Supplementary Materials: Separation of the α - and β -Anomers of Carbohydrates by Diffusion-Ordered NMR Spectroscopy

Takashi Yamanoi 1,*, Yoshiki Oda 2 and Kaname Katsuraya 3

2. Results and Discussion

2.1. DOSY Separation of the α - and β -Anomeric Isomers of Glycopyranosides

Figure S1. DOSY spectrum of a 10 mM α -arbutin and 10 mM β -arbutin mixture in D₂O at 30 °C.

2.2. DOSY Separation of the α - and β -Anomeric Isomers of Glycopyranoses

Figure S2. DOSY spectrum of 20 mM (¹³C₆)Glc in D₂O at 30 °C. The signal of these two anomeric protons was split by the one bond coupling between C-1 and H-1: α -anomer: *J*_{C-1, H-1} = 169.8 Hz; β -anomer: *J*_{C-1, H-1} = 161.5 Hz.

Figure S3. DOSY spectrum of 20 mM Gal in D₂O at 30 °C.

ppm

Figure S5. DOSY spectrum of 20 mM Cello in D₂O at 30 °C. The signal of H-1' β in α -Cello is missing.

2.3. DOSY Separation of a Mixture of Two Kinds of Glycopyranosides Having Similar Aglycon Structures

Figure S7. DOSY spectrum of a 10 mM β-arbutin and 10 mM β-*p*NPGlc mixture in D₂O at 30 °C.