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Abstract: A spinach-supplemented diet exerts numerous health benefits, but high levels of oxalic
acid and nitrate can cause medical problems, so their levels should be reduced, while the levels of
vitamins and phytochemicals could be further increased by breeding. Conventional spinach breeding
is limited by the very complex sex determination. However, these limitations could be circumvented
in synergy with a biotechnological approach. Accordingly, tissue culture techniques allow rapid
and efficient clonal propagation of selected valuable genotypes, and somatic embryogenesis has
been recognized as a superior process for clonal propagation because somatic embryos resemble
zygotic embryos and therefore can spontaneously develop into complete plants. Since spinach
has been considered recalcitrant to in vitro regeneration for decades, a deeper insight into the
mechanisms underlying somatic embryogenesis is important for a better understanding and further
improvement of the efficiency of this process. In this review, a comprehensive overview of the
major factors affecting somatic embryogenesis in spinach is presented and discussed, with particular
emphasis on the synergistic effects of α-naphthaleneacetic acid, gibberellic acid, light, and the intrinsic
predisposition of individual seedlings to somatic embryogenesis, as well as the expression of genes
encoding key enzymes involved in the maintenance of gibberellin homeostasis and the levels of
endogenous gibberellins.

Keywords: Amaranthaceae; gene expression; gibberellins; somatic embryogenesis; Spinacia oleracea L.;
tissue culture

1. Introduction

Spinach (Spinacia oleracea L.) is an economically important green leafy vegetable grown
worldwide. It is considered a functional food [1] because spinach leaves are rich in vitamins,
minerals, phytochemicals, and dietary fiber [1–6]. Due to its increasing popularity, spinach
production and consumption have increased significantly in recent decades, especially baby
spinach, which is consumed mainly as an unprocessed food [7]. In addition, powdered
spinach leaves are often used in the production of cheese and bread to improve their
nutritional value, antioxidant properties, color, and taste [8–11].

Spinach leaves are a rich source of chlorophylls and carotenoids [5], and aqueous
extracts from the leaves exhibit exceptionally potent antioxidant activity, surpassing that
of green tea, lettuce, cabbage, onions, and even pure vitamin E [12,13]. A spinach-
supplemented diet therefore has numerous health-promoting effects [1], such as anti-cancer
and anti-angiogenic effects [14], the alleviation of inflammatory vascular diseases [15],
the retardation of age-related decline in cognitive and motor functions of the nervous
system [13,16], and the prevention of diabetic complications [17,18]. In addition, the
consumption of raw spinach has been shown to promote the diversification of the gut
microbiota, contributing to the maintenance of intestinal homeostasis and the prevention
of chronic diseases [19–24].

However, the consumption of spinach also has some negative aspects. Spinach plants
contain high levels of oxalic acid [25], which can lead to the formation of kidney stones [26],
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and nitrate [27], which can cause methemoglobinemia [28]. High variability in spinach
germplasm has also been observed in terms of the nutritional and chemical composition,
such as ascorbic acid [6], folate [3], total phenols and flavonoids [29], oxalate [25], and
carotenoids and chlorophylls [5]. All of these traits may vary depending on the growing
and storage conditions, but all have a significant genetic background. Therefore, the most
important goals in spinach breeding programs, in addition to disease resistance, abiotic
stress tolerance, and delayed bolting, are to improve the nutritional quality [6,7,30–32].

Numerous accessions of the genus Spinacia are maintained in collections world-
wide [7,30,33,34], including cultivars and landraces of cultivated spinach (S. oleracea) and
wild populations of S. turkestanica and S. tetrandra, sexually compatible relatives of cul-
tivated spinach [30,34]. These wild species are of paramount importance for breeding
purposes because they are a valuable source of genes that confer disease resistance and
agronomically important traits [7,30]. This is particularly important because intraspecific
genetic variation in cultivated spinach is low [7].

Recently, a high-quality genome assembly of two spinach inbred lines, Sp75 [35] and
Monoe-Virofly [36], was generated, and SpinachBase (available at http://spinachbase.org/
accessed on 27 June 2023) was established [37]. In addition, numerous markers for marker-
assisted selection have been developed [38–43], providing an excellent basis for facilitating
spinach breeding and enabling gene expression profiling [36].

However, conventional spinach breeding is limited because of the very complex
sex determination and plasticity of sex expression in plants [2]. Spinach is a dioecious
plant species, but monoecious plants bearing both pistillate and staminate flowers as
well as hermaphrodite flowers bearing both pistils and stamens also occur in spinach
populations [2,44–47]. Dioecious plants often show so-called “leaky” sex expression, i.e.,
they occasionally produce some flowers of the opposite sex, which is enhanced by external
stimuli [48], or in the absence of specimens of the opposite sex [49]. This is also found
in spinach plants [2], as a variety of external factors can alter the ratio of male to female
plants or trigger plant sexual instability [44,45,50], including temperature [46,47], light
conditions [51], plant growth regulators [50], ion particles [52], and in vitro culture [53–55].
Sex determination in spinach has not been fully elucidated, although numerous molecular
markers associated with sex-determining genes have been found [56–59], and a high-density
linkage map covering these loci has been constructed [60]. A male-specific candidate gene
(NRT1/PTR 6.4) has been proposed to drive stamen initiation/carpel repression [61], while
GIBBERELLIC ACID INSENSITIVE, a member of the DELLA transcriptional repressor
family, has been shown to be necessary for female organ development by repressing genes
required for stamen development [62]. These findings may explain the sexual plasticity
previously observed in spinach under ex vitro and in vitro cultivation.

In addition to the complex sex determination in spinach, conventional breeding is a
time- and labor-intensive process, but these limitations could be circumvented in synergy
with biotechnological approaches [63]. Accordingly, tissue culture techniques allow the
rapid and efficient clonal propagation of selected valuable genotypes and the creation
of pure lines in only a few steps and in much shorter time compared to conventional
breeding [64]. Several processes enable the in vitro regeneration of plants, including de
novo shoot organogenesis, somatic embryogenesis, and embryogenesis from immature
male and female gametic cells (androgenesis and gynogenesis, respectively) [65]. Somatic
embryogenesis is recognized as a superior process of clonal propagation because somatic
embryos (SEs) resemble zygotic embryos and therefore can spontaneously develop into
complete plants [66].

Spinach has been considered recalcitrant to in vitro regeneration for decades [67],
and the protocols established to date are not generally applicable to all genotypes [68–71].
The first report of a tissue culture response in spinach was obtained by de novo shoot
organogenesis from seedling shoot tips, but with very low efficiency [72]. It took almost
twenty years to achieve the next success, when a plethora of reports appeared. Briefly,
the system of micropropagation from shoot primordia was established [73], while de
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novo shoot organogenesis was induced from hypocotyls [74–80], cotyledons [78,80–82],
roots [78,83,84], leaves [68,85,86], mature dry seeds [87], and leaf protoplasts [88–91]. In
addition, spinach calli are suitable for the establishment and maintenance of cell suspension
cultures [92]. Androgenesis from spinach anther cultures and gynogenesis after pollination
with irradiated pollen have also been reported [93]. These initial achievements in spinach
tissue culture responses were described in several excellent reviews [67,94,95]. However,
later research on the intrinsic predisposition of individuals to somatic embryogenesis, the
synergistic interaction of α-naphthaleneacetic acid (NAA), gibberellic acid (GA3), and light,
and altered gibberellin homeostasis during SE induction provided deeper insights into
the mechanisms underlying this process in spinach. Therefore, this review presents these
new findings.

2. Somatic Embryogenesis

Somatic embryogenesis in spinach was achieved in parallel in two laboratories in 1993,
one in France [96] and the other in the authors’ laboratory in Serbia [97]. In the following
decades, numerous reports have been published on this subject, and the mechanism of
SE induction and the importance of the factors affecting this process have become better
understood. However, the established protocols are still genotype-dependent and require
further improvement, as a robust and generally applicable protocol for efficient and reliable
SE induction is needed for further application in biotechnological crop improvement.

In all studies, somatic embryogenesis was induced indirectly via an intermediate
callus phase [69,70,84,96–102]. Rarely was the direct formation of SEs from the leaves of
SE-derived plants observed [98]. In some regeneration systems, somatic embryogenesis
and de novo shoot organogenesis proceeded in parallel [84,96–99,101], while in the majority
of studies only SEs were observed [69–71,100,102–105]. In some cases, shoot organogenesis
preceded the formation of SEs [96–99], while Nguyen et al. [84] were able to alternately
induce SEs or shoot buds from the same explant type by controlling the combination and
concentration of plant growth regulators (PGRs). Interestingly, the same regeneration pro-
cedure using root explants resulted in the regeneration of shoot buds in some cultivars [83],
while in others only SEs were formed [71,102,105]. It is also worth noting that explants of
the same cultivar produced exclusively SEs in one procedure [71,102,105] and both SEs and
shoot buds in another [97–99].

2.1. Factors Affecting Somatic Embryogenesis

Numerous factors significantly influence somatic embryogenesis in spinach. The most
important effect on this process is the genotype, explant type, media composition (partic-
ularly the PGR combination, concentration, and treatment duration), and environmental
factors such as light conditions and temperature. The effects of these factors on the initiation
of SEs are presented on the following pages and summarized in Table 1.

To facilitate the understanding the text, the following terminology is used: “em-
bryogenic capacity” is used as a general descriptive measure of the ability of explants
to regenerate SEs, whereas “embryogenic response” indicates that explants are able to
regenerate SEs in response to SE induction treatment. “Regeneration frequency” (defined
as the proportion of explants regenerating SEs out of the total number of explants subjected
to SE induction treatment) and “mean SE number” per explant are used to quantitatively
describe SE regeneration.

2.1.1. Genotype

Genotype has been recognized as one of the most important factors that strongly
influences not only somatic embryogenesis [69–71,102] but also callus induction [68] and
the regeneration of shoot buds from calli or protoplasts [68,90]. The frequency of SE regen-
eration from seedling root segments varied widely among the cultivars tested [69,101]. A
single study tested the frequency of SE regeneration in eight spinach cultivars: Jiromaru,
Nihon, Hoyo, Minsterland, Virofly, King of Denmark, Nobel, and Ujo [69]. The frequency of
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SE regeneration varied from 17.1% (in the cultivar Ujo) to 78% (in the cultivar Jiromaru) [69].
However, results obtained by the same research group in different experiments under the
same experimental conditions showed high variability in the embryogenic response of
seedling root segments within a highly responsive cultivar (Jiromaru), ranging from 36% to
78% [69,100,104]. Overall, these results suggest large differences in individual (seedling)
response between and within seed lots. Indeed, a large variation in the embryogenic re-
sponse of root sections isolated from 30 randomly selected seedlings of the cultivar Nippon
was later found following the same regeneration protocol in the same laboratory [70]. Of
30 seedlings tested, explants from 10 seedlings had low, 13 had medium, and seven had
high embryogenic capacity, with 20%, 20–70%, and 80% embryogenic explants per seedling,
respectively [70].

A rather similar embryogenic response was observed for root tips of the cultivar
Matador, previously considered extremely recalcitrant to in vitro regeneration [72]. Out of
30 randomly tested seedlings at the same developmental stage (4–5 leaves), root apices of
26 seedlings responded with SE regeneration frequencies ranging from 0.3% to 100%, while
roots of four seedlings did not respond at all [102]. The mean SE number per explant in the
responsive lines ranged from 0.001 to 9.96, and 227–347 SEs were obtained from 30 root
explants of each of the four most responsive lines over 12 weeks [102]. The obtained SEs
developed into plants, flowered, and set seed in vitro, so the embryogenic response of the
resulting 69 seedlings was tested [102]. The progeny of the poorly responding parental
lines always responded in a similar manner, with SE regeneration frequencies below 12%
and up to 0.47 SEs per explant, while the lines with moderate embryogenic capacity
(with SE regeneration frequencies of 20–70%) produced progeny with highly variable SE
regeneration frequencies (0.86–98.5%) and mean SE numbers per explant (0.001–10.41).
However, one line that showed moderate embryogenic response (35.3% and 8.74 SEs per
explant, 115 SEs from 30 explants) resulted in progeny with high embryogenic capacity
after 3–4 cycles of self-fertilization [102]. The root apices of these lines regenerated SEs at
a frequency of 96.4–100%, with 40.6–68.3 SEs per explant, and produced 1547–2181 SEs
from 30 explants over 12 weeks [102]. This was 13.4–19.0 times more than the mother
plant and 4.5–6.3 times more than the explants of the best performing seedling randomly
selected from the seed lot tested in the same study [102]. In fact, in later experiments, we
tested the embryogenic capacity of almost one thousand randomly selected seedlings in
different studies, and none of them showed even close embryogenic capacity compared to
the four elite lines. Moreover, the above-mentioned highly responsive lines regenerated SEs
much faster, starting from the fourth week of culture, while lines with low embryogenic
capacity regenerated SEs most frequently only after 6–8 weeks of culture initiation [102].
Roots isolated from SE-derived plants behaved similarly to the roots of the corresponding
seedlings, suggesting the temporal stability of this trait within the line [102]. The four
elite lines obtained in this study were maintained through cycles of SE-induction from the
roots of SE-derived plants, which retained a high embryogenic capacity for 5–7 years. In
agreement with this, Ishizaki et al. [106] maintained root cultures of highly responsive lines
on PGR-free medium and found that their embryogenic capacity was high and stable for at
least 12 months.

Deeper insights into the intrinsic variability of the embryogenic capacity in spinach
were obtained by studying embryogenic capacity at both population and individual (single
seedling) levels in the cultivar Matador [71]. Large differences were found among seeds
of the Matador cultivar obtained from nine European seed companies from Slovenia (Sl),
Poland (P), Serbia (Sr), England (E), Germany (G), Lithuania (L), Ukraine (U), Russia (R),
and Italy (I). The frequency of seedlings with embryogenic capacity (i.e., seedlings whose
root apices regenerated at least one SE) was highest in population Sl (100%), followed by P
(98%), Sr and E (88% each), G (60%), L (58%), U (34%), R, and I (0% each) during a 12-week
cultivation period [71]. The mean SE number per root explant, calculated at the population
level, was also highest in the Sl population (14.4), followed by the P, Sr, and E (2.6–4.1),
G, L, and U (0.3–0.6), and R and I (0 each) populations. The speed of regeneration of SEs
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from root explants followed the same order as the frequency and mean SE number, from
the fastest to the slowest: Sl, P, Sr, G, E, L, U, R, and I [71]. The first SEs were observed
on Sl explants in the fourth week of culture initiation in 10.3% of Sl seedlings, and a 100%
regeneration response was achieved in the seventh week of culture initiation.

At the seedling level, the Sl population was found to be composed of highly responsive
seedlings, as 82% of Sl seedlings had 80–100% regenerating explants, whereas in the inter-
mediate responsive populations (Sr, P, and E), 21–28% of seedlings were non-responsive and
40% of seedlings had 20–60% regenerating explants [71]. As expected, in the least respon-
sive populations (G, L, and U), explants from 52–85% of seedlings were non-responsive,
and explants from only up to 1.3% of seedlings regenerated SEs at a frequency greater than
60%. Accordingly, explants from Sl seedlings regenerated the highest number of SEs: 27.6%
of seedlings regenerated more than 20 SEs per explant, 43.5% regenerated 10–20 SEs, and
only 19.6% regenerated 1–10 SEs per explant [71]. In contrast, 73.8%, 59.7%, and 36.1% of P,
E, and G seedlings, respectively, regenerated only 1–10 SEs per explant.

The observed large differences in the embryogenic capacity of seedlings may be
due to genotypic effects, the physiological age of the seed at harvest, and postharvest
storage conditions [107]. Because the seeds used in the above study were produced under
different climatic conditions, the physiological age of the seeds at harvest is unknown,
and the seeds were stored in different storage locations until shipment. Selected seed
populations (Sl, Sr, and U) of the same seed lots used in the study by Belić et al. [71]
were sown and grown under the same environmental conditions, and the embryogenic
capacities of the root apices of the obtained seedlings were compared. Seeds from each seed
population were sown in a separate planter, and each planter was placed in an isolated
cage to prevent cross-pollination between plants from the different seed populations,
as suggested by Morelock and Correll [2]. The root apices of the obtained seedlings
showed a similar embryogenic response as that in the study by Belić et al. [71]: Sl seedling
explants had the highest embryogenic capacity, Sr medium, and U very low (Figure 1)
(Zdravković-Korać et al., unpublished results), indicating a strong influence of genotype on
the embryogenic response [71]. Therefore, due to the significant variation between lots, it is
strongly recommended to test the plant material (seed lot) prior to any research on somatic
embryogenesis [71].

2.1.2. Explant Type

Numerous explant types have been used to induce somatic embryogenesis in spinach
(Table 1). In most studies, seedling organs have been used as explants, not only because
young organs generally respond more efficiently to induction treatments than older ones,
but also because seeds are more robust than other plant organs and allow the use of more
stringent sterilization procedures to successfully eliminate microorganisms [98,101].

Comparative studies have examined the frequency of SE induction from hypocotyls,
cotyledons, and roots [69,101]. Seedlings were typically 8–10 days old, and sections were
5–8 mm long [69] or 400–500 µm thick transverse thin cell layer (TCL) sections [101]
(Table 1). In addition, 2–3 mm long hypocotyl segments [96], the hypocotyl and mid-
dle part of cotyledons (5–10 mm), and leaf discs (5 mm) isolated from 1–2 month-old plants
were also examined [69,98,99].

Of all explants, root sections responded most efficiently to the SE induction treat-
ments [69,100,101,104]. In the cultivar Jiromaru, 75% of the root sections formed embryo-
genic callus, followed by the hypocotyl segments and basal cotyledon segments (28% and
16%, respectively), while the distal cotyledon segments formed hardly any calli and showed
no embryogenic capacity [69]. In the cultivar Carpo, only root sections responded with a
frequency of up to 25% in a series of treatments [101]. Interestingly, in the same study, in
cultivar RZ1, only a few (0.79%) hypocotyl TCLs responded, while root and cotyledon TCLs
did not [101]. Similarly, in the cultivars Matador and Virofly, hypocotyl-derived calli were
more frequently embryogenic (3.7% and 5.7%, respectively) than cotyledon-derived calli
(1.07% and 0%, respectively) [98]. However, in the cultivar Matador, leaf discs derived from
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2-month-old greenhouse plants were the most responsive explants (83%) [98], whereas leaf
segments isolated from 30-day-old in vitro-cultured plants of the cultivar Jiromaru showed
no embryogenic capacity [69].
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m−2 s−1. Regeneration of the SEs from Sl explants began from the fifth week of culture. Scale bar: 1 
cm. Unpublished from the authors� laboratory. 

2.1.2. Explant Type 
Numerous explant types have been used to induce somatic embryogenesis in spinach 

(Table 1). In most studies, seedling organs have been used as explants, not only because 
young organs generally respond more efficiently to induction treatments than older ones, 
but also because seeds are more robust than other plant organs and allow the use of more 
stringent sterilization procedures to successfully eliminate microorganisms [98,101]. 

Comparative studies have examined the frequency of SE induction from hypocotyls, 
cotyledons, and roots [69,101]. Seedlings were typically 8–10 days old, and sections were 
5–8 mm long [69] or 400–500 µm thick transverse thin cell layer (TCL) sections [101] (Table 
1). In addition, 2–3 mm long hypocotyl segments [96], the hypocotyl and middle part of 
cotyledons (5–10 mm), and leaf discs (5 mm) isolated from 1–2 month-old plants were also 
examined [69,98,99]. 

Of all explants, root sections responded most efficiently to the SE induction treat-
ments [69,100,101,104]. In the cultivar Jiromaru, 75% of the root sections formed embryo-
genic callus, followed by the hypocotyl segments and basal cotyledon segments (28% and 
16%, respectively), while the distal cotyledon segments formed hardly any calli and 
showed no embryogenic capacity [69]. In the cultivar Carpo, only root sections responded 
with a frequency of up to 25% in a series of treatments [101]. Interestingly, in the same 
study, in cultivar RZ1, only a few (0.79%) hypocotyl TCLs responded, while root and cot-
yledon TCLs did not [101]. Similarly, in the cultivars Matador and Virofly, hypocotyl-de-
rived calli were more frequently embryogenic (3.7% and 5.7%, respectively) than cotyle-
don-derived calli (1.07% and 0%, respectively) [98]. However, in the cultivar Matador, leaf 
discs derived from 2-month-old greenhouse plants were the most responsive explants 
(83%) [98], whereas leaf segments isolated from 30-day-old in vitro-cultured plants of the 
cultivar Jiromaru showed no embryogenic capacity [69]. 

Because root segments had the highest embryogenic capacity in most studies, they 
were the preferred explants in subsequent studies of somatic embryogenesis in spinach 
[70,71,84,102,105,108–110]. Moreover, some studies found that the regeneration response 

Figure 1. Regeneration of somatic embryos (SEs) from root apices of randomly selected seedlings
from (a) Slovenian (Sl) and (b) Ukrainian (U) populations of the spinach cultivar Matador. Root apices
were cultivated for eight weeks on MS medium supplemented with 20 µM NAA + 5 µM GA3 under a
long-day photoperiod (16 h of light) and a photosynthetic photon flux density of 100 µmol m−2 s−1.
Regeneration of the SEs from Sl explants began from the fifth week of culture. Scale bar: 1 cm.
Unpublished from the authors’ laboratory.

Because root segments had the highest embryogenic capacity in most studies, they
were the preferred explants in subsequent studies of somatic embryogenesis in
spinach [70,71,84,102,105,108–110]. Moreover, some studies found that the regeneration
response differed along the roots—the apical and middle fragments of the roots responded
more strongly than the basal ones [83], which is why some authors used only the root
apices [71,102,105,108–110]. However, Ishizaki et al. [70] used root sections (5 mm) from
previously established root cultures grown on PGR-free medium, and Nguyen et al. [84]
used 5–10 mm long main and lateral root fragments without root tips to induce somatic
embryogenesis.

As mentioned above, organs from young seedlings 1–2 weeks old were most com-
monly used for culture initiation. However, to our knowledge, the effect of donor plant
age on the SE regeneration capacity has never been studied in spinach, although it has
been shown that cotyledons from five-day-old seedlings showed the best de novo shoot
regeneration response compared to younger and especially older cotyledons that lacked
the ability to regenerate shoots [81].

Somatic embryogenesis was also induced from protoplasts obtained from the cotyle-
dons, roots, and hypocotyls of 10-day-old seedlings and from the leaves of 30-day-old
plants of the cultivar Jiromaru [91].
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Table 1. Summary of literature data on the induction of somatic embryogenesis from different types
of explants isolated from different sources in spinach cultivars. The content of plant growth regulators
in the media used for the induction of embryogenic callus and somatic embryo regeneration is shown
in the table.

Cultivar Explant Source Explant Types Tested Callus Induction SE * Regeneration Reference

Carpo 1-week-old seedlings Hypocotyl segments
(2–3 mm)

MS + 85.7 µM IAA +
100 µM GA3 + 2%

sucrose

MS + 11.4 µM IAA +
10 µM GA3 + 2%

sucrose
[96]

Carpo, RZ1 8-day-old seedlings Cotyledon, hypocotyl,
root (TCL: 400–500 µm)

MS + 100 µM NAA +
1 µM BA + 10 µM
GA3 + 5% sucrose

MS, PGR-free [101]

Gyeowoonae 2-week-old seedlings Root segments
(5–10 mm)

1/2 MS + 10 µM
NAA + 0.3 µM GA3 +

2% sucrose

10µM NAA + 0.1 µM
GA3 + 2% sucrose [84]

Jiromaru, Nihon,
Hoyo, Minsterland,

Viroflay, King of
Denmark, Nobel, Ujo

10-day-old seedlings
30-day-old plants

Cotyledon, hypocotyl,
root segments (5 mm
each), leaf fragments

(5 mm2)

MS/2 + 10 µM NAA
+ 0.1 µM GA3 + 1%

sucrose

MS, PGR-free + 2%
sucrose [69]

Jiromaru 10-day-old seedlings Root segments (8 mm)
MS/2 + 30 µM NAA
+ 100 µM GA3 + 1%

sucrose

MS, PGR-free + 2%
sucrose [100]

Jiromaru 10-day-old seedlings Root segments (8 mm)
MS/2 + 30 µM NAA
+ 100 µM GA3 + 29

mM fructose

MS, PGR-free + 59
mM sucrose [104]

Matador 2-month-old plants Leaf discs (5 mm)
MS + 4.4 µM 2,4-D +

4.6 µM Kin + 2%
sucrose

MS + 4.6 µM Kin +
2% sucrose [97,99]

Matador, Virofly 2-month-old plants,
10-day-old seedlings

Leaf discs (5 mm),
hypocotyl segments

(5–10 mm), middle part
of cotyledons

MS + 4.4 µM 2,4-D +
4.6 µM Kin + 2%

sucrose

MS + 4.6 µM Kin +
2% sucrose [98]

Nippon in vitro root culture Root segments (5 mm)
1/2 MS + 10 µM

NAA + 0.1 µM GA3 +
5.4 g/L fructose

1/2 MS, PGR-free +
2% sucrose [70]

* SE—somatic embryo; 2,4-D—2,4-dichlorophenoxyacetic acid; Kin—kinetin; IAA—indole-3-acetic acid; GA3—
gibberellic acid; NAA—α-naphthaleneacetic acid; BA—benzyladenine.

2.1.3. Media Composition—Mineral Elements

In most studies, a full or half-strength MS mineral solution was used for embryogenic
callus induction in spinach (Table 1) [96–99]. However, Nitsch’s and 1/2 MS solutions
were found to induce the highest frequency of embryogenic response in root sections of
the Jiromaru cultivar (51.1% and 37.8%, respectively) among the six mineral solutions
tested: White’s [111], MS [112], half-strength MS (1/2 MS), B5 [113], Nitsch’s [114], and
SH [115], whereas explants cultured on medium supplemented with White’s mineral so-
lution showed no embryogenic response [69]. The ratio of nitrate and ammonium in a
mineral solution also had a significant effect on embryogenic response, and the highest
frequency of embryogenic explants (62.2%) was obtained in the explants cultured at a
nitrate:ammonium ratio of 2:1 [69]. The total nitrogen concentration (nitrate + ammonium)
was optimal at a nitrate:ammonium ratio of 2:1 at 10–30 mM [69], which is why these au-
thors used 1/2 MS mineral solution for embryogenic callus induction in later studies [69,70].
However, Leguillon et al. [101] compared the effects of MS and MW mineral solution, the
latter containing White’s macroelements, Nitch’s microelements, and MS vitamins, and
obtained better results with MW, although the regeneration response was generally low.
For SE regeneration, the MS mineral solution was used in all studies (Table 1).
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2.1.4. Plant Growth Regulators

The most common approach to induce somatic embryogenesis in plants is to admin-
ister auxin for a short period of time and then withdraw it to allow SEs to develop [116].
However, this approach failed in spinach. Komai et al. [100] tested several of the most
commonly used auxins: indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), NAA, and
2,4-dichlorophenoxyacetic acid (2,4-D) at a wide range of concentrations (0.1–100 µM)
and found that none of them was sufficient to induce somatic embryogenesis from root
sections of the cultivar Jiromaru. Moreover, combinations of these auxins with a number
of cytokinins: trans-zeatin [6-(4-hydroxy-3-methylbut-trans-2-enylamino) purine] (ZEA),
2-isopentenyl-adenine (2-iP), N6-furfuryladenine (Kinetin, Kin), N6-benzyladenine (BA),
and N-(2-chloro-4-pyridyl)-N′-phenylurea (CPPU) at 0.01–10 µM, did not yield satisfactory
results, as only several combinations of NAA or 2,4-D with ZEA or 2-iP elicited embryo-
genic callus formation and SE regeneration, but with very low frequency (up to 16%). Other
research has also tried numerous combinations of Kin with 2,4-D, IAA, or NAA and failed
to induce a response in several explant types of the Carpo and RZ1 cultivars [96,101].

Calli derived from leaf discs and hypocotyls of the cultivar Matador on medium
supplemented with 4.4 µM 2,4-D + 4.6 µM Kin for 8 weeks and then transferred to medium
supplemented with 4.6 µM Kin, however, gradually transformed into a new callus type—a
deep red, compact callus within the next 8–12 weeks [97–99]. The greenish and red callus
types survived side by side in the same cultures, but SEs were observed only on the red
parts of the calli. Thus, SEs developed only secondarily on organogenic calli grown on Kin-
supplemented medium, in 33.3% of callus clones derived from leaves and 36.4% of callus
clones derived from hypocotyls. Calli continuously cultured on callus induction medium
containing 4.4 µM 2,4-D + 4.6 µM Kin were organogenic and retained their bud regeneration
capacity for up to 10 months, whereas those cultured on Kin-supplemented medium
were embryogenic and retained their embryogenic capacity for more than 7 years [98,99].
Repeated rounds of cultivation of red callus on callus induction and regeneration media
always followed the same pattern: the formation of green undifferentiated callus on callus
induction medium (4.4 µM 2,4-D + 4.6 µM Kin), which gradually became organogenic, and
the subsequent formation of red callus, which regenerated SEs after transfer to medium
supplemented with 4.6 µM Kin [98].

Moreover, an inverse relationship between callus growth and SE induction has been
observed [98,99]. Similarly, an inverse correlation between callus growth and shoot bud
regeneration has been observed in several spinach cultivars [74,85]. A good example of
this observation is the differential effect of two structurally similar cytokinins, BA and
Kin, on these processes. Compared with Kin, BA significantly promoted callus growth
but suppressed SE differentiation and vice versa [98]. Consistent with this, 4 and 10 µM
abscisic acid (ABA) in combination with BA or Kin decreased callus weight to 20–50% of
controls but contributed to a further increase in SE number when combined with Kin. The
highest SE number per 1 g of callus (678 SEs/g) was achieved with 4 µM ABA + 5 µM Kin
and was almost twice as high as with 5 µM Kin alone (325 SEs/g) [99]. The effect of ABA
suggests that the enhancement of somatic embryogenesis in its presence was probably a
stress response of the cells, as the cells were prevented from dividing [117]. Conversely,
the inhibition of somatic embryogenesis was observed when red embryogenic callus was
cultured on BA- or Kin-supplemented media in combination with 0.3, 1, 3 or 10 µM
GA3, whereas GA3 significantly promoted callus growth, especially in combination with
BA [98,99].

However, in other regeneration systems, GA3 has been found to be essential for SE in-
duction (Table 1) [96,100,101]. Xiao and Branchard [96] applied IAA at high concentrations
(85.7 or 48.6 µM) in combination with GA3 (10 or 100 µM) to induce somatic embryogenesis
from hypocotyl discs (2–3 mm) of one-week-old seedlings of the cultivar Carpo (Table 1).
Embryo-like structures were observed on calli after only three weeks of cultivation on
media supplemented with 85.7 µM IAA + 10 or 100 µM GA3, but SEs were obtained from
explants cultured on all of the above IAA/GA3 combinations in callus induction medium
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after an additional four-week period of cultivation. The highest frequency of embryo-
forming calli was obtained in explants cultured on medium supplemented with 85.7 µM
IAA + 100 µM GA3 for seven weeks and then subcultured on medium containing 11.4 µM
IAA + 10 µM GA3 for four weeks (Table 1). In addition, subculturing the calli in liquid
medium supplemented with 2.86 µM IAA + 10 µM GA3 was beneficial for the release of
SEs from the calli, but with a higher frequency (10%) of SE malformations [96].

Consistent with this, auxins, which were not sufficient to induce embryogenic callus
formation from root segments of the cultivar Jiromaru, either alone or in combination with
cytokinins, were able to induce somatic embryogenesis when combined with GA3 [100],
confirming the requirement of GA3 for SE induction in spinach postulated by Xiao and
Branchard [96]. However, GA3 alone was not sufficient to induce cell proliferation or to
initiate SEs (Figure 2a). The optimal amount of auxins and GA3 varied among cultivars. In
contrast to the cultivar Carpo, high concentrations of IAA (100 µM) and GA3 (1–100 µM)
were not effective for SE induction from root explants of the cultivar Jiromaru, with only
4–12% of explants responding with 9.0 SEs per explant [100]. In combination with GA3,
IBA and 2,4-D caused a rather low frequency (up to 20%) of embryogenic callus forma-
tion, while 10 and 30 µM NAA proved to be much more effective, causing embryogenic
callus formation in 16–72% of explants, with 30 µM NAA + 100 µM GA3 being the best
combination (Table 1) [100].
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Later, the same group of authors demonstrated that GA3 is not required for the
induction of SEs from the hairy roots of four spinach cultivars [118]. This phenomenon has
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not been clearly elucidated, although hairy roots are known to exhibit altered hormone
homeostasis [119] and sensitivity to growth regulators [120,121], but no study has addressed
this issue.

In another study, 20 µM NAA + 5 µM GA3 proved to be the most effective PGR
combination for inducing shoot buds from root sections of the cultivars RS no. E and
Longstanding Round [83]. However, the same treatment induced somatic embryogenesis
from root sections of the cultivar Matador, while shoot regeneration was never observed
under these conditions [71,102,105,108,109].

Ethylene also plays an important role in the induction of somatic embryogenesis from
spinach roots, in a complex manner—it is promotive for the induction of embryogenic cal-
lus but inhibitory for SE differentiation [122]. Ethephon (1–100 µM), an ethylene-releasing
compound, increased the frequency of embryogenic callus formation, but only in com-
bination with 0.1 µM GA3. Conversely, 2-aminoethoxyvinylglycine (AVG), an inhibitor
of ethylene biosynthesis, and silver ions, which inhibit ethylene signaling, suppressed
embryogenic callus formation at 10 µM and 1 µM, respectively, but significantly increased
callus proliferation. The inhibitory effect of 1 µM AVG was abolished by the application of
10 µM ethephon. However, when ethephon was applied after the callus induction phase,
i.e., added to the PGR-free medium through the SE proliferation phase, it strongly inhibited
SE differentiation. Conversely, silver ions promoted SE differentiation at 1–100 µM, with
the effect being strongest at 10 µM [122].

Not only PGR concentration but also treatment duration affected embryogenic effi-
ciency. Komai et al. [69] applied callus induction treatment for only 4 weeks and then
subcultured the explants on PGR-free medium. However, many reports showed that longer
periods of callus induction were more effective [84,96,98,99]. In the cultivar Gyeowoonae,
a 6-week callus induction was much more effective than shorter ones (2 and 4 weeks) for
the acquisition of embryogenic competence [84].

2.1.5. Other Media Components

Carbohydrates are also a mandatory component of the medium. For the induction of
embryogenic callus, 2% sucrose has been used most frequently (Table 1) [96–99]. However,
Komai et al. [104] showed that sucrose is not the best choice for efficient SE induction
from root explants of the Jiromaru cultivar. The highest frequency of embryogenic callus
formation was obtained with fructose (72.5%), raffinose (64.4%), and maltose (52.0%), while
glucose (38.6%) and sucrose (36.0%) showed a more modest effect, and mannose and sor-
bose completely inhibited cell proliferation and callus formation, so these sugars, together
with galactose and lactose, were not suitable for cell proliferation. The effect of these
hexoses and oligosaccharides was tested at 29, 87, and 145 mM, and all sugars showed the
best effect at the lowest concentration of 29 mM [104]. Moreover, the weekly measurement
of the residual sugar content in a liquid medium showed that root cells isolated from
seedlings of the Jiromaru cultivar preferentially utilized fructose [104]. Therefore, these
authors used 1% fructose (29.21 mM) in further studies (Table 1) [70]. However, in TCL
explants of the Carpo and RZ1 cultivars, sucrose at 2% favored regeneration, while fructose
impaired TCL development, although SE regeneration was observed [101].

Vitamins are also obligatory components of the medium. For the induction of somatic
embryogenesis in spinach, some studies used an MS formulation of vitamins [96,101],
while other studies enriched media with a range of B vitamins: 0.4–2 mg/l thiamine (B1),
0.5–2 mg/L pyridoxine (B6), and 0.5–5 mg/L nicotinic acid (B3) [69,97–99]. Xiao and
Branchard [96] supplied 0.01 mg/L biotin (B7). Other adjuvants such as glutamine [96] or
coconut water [53] were rarely used.

In addition to the standard media constituents, several other compounds have been
shown to have a significant effect on the embryogenic response of spinach root apices.
These compounds include hygromycin B (Hyg), trichostatin A (TSA), and dimethyl sul-
foxide (DMSO). Hyg, an antibiotic commonly used to select genetically transformed cells,
significantly promoted somatic embryogenesis from root apices and secondary somatic em-
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bryogenesis when administered at low doses of 0.5–1.0 mg/L [108]. As mentioned earlier,
spinach roots are the preferred explant type for efficient SE induction. However, spinach
root apices are fragile and tend to become necrotic during the selection of transformed cells
(Milojević et al., unpublished results). Therefore, stepwise selection offers the possibility
of improving the probability of the recovery of transformed SEs [108]. However, similar
enhancement of the embryogenic response by Hyg was not observed in the leaf explants
of in vitro spinach plants, presumably because only a high concentration of 20 mg/L was
used for the selection of transformed cells [123].

In a preliminary study, promoting effects of TSA, an inhibitor of histone deacetylases,
and DMSO, a widely used solvent, on SE initiation were observed [124]. DMSO at a concen-
tration of 0.05% significantly enhanced SE induction compared with the control, probably
by enhancing the uptake of NAA and GA3 into plant cells, whereas the enhancement of the
embryogenic response obtained with 0.1–0.5 µM TSA suggests a significant role of histone
acetylation in the epigenetic regulation of SE induction.

2.1.6. Culture Conditions

The effects of culture conditions have been studied only to a limited extent in spinach.
In most studies, cultures have been exposed to diffuse light provided by cool white flu-
orescent tubes under a long-day photoperiod (LD, 10–16 h of light) and a photosyn-
thetic photon flux density (PPFD) of 20–250 µmol m−2 s−1 from the beginning of cul-
ture [69,84,97–100,104]. Only Xiao and Branchard [96] and Leguillon et al. [101] kept
cultures in the dark for the first 1 and 2 weeks, respectively, after culture initiation.

However, when root apices of the same seedling were divided into two groups, one of
which was exposed to LD conditions (16 h photoperiod) and the other to short-day (SD)
(8 h photoperiod) conditions, the LD condition was always favorable for the induction of
SEs [109]. Explants from 7 of the 40 lines tested were able to regenerate SEs only under
LD conditions. Moreover, regeneration under SD conditions was delayed by four weeks
in all lines compared to LD conditions. Moreover, the embryogenic response of root
apices of SE-derived plants was most efficient at a PPFD of 100 µmol m−2 s−1 [109]. In an
opposite study, SD was found to be more effective in promoting shoot bud regeneration
from spinach cotyledons [82]. The discrepancies between the two studies may be due to the
use of different explant types and/or genotypes, as Geekiyanage et al. [82] used a different
cultivar and did not examine the response of individual seedlings under either light regime.

Ambient temperature has a strong influence on the de novo shoot regeneration of
spinach leaves [123]. Regeneration efficiency was 3–4 times higher in leaf explants culti-
vated at 14 ◦C than at 20 ◦C and 25 ◦C among different cultivars. To our knowledge, the
effect of temperature on SE induction has never been extensively studied in spinach.

3. Auxin, GA3, and Light Synergistically Promote SE Induction in Spinach

From all of the above information, it is clear that several factors act synergistically to
allow the full expression of the embryogenic potential of spinach root apices. These include
NAA, GA3, and light. The absence of any single factor results in a drastic reduction or even
abolition of SE initiation, although the presence of all factors does not guarantee the success
of SE induction. An intrinsic predisposition to somatic embryogenesis is mandatory for a
high SE response, making genotype an indispensable factor for SE induction.

Since the first report on spinach response to tissue culture [72] and most subsequent
studies on SE induction [70,83,86,96,100,105], GA3 has been considered indispensable for
SE induction in spinach. However, GA3 alone is unable to induce root cell proliferation and
embryogenic callus formation (Figure 2a) [125], so it must be combined with auxin [100].
GA3 had a differential effect on individual lines (derived from a single seed) of the cultivar
Nippon [70]. In general, the highly responsive lines required a lower GA3 concentration
(0.1 µM) to achieve a high frequency of embryogenic explants (80%), and further increasing
the GA3 concentration to 10 µM did not result in a statistically significant increase in the
embryogenic response. Moreover, explants from a highly responsive line did not require
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GA3 for SE regeneration and responded to 10 µM NAA alone, albeit with an SE regeneration
frequency of only about 20% [70]. Conversely, GA3 was indispensable in the lines with the
lowest embryogenic capacity, and in a least responsive line, only 10 µM GA3 was sufficient
to induce a modest embryogenic response in about 30% of explants [70], suggesting that
different lines require different GA3 concentrations for SE initiation. However, GA3 at
higher concentrations (in combination with 10 µM NAA) was not sufficient to trigger a
high embryogenic response (>50%) in lines with low intrinsic embryogenic capacity [70].
Interestingly, the SE regeneration frequencies of hairy root clones were proportional to
the corresponding non-transformed clones, suggesting a high genotype dependence even
in hairy root clones with altered hormone homeostasis [113]. Thus, these observations
indicate that multiple factors are involved in the acquisition of embryogenic competence in
spinach and that genotype at the individual level is a very important factor that should not
be overlooked.

Consistent with this, in the Matador cultivar, SE induction without exogenous GA3
was possible only in two previously selected highly responsive lines [105]. These lines
were maintained through cycles of SE initiation from the root apices of SE-derived plants.
Under optimal conditions, in the presence of NAA, GA3 or GA1, and fluorescent light
(16 h photoperiod at a PPFD of 100 µmol m2 s−1), 95–100% of explants of these lines
regenerated 16.7–40.7 SEs per explant. NAA alone induced the proliferation of root ex-
plants (Figure 2b,d), but the induction of SEs was extremely rare, 0.42 ± 0.42% of root
apices derived from randomly selected seedlings of the cultivar Matador regenerated
0.003 ± 0.001 SEs per explant [125]. In the preselected highly responsive lines and under an
LD photoperiod, NAA induced the regeneration of SEs at a fairly high frequency, in 19–89%
of explants, but with only a few SEs per explant [105,126]. In darkness, only explants of
a superior lineage were embryogenic, but at an extremely low frequency of 0.95% and
only 0.14 SEs per explant [105]. Root apices derived from randomly selected seedlings
of the cultivar Matador responded at the frequency of 82.48 ± 1.14% and regenerated
8.78 ± 0.05 SEs per explant (Figure 2c,e). Apparently, the interplay of NAA, GA3, and light
is crucial for efficient SE induction (Figure 2c,e). Selected spinach lines exhibited different
requirements for GA3 for efficient embryogenic response: 2.5 µM GA3 was optimal for a
line with higher embryogenic capacity, while 5 µM GA3 was required for lines with lower
embryogenic capacity [105]. Moreover, GA3 was more effective than GA1 for SE induction
in all lines tested [105].

It has already been suggested that GA3 is not required for the induction of regen-
eration, but only to stimulate the development of shoot primordia from calli competent
for regeneration [78]. However, in the cultivar Matador, only a synergistic action of NAA
and GA3 from the beginning of explant cultivation resulted in successful SE induction
(Zdravković-Korać et al. unpublished results).

Given the importance of GA3 in the induction of SEs, it was expected that paclobu-
trazol (PAC), an inhibitor of gibberellin biosynthesis, would inhibit the induction of SEs.
In contrast, PAC enhanced this process when combined with 20 µM NAA [127]. The
combination of 5–10 µM PAC + 20 µM NAA was as efficient as 5 µM GA3 + 20 µM NAA,
whereas the combination of 20 µM NAA + 5 µM GA3 + 2.5 µM PAC resulted in the highest
mean SE number per root explant [127]. As PAC interferes with the terpenoid pathway, it
affects abscisic acid and chlorophyll synthesis [128,129]. In addition, PAC affects ethylene
and cytokinin levels and increases the activity of the antioxidant system, thereby increasing
stress tolerance [130]. This is important because in vitro culture is considered stressful for
the plants and their organs.

What is the basis of the interaction between GA3 and light? Light is known to increase
the biosynthesis of bioactive gibberellins (GAs) [131,132] through the upregulation of
the GA20-oxidase (GA20-ox) gene [133–135], which is the checkpoint for maintaining GA
homeostasis [136,137]. GA20-ox catalyzes the successive oxidation of GA53 to GA20 or
GA9 [133], which are further converted to bioactive GA1 or GA4, respectively, in a reaction
catalyzed by GA3-oxidase (GA3-ox) [131,138], whereas GA2-oxidase (GA2-ox) inactivates
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bioactive GAs. Therefore, GA20-ox, GA3-ox, and GA2-ox are the key enzymes regulating
the levels of bioactive GAs [136,137].

Isolated root apices of Matador cultivar seedlings grown on PGR-free medium actively
expressed GA-ox genes. The expression levels of SoGA20-ox1, SoGA3-ox1, SoGA2-ox1,
SoGA2-ox2, and SoGA2-ox3 were increased 0.93-, 2.39-, 2.55-, 3.32-, and 3.94-fold, respec-
tively, in the roots after four weeks of cultivation under LD conditions compared with
cultivation in darkness [105]. However, under LD conditions, the expression levels of
SoGA20-ox1 and SoGA3-ox1 were lower by 8.56- and 7.41-fold respectively, whereas the
expression levels of SoGA2-ox1, -ox2, and -ox3 were 0.48-, 3.69-, and 1.23-fold higher, re-
spectively, in explants cultured on medium supplemented with 20 µM NAA + 5 µM GA3
than in those cultured on PGR-free medium [105].

Moreover, the levels of immediate precursors and bioactive GAs were significantly higher
in embryogenic explants cultured on medium supplemented with 20 µM NAA + 5 µM GA3
than in nonembryogenic explants cultured on medium supplemented with 20 µM NAA,
under LD conditions [126]. In nonembryogenic explants, only a transient increase in the
content of endogenous GA3 was observed after 24 h of cultivation, whereas no significant
difference was observed in the levels of other bioactive GAs compared with the control
root apices frozen immediately after isolation from LD-grown spinach seedlings [126].
However, in embryogenic explants, a significant increase in the content of all bioactive
GAs was detected after 24 h of cultivation, which remained steady after seven days of
cultivation, demonstrating the involvement of enhanced GA metabolism in the acquisition
of the embryogenic competence of spinach root explants [126].

4. Genetic Background of the Induction of Somatic Embryogenesis

It is still not known what exactly constitutes the genetic background for the predis-
position to somatic embryogenesis and de novo shoot regeneration, but it is becoming
increasingly clear that this trait is controlled by multiple genes [139,140]. A genome-wide
association study (GWAS) of 190 natural Arabidopsis accessions revealed that variation in
shoot regeneration efficiency from root apices is related to a number of genes encoding
transcription factors, hormone signaling, chromatin remodeling proteins, miRNAs, cell
wall-modifying enzymes, among others [139]. Consistent with this, a single nucleotide
polymorphism (SNP) detected in some of these genes, which affects protein conformation
and thus protein function, has been shown to be different in responsive and non-responsive
lineages or natural accessions [141]. This is the case for receptor-like protein kinase 1 (RPK1),
which is essential for shoot regeneration from Arabidopsis root tips and is required for the
epidermal cell shape and PIN1-mediated polarity of Arabidopsis embryos and cotyledon
primordia formation [142]. Based on GWAS, it has been proposed that de novo shoot
organogenesis is controlled by several universal master regulators (such as WUSCHEL)
and numerous conditional fine-tuning factors that depend on explant type, media composi-
tion, and culture conditions [139,140]. This is also likely true for somatic embryogenesis,
as the same master regulators play a central role in meristem formation in both shoot
primordia and SEs [143]. Moreover, SNP variations found in the promoter regions of genes
involved in regeneration induction, together with natural epigenomic and transcriptomic
variations, suggest that subtle transcriptional changes may also contribute to the efficiency
of regeneration [139,140]. Consistent with this, low embryogenic capacity in M. truncatula
has been shown to be genetically determined [144]. However, SEs of these lines with low
responsiveness gave rise to three lines with high embryogenic capacity after several cycles
of selection and SE induction in independent studies [144]. As no genetic differences were
found between the wild-type line Jemalong and a highly embryogenic line 2HA, it has been
proposed that 2HA is an epigenetic variant of the wild-type Jemalong [144]. In addition
to the above examples, a variety of proteins have been found to be involved in SE and de
novo shoot induction, including histone modifying enzymes [145], DELLA proteins [146],
ferredoxin-nitrite reductase [147], thioredoxin [148], and superoxide dismutase [149]. The
different functions of these proteins and the possible involvement of environmental factors
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in regulating their expression also suggest a complex nature of the initiation of SEs and the
de novo regeneration of shoot buds.

5. A Molecular Marker for Embryogenic Capacity Assessment

To our knowledge, there is no molecular marker developed in spinach to determine the
intrinsic predisposition to the high embryogenic capacity of individual plants. However,
a 31-kDa basic protein has been found to accumulate to significantly higher levels in
embryogenic compared with nonembryogenic calli or seedling tissues [106]. This protein
was characterized as a type 1 ribosome inactivating protein (RIP) and designated SoRIP1,
whereas another RIP protein was cloned and designated SoRIP2 [150].

The expression of SoRIP1 increased markedly during embryogenic callus forma-
tion from root segments cultured on medium containing 10 µM NAA + 0.1 µM GA3,
whereas it remained very low in nonembryogenic calli cultured on medium containing only
10 µM NAA [150]. SoRIP1 accumulated preferentially in the proembryos and meristem
of SEs [150]. In contrast, the expression of SoRIP2 was low, and its level was similar in
embryogenic and nonembryogenic calli during the callus induction phase but increased
markedly in embryogenic calli during SE regeneration and remained steady in isolated SEs.
SoRIP2 was found in the epidermis of SEs [150]. Thus, the expression profiles of both genes
suggest developmental regulation [150,151].

Although these RIP proteins are not themselves involved in the transition from the
vegetative to the embryonic stage, their expression coincides with the acquisition of em-
bryogenic competence and the early stage of embryo development, and they have been
used as molecular markers to quantify embryogenic capacity in subsequent studies [71,110].
Indeed, the expression of SoRIP2 proved to be very useful and reliable for the rapid and
early assessment of the embryogenic capacity of root explants of the cultivar Matador.
The expression of SoRIP2 was very low in seedling roots under noninductive conditions
(PGR-free medium) and in roots cultured on SE-induction medium prior to the initiation
of SEs but increased sharply (285-fold) in SEs at the globular stage of development, then
decreased at later embryogenic stages and reached control levels at the late cotyledonary
and early somatic seedling stages [71,110]. Thus, this method allowed much faster and
easier quantification of embryogenic capacity compared to conventional SE quantification
using a stereomicroscope. SEs at the earliest stages of development are difficult to delineate
because they are embedded in root tissue proliferations, making them difficult to observe
through a stereomicroscope, such that differences between low and high embryogenic
capacity lines are visually detectable only after 8–10 weeks of cultivation [110], whereas
the expression of SoRIP2 could be used to distinguish between low and high embryogenic
capacity lines after 4–6 weeks of cultivation [71]. Therefore, the expression of SoRIP2 in
explants after 4–6 weeks of cultivation showed a high positive correlation with classical SE
quantification after 12 weeks of cultivation [110].

6. The Origin of SEs, SE Development, and Conversion to Plants

As mentioned earlier, SEs developed from proliferating root tissue. In some cases, SEs
developed from massive calli arising from root sections cultured on medium supplemented
with NAA + GA3. Histological examination revealed that SEs originated from the epidermal
layer of root tissue [103] or from the pericycle and parenchyma associated with root vascular
tissue [105].

The PGR balance in the media significantly influenced the development of SEs [99].
The percentage ratio of globular (GE), bipolar (heart-shaped + torpedo-shaped, HTE),
and cotyledonary (CE) SEs (GE:HTE:CE) was 61:17:22 and remained similar in explants
cultured on Kin- and BA-supplemented media. However, the addition of ABA, GA3, or
IAA to Kin- or BA-supplemented media significantly altered the ratio of SEs. ABA at
4 µM and 0.3–10 µM GA3 caused a significant increase in the percentage of globular SEs
up to 95% and 98%, respectively. In agreement with this, Kawade et al. [150] also found a
significant increase in the number of SEs from embryogenic calli subcultured on medium
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supplemented with 40 µM ABA, and the embryos were also arrested at the globular stage
of development. In contrast, 1 µM and 10 µM IAA favored the conversion of globular to
bipolar SE on account of the percentage of GEs, which decreased to 59% [99]. In addition,
ABA at 1–4 µM + Kin had a positive effect on the development of SEs, as cotyledons were
better developed, and fewer malformations occurred [98].

The SEs went through all stages of development, from globular to cotyledonary, and
even germinated on medium supplemented with 20 µM NAA + 5 µM GA3 (Figure 3).
However, they became hyperhydrated and malformed if left on this medium at the late
cotyledonary or early seedling stage. SEs developed asynchronously so that SEs were
present at all stages of development on root explants. The development of the globu-
lar embryos to the seedling stage usually took one to two weeks. The cotyledonary SEs
did not require PGRs for conversion into plants and hence could be grown on PGR-free
medium [84,97,98] although 2.69 µM GA3 [97,98], 2.86 µM IAA [96] or 5 µM Kin [102]
promoted their conversion into plantlets. SE-derived plants retained a rosette form un-
der an SD photoperiod, bolted and flowered under an LD photoperiod, and set viable
seeds [45,52,54,55,102]. This is also true for spinach plants obtained by de novo shoot
organogenesis [79,83,152,153]. Seeds obtained by in vitro pollination germinated at a high
frequency of 83–95% [83,102] and did not require cold stratification [102,152], as numerous
seeds germinated while still attached to the mother plant [102]. In addition, the life cycle
“from seed-to-seed” of in vitro-cultured SE-derived plants was shortened by two weeks
compared to conventional seeds [154], as also observed in Arabidopsis thaliana and Vigna
subterranea [155,156].
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In addition, a high survival rate of 96% of SE-derived plants was attained in the
cultivar Gyeowoonae, while 77% of the plants grew to maturity and set seed [84]. Nguyen
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et al. [84] reported that only 6–7 months elapsed from culture initiation to seed production,
and the application of an optimized procedure enabled the successful regeneration of
transformed spinach plants [157].

7. Conclusions

Somatic embryogenesis is considered a superior method for the clonal propagation of
valuable genotypes. Although spinach has been considered recalcitrant to in vitro regener-
ation for decades, efficient protocols for SE induction have been established. However, they
are not applicable to all cultivars, indicating the wide variation and genotypic dependence
of this trait among spinach cultivars. Individual variability in embryogenic capacity behind
lot-to-lot variation could also be an explanation for the observed differences among culti-
vars. Therefore, the effect of genotype must always be considered, as the variations between
individuals may be much greater than the variations caused by other factors. Moreover,
embryogenic capacity could be significantly improved by several cycles of self-fertilization
starting from an individual with moderate embryogenic capacity.

The efficiency of SE induction from root sections of spinach is strongly influenced by
the synergistic interaction of NAA, GA3, and light. Analysis of the GA content revealed
that the increased content of bioactive GAs, especially GA1, correlated with the acquisition
of the embryogenic competence of root explants. Thus, it remains to be elucidated how
the interaction of NAA and GA3 triggers an increase in bioactive GAs in embryogenic
explants. Further studies on the interaction between these PGRs and light at the level
of gene expression and the content of endogenous GAs are currently underway in our
laboratory. In this context, the genome assembly of spinach and the establishment of
SpinachBase for gene expression analysis are of utmost importance.

In summary, although the protocols developed for the induction of SE in spinach
are still genotype dependent, the effects of the major factors influencing somatic embryo
induction are now much better understood, and the efficiency of embryogenic capacity has
been greatly improved.
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