hyperfine
and local electron-electron interactions are elementary to transform. We obtain

Hh f ,Hn,0+He,0(t) = −Dz

4 ∑
i,q,σ,mI

mIσa†
i,mI

(t0)ai,mI
(t0)b†

i,q,σ(t0)bi,q,σ(t0)

−Dx

2 ∑
i,q,σ,mI

Aσ
I,mI

eiσ(ωe−ωn)(t−t0)a†
i,mI+σ(t0)ai,mI

(t0)b†
i,q,−σ(t0)bi,q,σ(t0), (59)

He,int,He,0(t) =
1
2 ∑

i,q,σ
Uqn̂i,q,σ(t0)n̂i,q,−σ(t0), (60)

Of these, only the transverse (Dx) part of the hyperfine interaction picks up a time dependence.
Before we time transform the remaining two interaction Hamiltonians, we first spatially transform the
conduction electron operators in the presence of the magnetic field necessary for the NMR experiment.
Then we rewriteHe,cond in terms of the spatially-transformed conduction electron fields,

He,cond → H̃e,cond = ∑
i,q,j

gL,j

∞

∑
nj=0

∫ dk j,||
2π

(
νi,q,jψ̃

†
j,nj ,σ(k j,||)bi,q,σ + H.c.

)
, (61)

which after time-transformation with respect toHe,0 and H̃cond,0 becomes

H̃e,cond,He,0+H̃cond,0
(t) = ∑

i,q,j
gL,j

∞

∑
nj=0

∫ dkj,||
2π

(
νi,q,je

i[ε j(nj ,k j,||)−εq+σ(ωe−ω̃′j,e)/2](t−t0)

ψ̃†
j,nj ,σ(kj,||, t0)bi,q,σ(t0) + H.c.

)
(62)

The most important Hamiltonian for the Knight shift in a superconductor is the pairing interaction
Hsc, which in position space was written in Equation (10). Since in a Knight shift measurement,
the experimenter first measures the Knight shift in the applied field H(t) and hence the induction
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B(t) = µ0H(t) while the superconductor is in its normal (metallic) state, and then cools the material
through its superconducting transition at Tc(H), it is clear that the correct formulation for the
superconducting pairing interaction must be in momentum space, and more precisely, to account for
the pairing of the electrons (or holes) while they are in Landau orbits in the normal state. We therefore
first rewriteHsc in a fully spatially-transformed magnetic-induction-quantized form that allows for
different pairing interactions, such as those giving rise to various types of spin-singlet and spin-triplet
superconductors arising from a multiple-band metal. As a start to understand the orbital motion of
the paired superconducting electrons (or holes), we first assume the standard approximation for the
evaluation of the upper critical field Hc2 that the paired particles of combined charge 2e move together
in Landau levels [18,42,52,53]. For a BCS superconductor for which Vj,j′ ;σ,σ′(kj − k′j′) = −V0δj,j′δσ,−σ′ ,
there is no need to transform the wave vector dependence of the pairing interaction due to the Landau
orbits formed by the strong applied field [18]. Such pairing interactions will be considered elsewhere.
Thus, we begin by considering only the simplest case of isotropic intraband pairing of equivalent
strength in all of the bands, which after spatial transformation due to the magnetic induction may be
written as

H̃sc,0 = −V0 ∑
σ

∑
j

g2
L,j

∞

∑
nj ,n′j=0

∫ dkj,||
2π

∫ dk′j,||
2π

ψ̃†
j,nj ,σ(kj,||)ψ̃

†
j,nj ,−σ(−kj,||)ψ̃j,n′j ,−σ(−k′j,||)ψ̃j,n′j ,σ

(k′j,||),

(63)

and transforming this in time usingHcond,0, we have

H̃sc,0,H̃cond,0
(t) = −V0 ∑

σ
∑

j
g2

L,j

∞

∑
nj ,n′j=0

∫ dkj,||
2π

∫ dk′j,||
2π

ψ̃†
j,nj ,σ(kj,||, t0)ψ̃

†
j,nj ,−σ(−kj,||, t0)

×ψ̃j,n′j ,−σ(−k′j,||, t0)ψ̃j,n′j ,σ
(k′j,||, t0), (64)

which is independent of t.

5. Dyson’s Equations for the Green Functions

For a system with continuous position variables r, the contour C Dyson equation for an adiabatic
time-dependent interaction for which Cint → C can be written as [44]

G(1, 1′) = G0(1, 1′) +
∫

d3r2

∫
C

dτ2G0(1, 2)U(2)G(2, 1′)

+
∫

d3r2

∫
d3r3

∫
C

dτ2

∫
C

dτ3G0(1, 2)Σ(2, 3)G(3, 1′), (65)

where Σ is the self-energy and U is an external field. By carefully keeping the order of the times in
going about the contour C, one can analytically continue the integrals off the real axis to the real axis.
We first need to define the retarded and advanced Green functions, which are

Gr(1, 1′) = Θ(t1 − t1′)[G
>(1, 1′)− G<(1, 1′)], (66)

Ga(1, 1′) = Θ(t1′ − t1)[G<(1, 1′)− G>(1, 1′)], (67)

Then, letting
∫

C dτ2G0(1, 2)G(2, 1′) be represented by C = AB, one can analytically continue the
appropriate contour-ordered Green function components on the real axis, so that

C< = ArB< + A<Ba, (68)

C> = ArB> + A>Ba, (69)
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where the integration
∫

C dτ2 →
∫ ∞
−∞ dt2. Similarly, by representing the double contour integral∫

C dτ2
∫

C dτ3G0(1, 2)Σ(2, 3)G(3, 1′) by D = ABC, one can analytically continue these contour
integration paths to the real axis, obtaining [44]

D< = ArBrC< + ArB<Ca + A<BaCa, (70)

D> = ArBrC> + ArB>Ca + A>BaCa, (71)

We then implement the three Dyson equations for the nuclear, local orbital electron, and
conduction electron Green functions. We first consider the Dyson equation for the nuclear Green
function. In this case, there are two terms to consider: the external field Un given by Equation (56), and
the hyperfine interaction given by Equation (59). However, the hyperfine interaction does not involve
two different times, as in the self-energy, which is analogous to the exchange interaction in the electron
gas with electron-electron Coulomb interactions. It is instead analogous to the direct interaction with
a fermion loop, but in this case, the fermion loop is for the local orbital electrons. As first shown by
Hall and Klemm, the leading self-energy diagrams for the Knight shift and the linewidth changes in a
metal at T = 0 are shown in Figure 3.
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Figure 3. Hall-Klemm diagrams for the Knight shift linewidth changes at T = 0. The vertical
solid lines on the left are the nuclear Gn(1, 1′), the wiggly horizontal line represents the hyperfine
interaction, the dashed curves represent Ge, the stars represent the excitation from the local orbitals to
the conduction band, and the solid counterclockwise arrowed curves represent the conduction electron
Gcond. (a) represents the leading Knight shift contribution arising from Dz; (b,c) represent the two
leading contributions to the linewidth changes arising from Dx [43]. Reprinted with permission of B.
E. Hall and R. A. Klemm. Microscopic model of the Knight shift in anisotropic and correlated metals.
J. Phys. Condens. Matter 2016, 28, 03LT01. Copyright c©2016 Institute of Physics.

6. Proposed Calculation of K(T) in the Normal and Superconducting States

6.1. Gor’kov’s Derivation of the Ginzburg-Landau Equations

Since the upper critical field has been obtained for anisotropic superconductors with a variety of
pairing interactions [18,42,52,53] and also that the most rapid temperature variation, a discontinuity in
slope, of the conventional Knight shift in superconductors, occurs just at the superconducting transition,
it is evident that an extension of those upper critical field calculations to the Ginzburg-Landau
regime just below Tc2(B0) can provide the crucial information for KS(T) in the superconducting
state. We propose to extend the Hall-Klemm T = 0 Knight shift calculation in the presence of a
strong magnetic induction B(t) into the superconducting state using an extension of the microscopic
derivation of the Ginzburg-Landau expression for the gap function as pioneered by Gor’kov [54,55]
to include the time-dependent applied field. That work was generalized for a general V(r − r′)
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single-band pairing by Scharnberg and Klemm [18]. In the superconducting state, we require the
regular (conduction) and anomalous Green functions

Gj,j′ ;σ,σ′(1, 1′) = −i〈TC[ψj,σ,H(1)ψ
†
j′ ,σ′ ,H(1

′)]〉, (72)

Fj,j′ ;σ,σ′(1, 1′) = 〈TC[ψj,σ,H(1)ψj′ ,σ′ ,H(1
′)]〉, (73)

F†
j,j′σ,σ′(1, 1′) = 〈TC[ψ

†
j,σ,H(1)ψ

†
j′ ,σ′ ,H(1

′)]〉, (74)

and the gap function, which in real space for intraband pairing only is

∆j;σ,σ′(rj, r′j) = Vj(rj − r′j)δj,j′Fj,j′ ;σ,σ′(1, 1′)|t1−t1′=0+, (75)

As discussed in the next subsection, in order to include the temperature dependence of the
normal state of the nuclei, the local orbital electrons, and the conduction electrons, we need to
quantize the conduction electrons in momentum space and Landau orbits, as was done for the bare
conduction electron Green functions in Equations (42) and (43). Although this was never done in
upper critical field calculations [17,18,32,42,48,49,52,53], the reasons given for not doing it were that
impurities would broaden the levels, smearing out the Landau level spacings [18,52]. However, with
the present quality of some materials, that argument should be reexamined. More important, in
order to calculate the upper critical induction Bc2, one requires the paired electrons (or holes) to be
in Landau levels [17,18,32,42,48,49,52,53]. However, as discussed in the next section, it is not clear
that electrons (or holes) will only pair with other electrons (or holes) in the same Landau orbit. With
multiple bands, an electron in one single-particle Landau level corresponding to one conduction band
could in principle pair with another electron in a different Landau level corresponding to another band.
So one will have to make some assumptions about the pairing processes to simplify the calculations.
However, to get a preliminary microscopic idea of how KS(T) picks up its T dependence below Tc, we
will first revisit the Gor’kov procedure for deriving the Ginzburg-Landau equations in real space.

In the standard real-space finite temperature formalism, the Gor’kov equations of motion
generalized to include multiple ellipsoidally anisotropic bands and their Zeeman energies without
interband pairing are [18]

(
iωn −

3

∑
ν=1

1
2mj,ν

[∇j,ν/i− eAj,ν(rj)]
2 + µ− σω′j,e/2

)
Gj,j′ ;σ,σ′ (rj, r′j′ , ωn)

+∑
ρ

∫
d3r′′j ∆j;σ,ρ(rj, r′′j )F†

j,j′ ;ρ,σ′ (r
′′
j , r′j′ , ωn) = δσ,σ′δj,j′δ

(3)(rj − r′j),

(76)(
−iωn −

3

∑
ν=1

1
2mj,ν

[∇j,ν/i + eAj,ν(rj)]
2 + µ− σω′j,e/2

)
F†

j,j′ ;σ,σ′ (rj, r′j, ωn)

+∑
ρ

∫
d3r′′j ∆∗j;σ,ρ(rj, r′′j )Gj,j′ ;ρ,σ′ (r

′′
j , r′j, ωn) = 0, (77)

where ωn = (2n + 1)π/β is the fermion Matsubara frequency. Letting G(0)
j,j′ ;σ,σ′(rj, r′j′ , ωn) be the

solution for the G function in the normal state with ∆ = 0, one can rewrite the above equations for G
and F† in the finite temperature formalism as

Gj,j′ ;σ,σ′ (rj, r′j′ , ωn) = G(0)
j,j;σ,σ′ (rj, r′j′ , ωn)δj,j′δσ,σ′

−∑
ρ

∫
d3r′′j

∫
d3r′′′j G(0)

j,j;σ,σ(rj, r′′′j , ωn)∆j,ρ,σ(r
′′′
j , r′′j )

×
∫

d3ξ j

∫
d3ξ′j ∑

ρ′
G(0)

j,j;σ′ ,σ′ (r
′
j, ξ′j,−ωn)∆∗j,ρ′ ,σ′ (ξ j, ξ′j)G

(0)
j,ρ,ρ′ (r

′′
j , ξ j, ωn),

(78)
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to order ∆2. One can then substitute this into the equation for F†, multiply by the pairing interaction,
and obtain a self-consistent equation for ∆ to order ∆3 [54,55]. The coefficients of the two terms
proportional to ∆ define the upper critical induction Bc2 [18,32,42,48,49,52,53]. Functionally integrating
the cubic equation with respect to ∆j,σ,σ′(rj, r′j) and by neglecting the field dependence of the resulting

term proportional to |∆|4, one can obtain the generalized Ginzburg-Landau free energy.
We note that even if one completely neglects the field dependence of the term of order ∆3 in

the Gor’kov expansion of F† for ∆(r), it is easy to see that this procedure will lead to the following
phenomenological general result:

KS(T) = a(B0)− b(B0)|∆(B0, T)|2, (79)

where a and b strongly depend upon the magnitude and direction of B0, but not much upon T,
and 2|∆(B0, T)| is the effective superconducting gap in the Ginzburg-Landau regime. This simple
result includes the pairing in all of the bands, which couple together to give one effective Tc2(B0),
below which |∆(B0, T)|2 ∝ [Tc2(B0)− T]. It remains to be seen if this form could be generalized to the
full BCS superconducting gap |∆(B0, T)| temperature dependence, which saturates at low T values.
If so, it could lead to a quantitative theory of the Knight shift that would be valid for essentially any
type of superconductor involving Cooper pairing. Hence, a proper calculation of a(B0) and b(B0)

can provide a microscopic understanding of the behavior for the 63CuO2 KS(T) for B0 parallel and
normal to the layers of YBa2Cu3O7−δ, which was described by Slichter as “fortuitous” [20]. It could in
principle explain the small or vanishing b term in Sr2RuO4, at least for the field normal to the layers,
for which Landau level formation would be highly restricted on two of the Fermi surfaces.

6.2. High-Field Solution for an Anisotropic, Multiband Type-II BCS Superconductor

More important, we note that a major simplification of the Keldysh contour procedure can be
made by first taking the mean-field approximation of the BCS pairing interaction represented in
momentum space by Equation (63). We write the mean-field gap (or isotropic order parameter) for
singlet pairing in band j as

∆j,−σ,σ = V0gL,j

∞

∑
nj=0

∫ dk j||

2π
〈ψ̃j,nj ,−σ(−k j,||)ψ̃j,nj ,σ(k j,||)〉, (80)

where the expectation value is in the grand canonical ensemble, so that the mean-field effective
Hamiltonian for the conduction electrons in the superconducting state becomes

H̃sc,cond = ∑
j,σ

gL,j

∞

∑
nj=0

∫ dkj,||
2π

(
ψ̃†

j,nj ,σ(kj,||)[ε j(nj, kj,||)− µcond,cp − σω̃′j,e/2]ψ̃j,nj ,σ(kj,||)

+
[
ψ̃†

j,nj ,σ(kj,||)ψ̃
†
j,nj ,−σ(−kj,||)∆j,−σ,σ + H.c.

])
(81)

where we have included the chemical potential of the conduction electrons. Note that we assume
the total momentum of the paired electrons (or holes) is zero, as both are assumed to be on opposite
sides of the same Landau orbit, and have opposite momenta in the direction normal to the plane
of the Landau orbits. This effective quadratic Hamiltonian can then be diagonalized by a standard
Bogoliubov-Valatin transformation [56], letting

ψ̃j,nj ,↑(k j,||) = uj,nj ,kj,||
γj,nj ,↑(k j,||) + vj,nj ,kj,||

γ†
j,nj ,↓(k j,||), (82)

ψ̃†
j,nj ,↓(−k j,||) = −v∗j,nj ,kj,||

γj,nj ,↑(k j,||) + u∗j,nj ,kj,||
γ†

j,nj ,↓(k j,||), (83)
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where we require the γ operators to obey independent fermion statistics. Using the standard
transformation procedure to eliminate the off-diagonal terms, we then obtain

|uj,nj ,kj,||
|2 =

1
2

[
1 +

( ε j(nj, k j,||)− µcond,cp

Ej(nj, k j,||)

)]
, (84)

|vj,nj ,kj,||
|2 =

1
2

[
1−
( ε j(nj, k j,||)− µcond,cp

Ej(nj, k j,||)

)]
, (85)

and the diagonalized superconducting Hamiltonian becomes

H̃sc,cond → ∑
j,σ

gL,j

∞

∑
nj=0

∫ dk j,||
2π

γ†
j,nj ,σ(k j,||)γj,nj ,σ(k j,||)

[
Ej(nj, k j,||) + σω̃′j,e/2

]
, (86)

Ej(nj, k j,||) =
√
[ε j(nj, k j,||)− µcond,cp]2 + |∆j|2, (87)

where |∆j|2 = ∆j,−σ,σ∆†
j,−σ,σ is positive definite for each j value. We note that the quasiparticle

dispersions in H̃sc,cond are nearly identical to the BCS quasiparticle dispersions, as they do indeed have
a real energy gap 2|∆|, but there is in addition an effective Zeeman term arising from the difference
in the spin up and spin down quasiparticle energies, leading to a magnetic gap function. Thus, the
self-consistent expression from Equation (80) for ∆j,−σ,σ becomes

∆j,↓,↑ = −V0gL,j ∑
σ=±

∞

∑
nj=0

∫ dk j,||
2π

∆j,↓,↑
Ej(nj, k j,||)

(
1

eβ[Ej(nj ,kj,||)+σω̃′j,e/2]
+ 1
− 1

2

)
, (88)

which, combined with Equation (86), explicitly demonstrates the presence of the superconducting
gap ∆j in each band that is involved in KS(T) in the superconducting state. Thus, it is clear that the
effective or phenomenological Equation (79) mentioned in the abstract for KS(T) applies in the mixed
state of a type-II superconductor, not just in the Ginzburg-Landau region. However, by quantizing the
superconducting order parameter at a finite induction strength B0, both the Landau orbits and the
Zeeman interaction can greatly affect its B0 dependence, and the Landau orbits in particular can be
distinctly different for layered compounds with B0 parallel or perpendicular to the layers, especially at
large induction strengths, as first noted in experiments on YBa2Cu3O7−δ [19,20].

The road ahead to construct the first microscopic theory of the Knight shift in a superconductor
of any type is now clear. The conduction electrons must be quantized in Landau orbits, and this
can be done for any number of ellipsoidally anisotropic electron or hole bands, as outlined above.
The procedure will be extended for our model of multiple ellipsoidal bands with the Zeeman
couplings and time-dependent Zeeman couplings in each band to construct the Bogoliubov-Valatin
transformed contour G functions. To do this properly, one needs to apply those transformations
presented in Equations (82) and (83) to the time-dependent Zeeman interaction on the conduction
electrons in Equation (44) and also to the Anderson-like interaction in Equation (61) that removes
a local orbital electron and places it in the superconducting state and vice versa. This will cause
Equations (44), (55), (61) and (62) to be rewritten in terms of the quasiparticle operators γj,nj ,σ

(k j,||) and

γ†
j,nj ,σ

(k j,||), and will modify Equation (58). Then, the Keldysh contour method can be used to perform

a microscopic theory of KS(T) in the mixed superconducting state of an anisotropic, multiband, type-II
BCS superconductor. Since the conduction electrons are transformed into non-interacting quasiparticles
in the superconducting state, the self-energy Σ(2, 3) in Dyson’s equation will only apply to the orbital
electrons via the Hubbard interaction Uq. All other interactions reduce to effective external fields.
After a detailed microscopic evaluation of KS(T) using the contour-extended version of the diagram
pictured in Figure 3a, special attention will be directed at the conditions for a near vanishing of b(B0),
which could lead to a T-independent KS(T), even for a “conventional” superconductor. The linewidth
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changes can be evaluated in the superconducting state from the contour-extended versions of the
diagrams pictured in Figure 3b,c. Eventually, other superconducting pairing symmetries could also be
studied with this technique, although the pairing interaction would have to be transformed as above,
including the Landau orbits. Eventually, this could be done for charge-density and spin-density wave
systems, for which no theory of the Knight shift is presently available. We note that 2H-TaS2 has a nodal
charge-density wave below 75 K, with a presumably s-wave superconducting state entering below
0.6 K [17,57], which is very similar to the complex situation in the high-temperature superconductor
Bi2Sr2CaCu2O8+δ, in which the nodal pseudogap (probably charge-density wave) regions and isotropic
s-wave superconducting regions break up into spatial domains [58]. These results are consistent with
previous c-axis twist Josephson junction experiments on that material [59]. Although the NMR
linewidths in that material are too broad to perform Knight shift measurements, they could be done on
other materials, such as the dichalcogenides, and also in improved YBa2Cu3O7−δ samples.

7. Discussion and Conclusions

We have outlined a procedure to obtain a microscopic theory of the Knight shift in an anisotropic
Type-II superconductor. This was based upon the Hall-Klemm microscopic model of the effect at
T = 0 [43], for which multiple anisotropic conduction bands of ellipsoidal shapes were included.
We considered the simplest magnetic resonance case of B(t) = B0 + B1(t) with |B1| � |B0| and
B1 · B0 = 0 with B1(t) oscillating at a single frequency ω0. For this simple case, the time changes to
the system are adiabatic, so that the interaction Keldysh contour Cint shown in Figure 1b effectively
coincides with contour C depicted in Figure 1a, and the integrations can be analytically continued onto
the real axis. The procedure can effectively treat any nuclear spin value I. The conduction electrons (or
holes) were quantized in Landau orbits in the applied field in the normal state, and the Hamiltonian
for a generalized anisotropic, multiband BCS type-II superconductor was diagonalized, allowing for a
full treatment of the superconducting state.

We emphasize that by quantizing the superconducting order parameter in the presence of a
strong time-independent magnetic induction B0, the energy spacings of the Landau orbits can depend
strongly upon the direction of B0. At very weak B0 values, the Landau levels primarily give rise
to overall anisotropic constant backgrounds of K(T) and KS(0), with KS(T) being predominantly
governed by the anisotropic Zeeman interactions and Dz. However, for sufficiently strong B0 values
in anisotropic materials with layered or quasi-two-dimensional anisotropy, the spacings between
the Landau energy levels depends strongly upon the direction of B0, so that KS(T) could become
independent of T for T ≤ Tc, as first observed for B0||ĉ in YBa2Cu3O7−δ [19,20]. Such behavior could
also arise for quasi-one-dimensional materials in all B0 directions, although to different degrees for B0

parallel and perpendicular to the most conducting crystal direction.
Since the crucial interaction for the Knight shift is the hyperfine interaction between the

probed nuclei and their surrounding orbital electrons, the symmetry of this interaction can be very
important. Generally, the hyperfine interaction can arise from the electrons in any of the orbital levels.
For s-orbitals, the Fermi contact term is important, but the induced-dipole induced-dipole interactions
can arise from the nucleus of any spin for any spin I ≥ 1/2 and its surrounding electrons in any orbital,
and induced-quadrupole induced-quadrupole and higher order interactions can also occur for certain
orbitals and nuclear spin values [60,61]. In the Hall-Klemm model [43], the hyperfine interaction crucial
for the Knight shift was taken to be diagonal in the spin representations of a lattice with tetragonal
symmetry Dx = Dy 6= Dz. In that simple model, the T = 0 results indicated that the Knight shift arose
from Dz, and the line width was modified by Dx = Dy. In more realistic examples of correlated and
anisotropic materials, the hyperfine interaction would be represented by a symmetric matrix unless
time-reversal symmetry-breaking interactions were present. Such matrices can be diagonalized by
a set of rotations, but in complicated cases the quantization axes would not necessarily be the same
as for the overall crystal structure. Such complications would mix the Knight shift and its linewidth,
depending upon the direction of B0.
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As noted previously, in first quantization, an isolated nuclear spin wave function in an NMR
experiment was found to have the form

|I, mI〉(t) = eimI ω0t
I

∑
m′I=−I

CmI
m′I

eim′I Γnt, (89)

where Γn = [(ω0 − ωn)2 + Ω2
n]

1/2 is the nuclear resonance function and the constants CmI
m′I

depend
upon the initial conditions [43]. Those authors found this form to hold for I = 1/2, 1, 3/2, and in
second quantization, up to I = 2, so it is likely to hold for arbitrary I. In the adiabatic regime, we have
ω0 � ωn [37,38], so that there will be a manifold of geometrical phases that will arise with higher
I values.

We remark that it is possible to generalize this treatment to more complicated B1(t) functions,
such as a periodic function of square-wave or triangle-wave shape. This can be represented as a Fourier
series, but if the primary angular frequency is ω0, terms of higher multiples n of ω0 can be present,
some of which would violate the adiabatic requirement that they be much smaller than the Zeeman
energy spacings. Hence, this experiment would make some amount of non-adiabatic changes that
could drive the system out of thermal equilibrium, and the two contours C and Cint shown in Figure 1
and discussed above would not coincide, greatly complicating the analysis.
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