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Abstract: Increased consumption of vegetables has been recommended worldwide as a part of a
healthy diet; therefore, determining gene function among breeding materials is crucial for vegetable
improvement to meet the sustainable development of new vegetable varieties. However, genetic
transformation is time-consuming and laborious, which limits the exploration of gene function for
various vegetable crops. Virus-Induced Gene Silencing (VIGS) can perform large-scale and rapid
gene silencing in plants due to a reduction in the experimental period and its independence from
the stable genetic transformation, providing an excellent opportunity for functional research. VIGS
can accelerate model plant research and make it easier to analyze gene function and validation in
vegetable crops. Moreover, with the advent of technologies such as virus-mediated heterologous
protein expression and the development of CRISPR/Cas9 technology, virus-mediated genetic tools
have ushered in a new era in genetics and crop improvement. This study summarizes recent
achievements in VIGS and Virus-Induced Gene Editing (VIGE) in vegetables. We also identify several
challenges in the current state of VIGS technology in vegetables, serving as a guide for future research.

Keywords: VIGS; VIGE; VIGO; CRISPR/Cas9; VSRs

1. Virus-Induced Gene Silencing (VIGS) System

Vegetables are grown worldwide and play an important role in the nutrition demands
of humans’ daily diets, especially for providing vitamins, minerals, and dietary fiber,
which have been strongly associated with human health. They can also be a major source
of protein in poor regions. The continuous increase in human living standards, along
with increasing demand for vegetable production and quality, make the improvement of
molecular breeding technologies applied to vegetable breeding a need to achieve more
efficient and sustainable crop production. This market demand for high-quality and more
uniform products, together with global warming, oblige scientists to explore gene functions
which are important for agronomic traits (e.g., disease, pest, or abiotic stress resistance) in
vegetables. Traditional methods to study plant gene function include transgenic technol-
ogy, gene knockout, gene-induced overexpression, and RNAi technology. These research
methods have certain limitations, such as long research cycles, the need for genetic trans-
formation, and low conversion efficiency, limiting rapid and efficient study of plant gene
functions [1,2]. However, Virus-Induced Gene Silencing (VIGS) provides an alternative
tool to investigate gene functional validation in vegetables.

VIGS is an effective method for switching off the expression of a gene. It was devel-
oped based on the mechanism of plants’ defenses against viruses, using RNA-mediated
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post-transcriptional gene silencing (PTGS) [3–5]. It has emerged rapidly as a key regulator
of gene expression applicable to reverse genetics for plant gene functional studies. Plant
scientists discovered gene silencing-related mechanisms while performing plant transfor-
mation experiments in which the introduction of a transgene into a desired genome resulted
in the silencing of both the transgene and its homologous endogenes [6,7]. As a result of
these first observations, plant geneticists and biologists developed this molecular biology
approach to address not only gene silencing method questions, but also to explore the
complexity of the biological pathways involved, as well as to demonstrate their multilayer
relationships with one another. For instance, it is well documented that, after the virus
infests a plant, viral transcription and replication in the plant cell cytoplasm lead to a
double-stranded RNA (dsRNA), which is key in the VIGS process. dsRNA was cleaved
into small interfering RNA (siRNA) by the Dicer or Dicer-like (DCL) nuclease, ranging
from 21 to 24 integrated nucleotides, and siRNA binds to RNase in plants as a single strand
to form an RNA-induced silencing complex (RISC). Further, the RNA-induced silencing
complexes (RISCs) cleave to viral RNA in the cytoplasm in a nucleotide-specific manner,
ultimately triggering the degradation of the targeted mRNA [8–12] (Figure 1). RNA silenc-
ing is an evolutionarily conserved RNA-mediated process [13], where sequence-specific
eukaryotic gene silencing mechanisms are involved in numerous biological processes in
plants and animals [14]. Therefore, virus infection has been proven as an efficient trigger of
RNA silencing, turning VIGS into a powerful tool for gene function studies and vegetable
improvement.
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Figure 1. Model of post-transcriptional gene silencing (PTGS)-mediated gene silencing in plants.
First, a partial segment (~200–500 bp) homologous to the target gene of interest is cloned into a
modified single/multipartite viral genome harbored within a plasmid vector. Then, Agrobacteria
are used to transfect plant cells and transfer DNA from the binary vector into the nucleus where it is
transiently expressed. Finally, dsRNA formed during virus replication are cleaved by DICER proteins
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to produce siRNAs that guide RISC and the local amplification of siRNAs that systemically spread to
induce post-transcriptional gene silencing of a target mRNA. Abbreviations: RISC, RNA-induced
silencing complex; siRNA, small-interfering RNA; dsRNA, double-stranded RNA; DCL, DICER-Like.

In this study, we (1) described the advantages of current VIGS applications in plants;
(2) review the VIGS vectors successfully used to study gene function in vegetables; and
(3) discuss the improvements in VIGS technology and its potential application in the future
crop enhancement.

2. Advantages of VIGS
2.1. Transient Silence of VIGS

Transient silencing of VIGS to analyze plant endogenous gene function is a fast and
effective reverse genetic tool in plant functional genomics. This is possible since phenotypic
changes induced by the down-regulation of endogenous plant genes can be detected in
a short period of time [1,15,16]. The effective silencing time and the effectiveness of viral
vectors differ depending on the viral vector and the target plant infested [2,17,18]. For
instance, photobleaching in leaves, stems, axillary buds, and sepals of Tobacco Rattle Virus
(TRV)-based VIGS system, using phytoene desaturase (PDS) as a reporter gene, infiltrated
tobacco (Nicotiana benthamiana) plants appeared 10 days after TRV infestation [19]. Another
observation was that the percentage of white tissue in leaves decreased 28 days after
infestation [5]. A similar experiment in tomato reported that the transient silencing response
of TRV–PDS sprayed on 4-week-old tomato seedlings showed symptoms of photobleaching
caused by Silene latifolia (Sl) PDS gene silencing after ~8 weeks of leaf inoculation. The
systemic photobleaching persisted throughout the experiment for 4 months after the
inoculation [19].

In another experiment to assess silencing by Agrobacterium-mediated barley stripe
mosaic virus (BSMV) VIGS, a 370 bp PDS (NbPDS) fragment from N.benthamiana was
cloned into pCa-cbLIC to generate pCa-cb:NbPDS370. Then, the four-leaf stage of N.
benthamiana was infiltrated with Agrobacterium mixtures containing pCaBS-a, pCaBS-b,
and pCa-cb: NbPDS370. Leaves infiltrated with virus to elicit PDS silencing developed a
mottled photobleaching phenotype on the fifth or sixth leaves at 9 to 10 dpi, and, about
5 days later (15 dpi), larger (and more uniform) white PDS silencing areas were observed
at the 6- to 8-leaf-stage. Furthermore, PDS silencing was most pronounced at 30 to 45 dpi,
with larger and more apparent areas of photobleaching on many stems and petioles [20].

2.2. VIGS Overcomes Functional Redundancy

Determination of gene function is particularly problematic when studying large gene
families because two or more genes could perform the same function, either by gene
copy duplication or a higher ploidy level. The inactivation of one of these genes has little
or no effect on the phenotypic appearance; thus, gene redundancy limits the ability to
experimentally assess the contributions of individual genes. However, VIGS can overcome
this gene function redundancy by constructing the viral vector carrying highly conserved
regions of the target gene family and potentially knocking off all the family members [1,21].
One example is the heat shock protein 90 (HSP90) that belongs to a large gene family of
transcription factors that control fundamental processes of plant development. An insertion
of the highly conserved coding sequence of the HSP90 gene family into the Potato Virus
X (PVX) viral vector silenced all HSP90 mRNAs and was confirmed by protein blotting
in tomato. Lack of HSP90 protein led to stunted development and leaf deformation plant
phenotypes. Therefore, the use of VIGS technology allowed us to demonstrate how HSP90
protein likely had a key role in tomato growth and development [2].

VIGS can also overcome the redundancy issue in polyploid species. Cabbage (Bras-
sica rapa L.) is a globally significant vegetable crop (71 million tonnes per year) [22], where
its ploidy level, high gene duplication rate, and long growth cycle have posed challenges
for stable genetic transformation, greatly limiting study at the gene functional level. To
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overcome this challenge, a VIGS system of cabbage was constructed using the Tomato
Yellow Leaf Curl Virus (TYLCV) viral vector. This tailored molecular biology approach al-
lowed us to demonstrate, for example, how the gene Basic Helix–Loop–Helix transcription
factor, BcbHLHpol, regulates pollen development and the fact that it is likely activated at
low temperatures as an essential step in meiosis [23].

VIGS was also used to investigate the role of transcription factors (TFs) synchronized
with the expression of genes related to programmed cell death (PCD) during PCD and
salt stress. Knockdown mutants of these TFs were generated in tobacco by modifying the
TRV and utilizing VIGS to produce knockout mutants of these TFs in tobacco. Results
of knockdown mutant tobacco cells confirmed the influence of two TFs during PCD. In
addition, the knockout insertion mutants and overexpression lines indicated the role of
ERF109 in conferring salt tolerance in Arabidopsis [24].

2.3. VIGS Overcomes Conditional Constraints

CRISPR/Cas9 technology is widely used for gene validation by performing gene
knockouts at the DNA level. Although it is a powerful technology, it may not be suitable
when investigating essential genes that have been shown to be plantlet lethal (in the
knockout stage) during the regeneration of plant transformation [21]. The main advantage
of VIGS is that it can effectively down-regulate the expression of those same essential
genes and can provide a better understanding of gene effects’ influence on the phenotype,
primarily by taking advantage of post-translation regulation impacts of reducing protein
level expression [1,2,25]. Another benefit is that, because the knockdown regulation is
temporary, it can return to normal growth and seed production and does not retain the
virus or vector components [26].

One example that highlights the power of VIGS as a tool to study temporarily inhibited
gene expression is the Proliferating Cell Nuclear Antigen (PCNA), which is essential for host
cell growth and development. For PCNA, most mutations are lethal and difficult to retrieve.
Therefore, gene functional verification cannot be performed by transgenic silencing. PCNA
is an important component in the replication and repair machinery involved in nucleic acid
metabolism [27]. PCNA contributes to the persistent DNA polymerase δ and DNA poly-
merase ε synthesis factor that attaches the polymerase catalytic unit to the DNA template
for rapid and sustained DNA synthesis. Knockout of PCNA in plants by CRISPR/Cas9
methods leads to death during regeneration, providing only partial information on the
gene function due to the scarcity of phenotypes [28]. In contrast, using VIGS technology to
silence the PCNA gene in tomato permitted the screening of the whole set of individuals
tested. This essay resulted in severely stunted growth of infested tomato plants with the
VIGS–PCNA viral vector, in contrast to no morphological effects observed in an empty
vector plant test with VIGS–GFP as the reported gene. This proved the importance of the
virus-induced gene silencing technology in demonstrating the causality of the PCNA gene
in tomatoes [29].

2.4. Disadvantages VIGS

When performing a comparison of VIGS technologies, their main disadvantages
are that most viruses used for VIGS have a limited number of hosts, and the virus–host
combination seems to be a crucial factor in determining the efficacy of silencing. Some of
the viruses used in VIGS can cause symptoms that might mask the phenotype caused by
the silencing of the target gene. Moreover, many viruses do not infect the growing points
or floral parts of plants, especially the seed, precluding gene silencing in these tissues [30].

3. VIGS Applications in Vegetable Plants

To date, many plant viruses have been successfully modified as VIGS vectors to
induce targeted gene silencing in host vegetable plants (Table 1), such as tobacco mosaic
virus (TMV), PVX, and TRV. Among them, TRV is especially widely used in Solanaceae
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vegetables, and gene silencing can be effectively induced by constructing recombinant TRV
virus vectors [10,31,32].

TRV vector has been successfully applied in several plant organs (leaf, root, and
flower), affecting key aspects of plant nutritional growth and reproductive stages [5].
Recently, studies have shown that this same technology can be applied to fruits, for example,
tomato or pepper [33]. In tomato, the characteristic bleaching phenotype after TRV–PDS
injection was obtained and those symptoms expanded, infesting peduncles at the tomato
fruit developmental stage. Gene silencing was confirmed at the molecular level by qPCR.
In pepper, an optimized TRV vector was developed using a Viral Silencing suppressor of
RNA silencing (VSR). pTRV2-C2b-CaCCS vector was constructed, targeting a key gene
in capsanthin/capsorubin biosynthesis that achieved high efficiency of calcium-activated
chloride channels’ (CaCCS) protein silencing [33]. Another example of studying fruit
organs was the silencing of the tomato ethylene (EIN3)-binding F-box genes. SlEBF1 and
SlEBF2 have been reported to negatively regulate ethylene signaling, causing constitutive
ethylene-related symptoms, fertility defects, growth decline, plant senescence acceleration,
and fruit ripening [34]. Altogether, these examples show the impact this molecular gene
silencing advancement can have, to better explain gene function validation throughout the
whole vegetable life cycle.

Table 1. Overview of the characteristics of VIGS applied in vegetable crops.

Viral Vectors Host Range Virus Symptoms Features Reference

TRV

Solanaceae, Asteraceae,
Leguminosae, etc.

More than 12 families and
60 species

Minor

The VIGS expression system has
been successfully established in a

wide range of hosts, while the
effectiveness in cucurbits needs

further validation.

[33,35–37]

ALSV
Solanaceae,

Leguminosae, Cucurbitaceae,
Brassicaceae, etc.

No symptoms

Long-term effective induction of
stable virus-induced gene

silencing, but the expression of the
viral genome needs to be

processed by a dedicated protease,
limiting its application.

[38–40]

TRSV Leguminosae, Cucurbitaceae,
etc. Minor

Silencing efficiency was high in
both model plants and crops, but

the infestation feasibility of
TRSV’s infestation clones in

watermelon was not confirmed.

[41–43]

CGMMV Cucurbitaceae Minor

CGMMV is a single RNA virus,
and, although it is easy to

manipulate, the silencing effect is
limited to the vicinity of leaf veins.

[12,44]

ToLCV Solanaceae Variable

The vector is able to replicate, in
different plant species, and

efficiently silences PCNA isogenes
in the host plant.

[29]

PVX Solanaceae Moderate

The vector is more stable than
TMV-based vectors, but the virus
is excluded from the host’s growth

sites or hyphal tissues.

[45–47]

TRV: Tobacco brittle virus; ALSV: Apple latent spherical virus; TRSV: Tobacco ringspot virus; CGMMV: Cucumber
green mottled mosaic virus; ToLCV: Tomato curly leaf virus; PVX: Potato X virus.

VIGS applications in vegetables have been challenged by the host-range reduced diver-
sity. As a matter of fact, TRV’s host-range reduced diversity has restricted the ability to test
gene silencing effects in the Cucurbitaceae family. The discovery and modification ability of
plant viruses has allowed using a broader host range of target vegetables, e.g., apple latent
spherical virus (ALSV), tobacco ringspot virus (TRSV), cucumber green mottle mosaic virus
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(CGMMV), and tomato leaf curl virus (ToLCV). ALSV has a wide range of vegetable hosts,
including the Solanaceae, the Cucurbitaceae, and the Fabaceae families, most of which have
shown no viral symptoms. At the same time, this viral vector was shown to effectively
induce stable virus-induced gene silencing in a wide range of vegetable plants and it has
been shown to possess long-lasting effects. For example, in pea (Pisum sativum L.), a 300 bp
fragment of a PDS gene from soybean plants was inserted into ALSV-RNA2 vectors, and
the resulting viruses (soyPDS-ALSV) were inoculated into primary leaves of pea plants.
Inoculated pea plants initiated the development of white spots on the third trifoliate true
leaf at 10 to 14 dpi and then showed highly uniform white photobleached phenotype in the
fourth or fifth true leaves, indicating the PDS gene was silenced. The PDS silencing on these
plants persisted for a month [48]. This caused pea death after one month due to the lack of
photosynthesis ability. Similar results were obtained when ALSV-CuPDS and ALSV-CuSU
vectors were used to infect Cucurbitaceae plants, including pumpkin (Cucurbita maxima L.)
having mRNA 76% lower expression levels in the leaf tissues compared to controls after
infection [49]. However, one of the disadvantages of the ALSV vector comes from its gene
expression strategy of the virus genome. As the proteins encoded by the ALSV genome are
expressed by polyprotein synthesis followed by proteolytic processing, it is necessary to
ligate target sequences in the frame to the cloning sites of the ALSV vector. This necessity
makes it difficult to apply an ALSV vector for high throughput functional genomics, as
reported by other vectors [1,2,50].

Another viral vector with a wide host in vegetables is the tobacco ringspot virus
(TRSV), a single-stranded positive-sense polyadenylated RNA molecules. This viral vector
was first applied to cucurbits and legumes, having silenced all plants with new white leaves,
petioles, and even tendrils being almost completely white [51]. Furthermore, the silencing
phenotype of the PDS gene was stable and persisted for approximately 1 month [49].
Recent studies have shown the role of the soybean mid–late flow protein gene (GmLATE)
in soybean by infesting plants with the VIGS system of TRSV. Researchers concluded that
the silencing of GmLATE reduced the expression of flowering-related genes and the arrest
of flower development in soybean [52]. They also demonstrated that the silencing effect of
this virus vector can remain effective until the reproductive growth stages.

Unlike double-stranded RNA viruses, CGMMV is a positive-sense single-stranded
RNA virus with a limited host range that turned out to be able to infect cucurbits [12].
In recent reports, the photobleaching caused by the infection of CGMMV-PDS vector
was observed on the third leaf of melon and gourd, and the fifth true leaf of cucumbers.
The stability of the photobleaching was variable in watermelon, melon, and cucumber
plants at 32, 20, and 39 days, respectively. However, the remaining challenge is that the
silencing effect is not as evident in the whole tissue as shown in Liu et al. [12], where the
photobleaching phenotype was constrained at the vicinity of leaf veins. The positive side
of this technique is the relative easiness of genetic manipulation of the virus vector, making
this technique widely utilized in functional genomics on the Cucurbitaceae crop family.

ToLCV and PVX are two additional virus vectors with a wide host range that can
be used to verify the gene function in tomatoes. The ToLCV vector belongs to the genus
begomoviridae of the family Geminiviridae and was used to silence the PCNA endogenous
gene in tomato, resulting in substantial stunting of the plant growth. Interestingly, the
vector’s silencing effectiveness was enhanced with the inclusion of a mutation in the
silencing suppressor Open Reading Frame (ORF) AC2 [29]. As for PVX, it has been used
as a VIGS virus in the Solanaceous genus for a long time [53]. For instance, it was used
to study the role SlymiR157 has during the ripening process in tomato. Pre-SlymiR157
was cloned into a PVX-based VIGS vector to produce a PVX/pre-SlymiR157, obtaining
a PVX able to efficiently deliver pre-SlymiR157 into fruits [54]. The results of this study
corroborated the correlation between pre-SlymiR157 presence and the delay in the ripening
(DR) phenotype, thus concluding that SlymiR157 was the main contributor to the tomato
fruit ripening [54].
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4. The Function Expansion and Application of Viral Vector
4.1. Virus-Induced Transcriptional Gene Silencing System (VITGS)

RNA silencing is a conserved defense mechanism in plants against external invading
entities, such as viruses, that regulate the expression of various genes [55]. It can occur
via two distinct pathways: post-transcriptional gene silencing (PTGS), that represses the
translation of RNA targets; and transcriptional gene silencing (TGS), which involves DNA
methylation at cytosine sites.

Transcriptional gene silencing (TGS) has an important epigenetic marker in the form of
DNA cytosine methylation which controls gene expression and plays a key role in genome
defense mechanism [56–58]. An epigenetic mechanism drives small RNAs at the transcrip-
tional level, leading to DNA methylation and resulting in endogenous gene silencing [59].
The siRNA-guided epigenetic modification in the host genome is termed RNA-directed
DNA methylation (RdDM). Moreover, DNA methylation can be maintained for many
generations [60], but its maintenance is directly dependent on the cytosine sequences in the
target region and is associated with the different type of DNA methyltransferases [61].

VIGS has been shown to be a successful technique for RNA silencing-mediated knock-
down of target genes in plants based on PTGS by siRNAs. Additionally, siRNAs may also
trigger TGS by directing the RdDM machinery to induce methylation of the corresponding
DNA sequence in the nucleus. The target gene could be transcriptionally silenced as a
result of cytosine residues in the promoter of the gene being methylated (Figure 2) [56].
Several viral vectors have already been implicated in TGS, including PVX, TRV, Cucum-
ber mosaic virus (CMV), and ALSV, as already mentioned. Recent results indicate that
virus-induced TGS (VITGS) is equally effective for both exogenous and endogenous genes
for gene silencing, showing its potential [61]. Another important aspect is the heritability
stability of VITGS, as it can be inherited for several generations, although little is known
about its pervasiveness and efficiency. As a matter of fact, to our knowledge, the VITGS
application in vegetables has not yet been reported. This technique has drawn a lot of
attention to the scientific community and may represent a valuable advancement in this
field in the near future, even if it produces genetically modified vegetable products without
altering the genome.
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to target the gene promoter in DNA through small RNAs, which resulted in DNA methylation of
specific targeted promoter sites. (b) For VIGO, the gene of interest must contain a full-length mRNA
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sequence (with start and stop codons) and be placed downstream of a promoter and upstream from a
terminator sequence. Alternatively, protease cleavage sites can be incorporated on either side of the
coding sequence to ensure excision of a functional protein from the viral genome during replication.

4.2. Virus-Induced Gene Overexpression (VIGO)

Virus Induced Gene Overexpression (VIGO) is used to transiently overexpress genes
by carrying part of the sequence of VIGS- or TGS-target endogenous genes, thus triggering
RNA-mediated silencing of target gene expression. VIGO vectors contain a full-length
coding sequence (CDS) of the targeted gene of interest, inserted in-frame within the viral
coding region [62]. The target gene is translated, along with the viral genome, during viral
replication inside infected cells, resulting in a high level of synthesized proteins. However,
due to the limited carrying capacity, large fragments of the target gene may not be expressed
by the viral vector [63].

Researchers have applied this technology to the field of vegetables and developed
several VIGO vectors. VIGO was improved by inserting a subgenomic RNA promoter from
a related tobacco virus, obtaining a more stable TMV vector and enabling the expression
of foreign genes in the plant. Green fluorescent proteins (GFP) are often used as reporter
genes, inserted downstream of the promoter sequence, and their expression is translocated
throughout the infected plant [64]. Similarly, GFP may be used as a traceable marker for
functional genomics analysis on vegetable fruits from early developmental stages to the full
ripening process, provided that it has the capacity to efficiently translocate and replicate in
fruit as a signaling marker [36,65]. Similarly, a TRV- or TRSV-based expression vector could
simultaneously express GFP in the infected plants to be used for virus component tracking.
However, previous reports have shown that GFP expression is temporally correlated
with VIGS effects and may reduce the infection efficiency [41,66]. Alternative uses (other
than overexpression of foreign genes) utilized VIGO vectors to validate the function of
endogenous genes in a variety of plants [67]. For example, a bean pod mottle virus
(BPMV)-based vector was developed to investigate the sensitivity of the function of the
gene GmCaM4 to salt stress effects or to study several soybean disease infection. One
observation was that overexpression of GmCaM4 in soybean provided greater resistance
to three different diseases and increased tolerance to salinity conditions [67]. Recently,
the expression of GFP and iLOV, and their co-expression with the target gene, has been
studied. In addition, there have been studies on the expression effects of GFP with different
fragment sizes in hosts carrying the VIGS vector [11,68]. Cheuk and Houde (2017) changed
the components of BSMV to confirm that different amounts of components had different
cargo capacities [69]. This research can allow changes in virus vectors, so that they can carry
at least two gene fragments, which would permit more gene functions to be determined.
When we build vectors, we can put a target gene and a marker gene in the vector, or
two genes that produce different phenotypes, allowing their simultaneously silencing. In
this regard, we can use VIGS technology to study more gene functions [21]. Currently, in
vegetables, there are only a few scientific reports of endogenous genes tested using VIGO
in vegetables. This aspect may be due to the limited carrying capacity of the virus vector.

4.3. Virus-Induced Genome Editing (VIGE)

CRISPR/Cas is the overall simplest and most well-studied system. It requires a single
protein, Cas9, which is guided by paired trans-activating crRNA (tracrRNA) and crRNA
molecules to introduce site-specific double-stranded breaks (DSBs) into a target DNA
sequence during the interference stage. An sgRNA engineered from a dual tracrRNA
means that a crRNA molecule directs Cas9 to the target site. Then, Cas9 utilizes two
distinct nuclease domains, HNH and RuvC-like, to cleave both strands of the target DNA,
generating sequence-specific DSBs. This triggers two DNA repair systems, nonhomologous
end-joining (NHEJ) and homology-directed repair (HDR) [70]. By using CRISPR/Cas
technology, specific sequences at the specific target locations in the genome can be deleted,
replaced, or inserted to accurately design target genes and generate novel traits [71,72].
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This technique enables editing of crops at high speeds and, thus, it possesses great potential
in shaping novel genetic makeup of vegetable crops. Current CRISPR/Cas approaches in
vegetables have mainly focused on the delivery of the editing machinery by transformation
technologies. However, nearly all methods rely on the tissue culture, requiring a lot of
time and being genotype-dependent. Recent studies highlight the potential use of viral
vectors to deliver components of CRISPR/Cas reactions into plant cells for genome editing,
a strategy known as Virus-Induced Genome Editing (VIGE) [73]. VIGE aids in avoiding
using tissue culture for genome editing by delivering transgenes directly to the meristem
or the egg cell. In the last decade, VIGE systems have been developed and used for a range
of host plants, with excellent outcomes in genome editing (Table 2).

Table 2. VIGE overview of subsequent carrier characteristics available in vegetables.

Virus
Name

Target of
Infestation

Laboratory Inoculation
Method Viral Insert Fragment Editing Efficiency

Whether or Not It
Has a Heritable

Mutation
Reference

PVX Solanaceae Agrobacterium tumefaciens
injection infestation Single gRNA CRTISO target: 84%

PSY1 target: 50–70% Yes [54]

BeYDV Solanaceae Agrobacterium tumefaciens
injection infestation Cas9 and single gRNA

SlCRTISO target: 90.4%
SlPSY1 target: 56.4%

Gene replacement: 25%
Yes [74]

ALSV Leguminosae/
Cucurbitaceae

Agrobacterium tumefaciens
injection infestation

Single or multiplexed
gRNA GW2: 45.3% No [49]

TSWV Solanaceae
Mechanically transmitted the
vectors from agroinfiltrated

N. benthamiana
Cas9 and single gRNA NtPDS-2: 83.5%

SlPDS-2: 73.0% No [75]

CGMMV Cucurbitaceae
Agrobacterium tumefaciens

injection infestation,
vacuum infiltration

Single gRNA Unknown Unknown

TRV Solanaceae
Agrobacterium tumefaciens

injection infestation,
vacuum infiltration

Single gRNA Unknown Unknown

TRSV Cucurbitaceae
Agrobacterium tumefaciens

injection infestation,
vacuum infiltration

Single gRNA Unknown Unknown

PVX: potato X virus; BeYDV: soybean yellow dwarf virus; ALSV: apple latent bulb virus; TSWV: tomato spotted
wilt virus; CGMMV: cucumber green mottle mosaic virus; TRV: tobacco rattle virus; TRSV: tobacco ringspot virus.

VIGE vectors can be classified into two categories according to their cargo capacity
and the reagents that may be delivered (Figure 3). The first category is VIGE vectors that
express an sgRNA (a single RNA molecule that contains both the custom-designed short
crRNA sequence fused to the tracrRNA sequence), infecting plants to stably express the
Cas9 to enable the editing of target genes. Nevertheless, this approach typically results
in low frequencies of gene editing in somatic cells of the infected plants. The recovery
of mutant progeny is rare, therefore limiting its utility. Recent studies demonstrated
that the mobile RNA element fusing to the sgRNA facilitates the guide RNA to enter
the meristem, producing heritable changes, thus overcoming the deficiency of the stable
transformation pathway and acquiring gene-edited offspring [73]. The second category
includes VIGE vectors that deliver both Cas9 and sgRNA, which are spread systemically
into the plant. One example used Sonchus yellow net rhabdovirus (SYNV) that stably
carried ~5 kb of exogenous sequences in its genome, obtaining the expression of Cas9 and
sgRNA simultaneously [45,76,77]. However, this category has seen its application reduced
due to a smaller host range of this virus. Remarkably, Li and his colleagues developed a new
virus vector using the tomato spotted wilt virus (TSWV), that stably carried Cas9-, Cas12-,
or Cas-derived base editors together with multiple guide RNAs in various host plants,
including tomato, different peppers, and peanut cultivars [75]. Although this strategy did
not provide stable gene-edited offspring, their work is a notable improvement towards the
use of VIGE and TSWV-based CRISPR–Cas as delivery systems for vegetable breeding. The
main limiting aspects to consider for its application are as follows: How can we achieve
stable heritable offspring? When expressing the viral vector, could it be possible for the Cas
nuclease mRNAs and its derivatives to reach the germline cells in the meristems, perhaps
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with the help of other mobile elements? If these answers were attained, transgene-free and
tissue culture-free genome-engineered plants would be possible (Figure 3).
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according to their cargo capacity and the reagents that may be delivered. The first category includes
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efficiently deliver sgRNAs into plant cells to enable the editing of target genes. The second category
includes VIGE vectors that deliver both Cas9 and sgRNA, which spread systemically in plants.

5. Future Directions
5.1. Viral Silencing Inhibitors That Increase VIGS Efficiency

In plants, traditional gene functional verification relies on genetic transformation
technology, and most of the genetic transformations of various species are unstable. There-
fore, virus-induced gene silencing technology is suitable for plant functional genomics
research [1,78]. VIGS offers a fast substitute to knock down genes of interest by sequence-
specific RNA degradation processes [79]. After infecting plants, viruses produce double-
stranded RNA (dsRNA) with a length of 21 to 30 nucleotides during virus replication in
the cytoplasm of plant cells, which is processed into siRNA by DCL (DCL2/3/4). The
loading siRNA is incorporated into different RISC complexes described in the model, in-
cluding RNA-induced transcriptional gene silencing complex (RITS). It directs chromatin
methylation and siRNA/miRNA-dependent RNA-induced silencing complexes, leading
to the transcription of target mRNAs, along with cleavage and translation arrest. For
virus-encoded RNA-dependent RNA polymerase (RdRP), secondary siRNAs are produced
in the amplification loop by RDR and its cofactors (FX, SGS3, etc.) [80].
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RNA silencing is a major antiviral defense in plants [80]. To counteract this antiviral
defense, most plant viruses have evolved silencing suppressor proteins, targeting different
steps of the antiviral silencing pathway. Several viral suppressors of RNA silencing (VSRs)
have been identified from almost all plant virus genera. VSRs efficiently inhibit host
antiviral responses by interacting with the key components of cellular silencing machinery.
In general, VSR can be classified into three categories: (1) binding long dsRNA inhibits
Dicer processing; (2) binding and sequestration of siRNA duplexes prevents RISC assembly;
and (3) direct targeting of effectors blocks amplification of antiviral silencing [81].

VSRs have been found to boost the efficiency of VIGS by temporarily inhibiting the
RNA silencing machine of host plants, facilitating the transmission of RNA viruses in plants
(Figure 4) [81]. Furthermore, VSR genes may develop independently in each virus family
as viruses continue to adapt to host RNA silencing immunity [33]. They are surprisingly
diverse both within and between populations, with no apparent sequence homology. The
VSR protein encoded by many viruses interacts with effectors that block RNA silencing
pathways [82,83], such as DICER, dsRNA, siRNA, RNA-induced silencing complex (RISC),
or systemic signals [33,84,85].
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Among the VSRs, the P19 protein encoded by tomato bushy stunt virus (TBSV) is a
powerful VSR that inhibits RNA interference (RNAi) by forming homodimers that bind
to siRNA produced by Dicer endonuclease. Sequestration of siRNAs by P19 prevents
RISC from being programmed by these molecules, inhibiting the endonuclease activity of
RISC and interfering with the degradation of the RNA corresponding to the siRNA [85].
Meanwhile, researchers demonstrated that P19 has been used to enhance the expression of
recombinant proteins in plants. Exogenous expression of p19, for instance, increased the
infectivity of TRV viral vectors carrying the gene of green fluorescent protein (GFP) and led
to a GFP significant increase expression. In a similar experimental design, a P19-deleted
TBSV vector was used to infect tobacco. Deletion of P19 in the viral vector resulted in
low-level expression of GFP, which was significantly restored when a separate P19 construct
was infiltrated into the same leaf [85].

5.2. The Derivation and Future Development Direction of VIGS

Over the past two decades, VIGS technology has advanced significantly, largely due
to the creation of new VIGS vectors that could infect wider hosts, facilitate multiple cloning
sites for homologous recombination, and improve Agrobacterium/viral vector immuniza-
tion methods. The primary VIGS techniques for examining the gene function of vegetable
crops at the present moment are gene silencing and the co-expression of heterologous viral
RNA silencing inhibitors (VSRs), that extends the duration of the silencing effect.

The use of VIGO to transiently overexpress target genes regulating biological processes
is rather sparse compared to the application of VIGS. To better utilize VIGO, exploring
more target genes is a possible future research direction [63]. Similarly, regarding VITGS,
low levels of RdDM is one of the factors that affects silencing efficiency. Increasing RdDM
levels through the use of mutant plants that increase 24 nt siRNA production may be a
future research direction [85].

On the other hand, VIGE compared to traditional VIGS have two main advantages.
Firstly, traditional VIGS uses target gene fragments to generate siRNA, allowing the si-
lencing of the corresponding gene. However, it can also lead to non-specific silencing,
particularly for highly homologous genes. In contrast, CRISPR-/Cas9-based VIGE allows
the targeting of specific genes that result in gene knockout after NHEJ repair of DSBs. Thus,
CRISPR-/Cas9-based VIGE can be used to study the functional validation of individual
genes. Secondly, VIGS requires cloning of fragments of target genes by PCR, while VIGE
requires only a 20 bp sgRNA tailor-designed for the target sequence, providing an effective
high-throughput platform for genome-wide gene function analysis. In addition, viruses are
excluded during plant regeneration, and progeny plants do not carry any virus fragments.
Therefore, mutant plants can be regenerated from systemic tissues without antibiotic se-
lection and further genetic transformation. Moreover, regenerated mutant plants have
the benefit of not possessing additional T-DNA insertions other than Cas9. Finally, VIGE
progeny plants are not generally required to be genotyped, nor self- or back-crossed.

The biggest obstacle to the development of VIGE systems is the limitation of the size
of the inserts that can be delivered and retained by viral vectors. However, studies have
shown that the co-expression of VSRs can increase the expression level of foreign genes
and increase the load of foreign genes inserted into viral vectors. This feature would allow
the expression of larger proteins or a larger number of proteins in plants. By using viral
vectors to deliver CRISPR/Cas9 constructs, the time and resource allocation needed to
regenerate plants can be saved. On the other hand, VIGE is still at an early developmental
phase, and most research objects are limited to tobacco or Arabidopsis. There is still work
to be carried out on how to optimize this system for vegetable crops; in fact, one aspect to
consider would be that there are model plants and non-model crops (e.g., melon (Cucumis
melo L.) and cucumber (Cucumis sativus L.) which are difficult to transform, which hampers
the possibility of developing reverse genetic studies for crop improvement.
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6. Conclusions

In conclusion, VIGS and the derived VIGE are promising technical means at the ser-
vice of molecular breeding. Solving meaningful challenges, such as overcoming heritable
non-transgenic mutations and inducing gene overexpression, will provide unprecedented
opportunities for future functional genomics research and plant breeding efforts in veg-
etable crops.
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