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Abstract: Plant cuticular wax plays an important role in resistance to environmental stresses. Ecer-
iferum (CER) genes are involved in wax synthesis. However, little information is available for tomato
species. In this study, 26 SlCER genes were identified in tomato (S. lycopersicum), and they were
classified into four clades. The physicochemical properties and conserved motifs of their proteins
were predicted. These SlCERs were mainly expressed in leaves, flowers or fruits, and most SlCERs
played roles in response to abiotic stresses, especially drought stress. Furthermore, the changes in
haplotypes indicated that SlCERs might have been involved in adapting to the environments for wild
species S. pimpinellifolium before domestication. These findings would lay a foundation for future
functional studies of SlCERs and also provide insights for anti-stress improvement in tomato in the
near future.

Keywords: tomato; eceriferum; abiotic stress; domestication

1. Introduction

The wax layer is a structural component of the plant surface cuticle, which is evo-
lutionarily conserved among land plants [1] and carries out many important defense
functions [2,3]. The composition of the wax layer is very complex, mainly comprised of
very long-chain fatty acids (VLCFAs, greater than 20 carbons in length), their derivatives
and specialized metabolites, such as polyketides and terpenoids [4,5].

Eceriferum (CER) series genes are involved in various stages of wax synthesis. They
were discovered and named originally in ethylmethane sulfonate (EMS)-induced mutants
of Arabidopsis thaliana, which caused changes in cuticular wax morphology, size and quan-
tity [6,7]. Among them, CER2, CER6, CER9, CER26 and CER60 contribute to fatty acid
elongation [8–12], while CER1, CER1-LIKE1, CER3, CER4, CER16 and CER17 affect VLCFAs
derivatization by either the acyl reduction pathway or decarbonylation pathway [13–18].
In addition, CER10 is involved in wax formation and endocytic membrane trafficking [19],
and CER11 can catalyze a dephosphorylation step involved in secretory trafficking in plant
cells [20]. Collectively, CERs affect cuticular wax synthesis and response to phytohormone
signaling, and ultimately play important functional roles in plant growth, such as pollen
fertility, water use efficiency and abiotic/biotic stress resistance [21–26].

In other species of plants, CERs show largely identical functions with a few differences,
which mainly include leaf wettability, water loss rates, fruit glossiness and storability
and sensitivity in response to abiotic or biotic stresses [27–32]. To date, genome-wide
identification of CER genes has been reported in several species, including apple, jujube,
sunflower, passion fruit and Chinese chestnut [33–37], and their sequence structures and
responses to the environment have been extensively explored. However, only a few CER
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genes have been reported in tomato [38–40], and their relationship and specific functions
remain largely unknown.

Up to now, extensive sequencing data on tomato have been documented [41–45]. They
would serve to identify CER genes in tomato species over the whole genome and to uncover
their functions. Meanwhile, during domestication and improvement, cultivated tomato
undergoes a complex history, characterized by a “two-step” model from S. pimpinellifolium
to S. lycopersicum var. cerasiforme and then to S. lycopersicum var. lycopersicum, accompanied
by changes in fruit size, flavor and growing environments due to natural or human selec-
tion [41,46]. SlCERs may also play a crucial role in the domestication and improvement
processes. In this study, we identified SlCER genes and analyzed their expression profiles
during the development stages and under abiotic/biotic stresses. Additionally, the changes
in haplotype frequencies of SlCERs during the domestication and improvement stages
reveal their potential role in responding to stress during domestication.

2. Materials and Methods
2.1. Identification of CER Genes in Solanum lycopersicum

To identify and verify Eceriferum (CER) genes in tomato (Solanum lycopersicum) and
compare them with homologous proteins in Arabidopsis thaliana, we downloaded annotated
protein sequences (version ITAG4.1) from the SGN website (https://solgenomics.net/, ac-
cessed on 19 February 2023). We used the 17 AtCER protein sequences available on the TAIR
website (https://www.arabidopsis.org/, accessed on 19 February 2023) as queries for local
BLASTP (version 2.12.0) searches against the tomato protein sequences. To annotate the pro-
tein domains contained in each AtCER protein, we used the Pfam database [47] and down-
loaded their Hidden Markov Model (HMM) files for hmmsearch (HMMER version 3.3.2)
against the tomato protein sequences. We then used the SlCER protein sequences as queries
to execute local BLASTP searches against the Arabidopsis protein sequences to verify the
specificity of the match and finalize the SlCER gene set (Table 1 and Table S1).

Table 1. The physicochemical properties of SlCERs.

Gene
Symbol Gene ID Length

(aa)
Molecular

Weight
(kDa)

Theoretical
pI

Instability
Index

Aliphatic
Index

Grand Average
of Hydropathicity

(GRAVY)

SlCER1-1 Solyc03g065250.4.1 626 72.86222 8.47 33.62 93.26 −0.126
SlCER1-2 Solyc01g088400.4.1 628 73.19837 8.45 31.28 92.05 −0.138
SlCER1-3 Solyc01g088430.4.1 625 72.43567 8.48 30.53 94.21 −0.047
SlCER1-4 Solyc12g100270.2.1 620 71.50682 8.53 30.07 98.27 −0.01
SlCER1-5 Solyc08g044260.4.1 570 66.04143 7.75 37.2 96.81 −0.088
SlCER2 Solyc12g087980.3.1 445 50.02035 5.79 35.26 94.97 −0.208
SlCER3 Solyc03g117800.4.1 641 73.74984 8.79 38.14 99.14 0.092

SlCER4-1 Solyc06g074390.3.1 491 55.83997 8.56 24.48 98.43 −0.078
SlCER4-2 Solyc06g074410.4.1 491 56.31689 9.56 29.56 92.91 −0.154
SlCER4-3 Solyc11g067170.3.1 488 56.17808 6.78 30.96 99.49 −0.125
SlCER4-4 Solyc11g067180.2.1 489 56.29156 8.08 32.9 97.87 −0.129
SlCER4-5 Solyc01g104200.4.1 425 48.83272 9.03 30.25 95.18 −0.176
SlCER6-1 Solyc02g085870.3.1 496 55.83755 9.09 38.99 98.87 0.062
SlCER6-2 Solyc05g009270.4.1 353 39.41791 8.9 33.22 96.4 −0.075
SlCER7 Solyc05g047420.4.1 443 48.66103 6.01 49.03 78.53 −0.496
SlCER8 Solyc01g079240.3.1 663 75.11154 6.3 36.09 83.51 −0.316

SlCER9-1 Solyc01g107880.3.1 1112 124.32522 5.93 38.93 107.69 0.289
SlCER9-2 Solyc01g020190.2.1 125 13.45768 4.39 70.88 56.32 −0.594

SlCER10-1 Solyc05g054490.3.1 310 36.23126 9.7 43.94 86.13 −0.059
SlCER10-2 Solyc11g006300.2.1 272 31.00256 9.22 44.78 98.93 0.267
SlCER11-1 Solyc09g014440.4.1 808 90.42106 6.19 49.99 82.5 −0.362
SlCER11-2 Solyc02g078550.3.1 954 106.88753 6.18 58.11 80.88 −0.45
SlCER13 Solyc02g086500.3.1 1861 207.40048 5.89 47.9 109.7 0.159
SlCER16 Solyc07g053560.3.1 399 43.01711 4.9 43.53 68.1 −0.744
SlCER26 Solyc09g092270.3.1 427 47.74274 5.63 27.44 95.83 −0.164
SlCER60 Solyc03g078330.1.1 475 53.78704 9.16 42.42 96.65 0.062

https://solgenomics.net/
https://www.arabidopsis.org/
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2.2. Analysis of Physicochemical Properties of SlCERs

The physicochemical properties of SlCER proteins, including the number of amino
acids, molecular weight, theoretical isoelectric point (pI), instability index (an estimate of
the stability of the protein in a test tube), aliphatic index (the relative volume occupied
by aliphatic side chains) and grand average of hydropathicity (GRAVY, calculated as the
sum of hydropathy values of all the amino acids, divided by the number of residues in
the sequence) [48], were evaluated using the ProtParam tool (https://web.expasy.org/
protparam/, accessed on 20 February 2023). The distribution of SlCERs on chromosomes
was visualized using the MG2C website (http://mg2c.iask.in/mg2c_v2.1/, accessed on
28 February 2023) (Table S2).

2.3. Phylogenetic Analysis

A total of 11 species’ CER protein sequences were used for phylogenetic analysis.
Aside from Solanum lycopersicum and Arabidopsis thaliana, several CER protein sequences
were obtained from supplementary files previously reported, including those from Malus
domestica [33], Ziziphus jujube [34], Helianthus annuus [35] and Passiflora edulis [36], while
others from Capsicum annuum, Cucumis sativus, Oryza sativa, Solanum tuberosum and Zea
mays were downloaded from the NCBI website (https://www.ncbi.nlm.nih.gov/, accessed
on 3 March 2023). In this study, a total of 177 CER protein sequences were aligned using the
Clustal method. A Neighbor-Joining tree was constructed using ClustalX (version 2.1) [49],
and the phylogenetic tree annotations and management were performed using the iTOL
website (https://itol.embl.de/, accessed on 12 June 2023).

2.4. Motif Analysis of SlCERs

To identify motifs in the SlCER protein sequences, we used the MEME website
(https://meme-suite.org/meme/tools/meme, accessed on 9 March 2023) with parameters
set to 200 motifs and default settings, retaining only motifs with an E-value smaller than
0.05. The resulting motifs were visualized using the TBtools software (version v1.1.20) [50].

2.5. Analysis of Cis-Acting Elements of SlCERs

We extracted 2000 bp sequences upstream of the SlCER genes using samtools (version
1.10) [51] and searched for cis-acting elements using the PlantCARE website (https://
bioinformatics.psb.ugent.be/webtools/plantcare/html/, accessed on 31 March 2023) [52].
Statistical analyses and visualizations were performed using the R (version 4.2.2) package
ggplot2 (version 3.4.1) (Tables S3 and S4).

2.6. RNA-Seq Analysis

Raw sequencing reads for this study were obtained from the NCBI database (BioProject
numbers PRJNA635375, PRJNA624032, PRJNA419151, PRJNA639037 and PRJNA756681).
We filtered low-quality reads using fastp (version 0.20.0) [53] and aligned the remaining
reads to the tomato reference genome (version SL4.0) using Hisat2 (version 2.1.0) [54]. The
resulting RNA-seq alignments were assembled into potential transcripts using StringTie
(version 2.0.6) [55].

To better visualize the expression profiles and eliminate any potential outliers, we
normalized the expression levels of transcripts to fragments per kilobase of exon per
million reads (FPKM), followed by Z-score normalization. The significance of expression
differences among treatments was calculated using the Kruskal–Wallis test in R. To visualize
the expression profiles, we used the R package ComplexHeatmap (version 2.14.0).

2.7. Variants Calling and Haplotype Analysis

We obtained raw ILLUMINA sequencing reads from previously sequenced tomato
accessions from NCBI (BioProject numbers PRJNA454805, PRJNA557253, PRJNA259308,
PRJNA353161 and PRJEB5283), as well as from the SGN website. The low-quality reads
were filtered using fastp. The remaining reads were aligned to the tomato reference

https://web.expasy.org/protparam/
https://web.expasy.org/protparam/
http://mg2c.iask.in/mg2c_v2.1/
https://www.ncbi.nlm.nih.gov/
https://itol.embl.de/
https://meme-suite.org/meme/tools/meme
https://bioinformatics.psb.ugent.be/webtools/plantcare/html/
https://bioinformatics.psb.ugent.be/webtools/plantcare/html/
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genome (version SL4.0) using bwa (version 0.7.17-r1188) [56]. We performed variant calling
using bcftools (version 1.9) [51] and extracted single-nucleotide polymorphisms (SNPs)
using the SelectVariants module in GATK (version 4.1.2.0) [57], with filtering based on
quality parameters including QD < 2.0, FS > 60.0, MQ < 40.0, MQRankSum < −12.5 and
ReadPosRankSum< −8.0. We then filtered the raw SNPs based on the proportion of
missing data and minor allele frequency (–max-missing 0.7; --maf 0.02) using vcftools
(version 0.1.16) [58].

SNPs located in the coding sequence (CDS) region were extracted and used to calculate
FST values between groups using vcftools, with a threshold of 0.4 set based on previous ex-
perience. Haplotype analysis was performed using the geneHapR package (version 1.1.9),
excluding accessions with missing or heterozygous sites. Visualization of the results was
accomplished using the ggplot2 package.

3. Results
3.1. Identification of CER Genes in Tomato

Twenty-six SlCER genes were identified to be distributed on ten chromosomes, with
the exception of Chr4 and Chr10 (Figure 1; Table S1). We named these genes based
on their homology to Arabidopsis. The physicochemical properties play a key role
in functional annotation; thus, we predicted the physicochemical properties of SlCERs
(Table 1). The length of SlCERs protein ranged from 125 (SlCER9-2) to 1861 (SlCER13)
amino acids, with a corresponding molecular weight range of 13.45 to 207.4 kDa. The
isoelectric points ranged from 4.39 (SlCER9-2) to 9.7 (SlCER10-1). The instability index
ranged from 24.48 (SlCER4-1) to 70.88 (SlCER9-2). Seventeen SlCERs were deemed stable
(instability index smaller than 40) and nine SlCERs were unstable (greater than 40). The
aliphatic index ranged from 56.32 (SlCER9-2) to 109.7 (SlCER13), while the GRAVY ranged
from −0.744 (SlCER16) to 0.289 (SlCER9-1).

To evaluate the homology among the CERs, we constructed a phylogenetic tree with a
total of 177 CERs protein sequences from 10 species covering the Compositae, Cruciferae,
Cucurbitaceae, Gramineae, Passifloraceae, Rhamnaceae, Rosaceae and Solanaceae families
(Figure 2). Dominated by AtCERs, these proteins were divided into four clades. Clade 1
contained CER1s and CER3s, Clade 2 contained CER6s and CER60s, Clade 3 contained
CER9s and CER17s and Clade 4 contained CER2s, CER4s, CER7s, CER9s, CER10s, CER11s,
CER13s, CER16s and CER26s. The clusters of SlCERs were mainly in accord with AtCERs,
which supported our SlCERs identification results. However, SlCER10-2 was not clustered
together with SlCER10-1 but instead was in Clade 3, which may be due to its lower identity
(31.8%) with AtCER10 (Table S1). For most SlCERs, they shared more homology with
HanCERs than other species’ CERs. However, in Clade 4, SlCER2, SlCER16 and SlCER26
shared more homology with StCERs and CaCERs, which suggested that these protein
sequences are conserved among Solanaceae plants.

3.2. Motifs Analysis of SlCERs

For a deeper understanding of the structural features of SlCERs, we predicted the
motifs in their protein sequences using the MEME website. We identified 42 reliable motifs
(E-value < 0.05), with a distribution frequency ranging from 2 to 9, reflecting the diversity
of SlCER protein structures (Figure 3 and Figure S1). We detected eleven motifs shared
in SlCER1s and SlCER3, ten motifs shared in SlCER4s, eight motifs shared in SlCER6s
and SlCER60, four motifs shared in SlCER11s, two motifs shared in SlCER9s and one
motif shared in SlCER2 and SlCER26. No motif was detected in SlCER7, SlCER10 and
SlCER16. Motif14 had the widest distribution, being present in SlCER1s, SlCER3, SlCER6s
and SlCER60. These results reflect the diversity and conservation among SlCER proteins.
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Figure 1. The distribution of SlCERs in tomato genome. The blue bars represent the chromosomes,
and the rulers show the physical location.

3.3. Cis-Acting Element Analysis of SlCER Genes

In order to investigate the possible functions of SlCERs, we extracted the upstream
2000 bp sequences of each SlCER gene for cis-acting element searching. According to the
function annotation of the searching result, cis-acting elements mainly comprised four
categories (Figure 4; Table S4). A light responsiveness term was contained in all the SlCERs,
followed by stress responsiveness terms (25 SlCERs), phytohormone responsiveness terms
(24 SlCERs) and plant growth and development terms (16 SlCERs). Due to the defense
functions of wax, we focused on stress responsive and phytohormone responsive function
terms to explore the potential transcription factor binding sites of SlCERs. Five kinds of cis-
acting elements associated with phytohormone responsiveness were detected (Figure 5a,b),
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in order of count, including methyl jasmonate (CGTCA-motif and TGACG-motif types),
abscisic acid (ABRE type), gibberellin (GARE-motif, P-box and TATC-box types), auxin
(AuxRR-core, TGA-box and TGA-element types) and salicylic acid (SARE and TCA-element
types). Five kinds of cis-acting elements associated with stress responsiveness were detected
(Figure 5c,d), in order, including anaerobic induction (ARE type), drought (MBS type),
defense& stress (TC-rich repeats type), low-temperature (LTR type) and wound (WUN-
motif type). These sites provided support for possible interactions among genes.
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SlCER1-1 12 4 17 3 26 1 6 34 7 5 31 15 30 9 2 14

SlCER1-2 12 4 17 3 26 1 6 34 7 5 31 15 30 9 2 14
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Figure 3. Location of SlCERs motifs. 42 motifs are represented by colors.

3.4. Expression Profiles of SlCERs during Different Development Stages

In order to explore the spatial and temporal transcriptional characteristics of SlCERs
and analyze their function, we searched for their expression profiles on eFP Browser
2.0 website (https://bar.utoronto.ca/efp2/, accessed on 4 April 2023) and TEA website
(https://tea.solgenomics.net/, accessed on 4 April 2023) (Tables S5 and S6). As shown
in Figure 6a, SlCER1-4 was mainly expressed in roots, SlCER1-3 was mainly expressed
in flowers and seven SlCERs (SlCER1-1, SlCER1-5, SlCER3, SlCER6-1, SlCER8, SlCER10-2
and SlCER26) showed higher expression levels in both leaves and flowers. As shown in
Figure 6b, SlCER1-2 was mainly expressed in fruits, and the expression level increased
sharply after the breaker stage; SlCER1-1 showed an inside-out pattern of expression dur-
ing fruit development, and a total of ten SlCERs (SlCER1-1, SlCER1-5, SlCER2, SlCER3,
SlCER4-1, SlCER6-1, SlCER6-2, SlCER8, SlCER10-1 and SlCER26) showed higher expres-
sion levels in the outer epidermis of fruit. These specific expression patterns imply their
functions in the biotic/abiotic resistance of leaves, pollen fertility of flowers or glossiness
and shelf life of the fruits by potentially influencing the synthesis of wax. Several genes,
including SlCER7, SlCER9-1, SlCER11-1 and SlCER11-2, did not show an obvious pref-
erence for any organ or stage of fruit development, indicating that their expression is
constitutive. Furthermore, SlCER4-2, SlCER4-3, SlCER4-4, SlCER4-5 and SlCER60 exhibited
low expression levels across all developmental stages of the fruit, as well as in the roots
and leaves, implying that their expression is likely non-constitutive.

https://bar.utoronto.ca/efp2/
https://tea.solgenomics.net/
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Figure 4. Cis-acting elements of SlCERs. Bins with different functions are represented by colors. Lines
represent the 2000 bp upstream regions of genes.

3.5. Expression Profiles of SlCERs under Abiotic/Biotic Stress

In order to explore SlCERs’ expression patterns under abiotic/biotic stresses, we
downloaded the transcriptome sequencing data of tomato under stresses of drought, heat,
salt, pathogenic bacteria [59,60] and parasitic plant [61] on the NCBI website (https://www.
ncbi.nlm.nih.gov/). Genes without significant expression change among treatments were
excluded from the analysis (Kruskal–Wallis test, p < 0.05) (Tables S7–S12).

Further, 22, 15 and 10 SlCERs showed changes in their expression levels under drought,
heat and salt stress treatments, respectively (Figure 7a–c). In response to drought stress,
eight SlCERs were downregulated and then upregulated during the recovery treatment,
whereas the other fourteen showed the opposite expression pattern (Figure 7a). Similarly,
under heat stress, six SlCERs were upregulated, followed by downregulation upon re-
covery (Figure 7b), and the other nine were initially downregulated by heat stress, and
various regulation trends appeared after the recovery treatment, suggesting that some
SlCERs’ expression was influenced by heat stress and could not be reversed. For salt stress,
five SlCERs showed an increase in expression, while the other five showed a decrease in
expression (Figure 7c).

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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Figure 5. Statistics of cis-acting elements for SlCERs. (a) Statistics of cis-acting elements involved
in phytohormone responsiveness. (b) Statistics on the count of types of cis-acting elements for
phytohormone. (c) Statistics of cis-acting elements involved in stress responsiveness. (d) Statistics on
the count of types of cis-acting elements for stress. ABA, abscisic acid; IAA, auxin; GA, gibberellin;
Me-JA, methyl jasmonate; SA, salicylic acid; AI, anaerobic induction; DS, defense and stress; DR,
drought; LT, low temperature; Wo, wound.
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Figure 6. Expression levels of SlCERs during the development stage. (a) Global perspective of
expression levels during the different development stages in cv. Heinz 1706. The data are normalized
by reads per kilobase of exon model per million mapped reads (RPKM). (b) The perspective of
expression levels during fruit development in cv. M82. The data are normalized by reads of exon
model per million mapped reads (RPM). Colors from white to blue reflect the expression levels.
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a b

c

d

e

f

Figure 7. The expression profiles of SlCERs under abiotic/biotic stress. (a) The expression profiles of
SlCERs under drought stress. The sequenced samples are seedling-stage leaves of tomato (cv. M82).
Seven treatments are control, drought-treated for 1 day, 2 days, 3 days, 4 days, 5 days and recovery,
respectively. (b) The expression profiles of SlCERs under heat stress. The sequenced samples are
seedling-stage leaves of tomato (cv. M82). Six treatments are heat-treated for 0 h, 2 h, 4 h, 12 h,
24 h and recovery, respectively. (c) The expression profiles of SlCERs under salt stress (treated with
NaCl). The sequenced samples are seedling-stage leaves of tomato (cv. M82). Six treatments are
treated for 0 h, 0.5 h, 2 h, 6 h, 12 h and 24 h, respectively. (d) The expression profiles of SlCERs after
Cf infection. The sequenced samples are leaves of tomato (cv. Moneymaker), which are collected
at 0, 7 and 20 days following inoculation (dpi). (e) The expression profiles of SlCERs after Cmm
infection. The sequenced samples are leaves next to the inoculation site of tomato (cv. Ailsa Craig),
which are collected at 0, 8 and 24 h following inoculation (hpi). (f) The expression profiles of SlCERs
during dodder parasitism. The sequenced samples are stem tissues of tomato (cv. Heinz 1706) next to
C. campestris haustoria, which are collected at early, intermediate and mature stage of the haustoria.
The data are normalized into fragments per kilobase of exon per million reads (FPKM) following
Z-score normalization. Expression levels are mapping from blue (the lower) to red (the higher).
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Furthermore, five, three and six SlCERs showed changes in their expression levels dur-
ing Cladosporium fulvum (Cf ) infection, Clavibacter michiganensis subsp. michiganensis (Cmm)
infection and dodder parasitism, respectively (Figure 7d–f). Four SlCERs were upregulated
upon Cf infection, with different expression levels at 7dpi and 20dpi (Figure 7d). Similarly,
three SlCERs showed an ascending expression pattern during Cmm infection (Figure 7e).
Additionally, upon dodder parasitism, three SlCERs were upregulated, while three others
were downregulated; however, all six SlCERs showed low expression levels at the mature
stage of the haustoria, indicating a potential role of these genes against the haustoria only
at earlier stages of invasion (Figure 7f).

Based on our findings, more SlCERs exhibited changes in expression in response
to abiotic stresses than biotic stresses, suggesting their primary function may involve
responding to abiotic stress, particularly drought stress. We speculated that SlCER3,
SlCER7, SlCER10-1, SlCER10-2 and SlCER11-2 may be involved in a key pathway of stress
response and play crucial roles in responding to abiotic stress as their expression levels were
regulated by all three abiotic stresses. Meanwhile, thirteen SlCERs (SlCER1-1, SlCER1-2,
SlCER4-4, SlCER4-5, SlCER6-1, SlCER6-2, SlCER8, SlCER9-1, SlCER11-1, SlCER13, SlCER16,
SlCER26 and SlCER60) responded to two abiotic stresses, and six SlCERs (SlCER1-3, SlCER1-
5, SlCER2, SlCER4-1, SlCER4-2 and SlCER9-2) responded to only one type of abiotic stress,
indicating their function specificity.

3.6. Selection on SlCERs during Domestication and Improvement

We collected sequencing data from previous reports [41–44] to investigate whether
the SlCERs were under selection during domestication and improvement. A total of
653 accessions consisting of 34 S. pimpinellifolium (SP), 229 S. lycopersicum var. cerasiforme
(SLC) and 390 S. lycopersicum var. lycopersicum (SLL) were analyzed to understand the two
stages, the domestication stage from SP to SLC and the improvement stage from SLC to
SLL [41].

After SNP calling and filtering, we identified CDS-region SNP variants in 24 out of
26 SlCERs. To better understand the role of SlCERs during domestication and improvement,
the fixation indices (FST) were calculated in two stages. The results illustrated that differen-
tiation was present in most SlCERs (22 in 24) during the domestication stage, indicating the
critical functions of SlCERs during domestication (Figure 8a). Only SlCER4-5 showed differ-
entiation in the improvement stage, potentially related to the response to drought, heat and
Cf -infection stresses (Figure 7a,b,d and Figure 8b). To further illustrate the differentiation,
we calculated the haplotype frequency of each SlCER in SP, SLC and SLL groups. Two to
eighteen haplotypes were identified in each SlCER, and the haplotype diversity declined
dramatically during domestication, supporting the higher levels of FST in the domestication
stage (Figure 8c; Table S13). These findings suggested that SlCERs underwent diversity
decline during the domestication of tomato from harsh wild environments to relatively
friendly semi-wild environments, resulting in low haplotype diversity in both SLC and
SLL groups.
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Figure 8. Selection against SlCERs during domestication and improvement. (a) FST values for all
CDS-region SNP sites between SP and SLC. (b) FST values for all CDS-region SNP sites between SLC
and SLL. Red dots above the horizontal dashed line represent highly differentiated SNPs; locating genes
are marked. (c) Haplotypes change among SP to SLC to SLL. Proportion of haplotypes is represented by
colorful blocks. The numbers of accessions in SP, SLC and SLL are 34, 229 and 390, respectively.
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4. Discussion

CER genes perform vital functions in wax biosynthesis. Based on the sequence ho-
mology with 17 AtCERs, 26 SlCERs were identified in this study, and the number is less
than that in jujube (29), Chinese chestnut (34), passion fruit (34) and sunflower (37) but
more than that in apple (10) [33–37]. However, the homologous gene of AtCER17 was not
identified here. The subcellular localization prediction (Table S14) showed that 24 SlCERs
were located on either the endoplasmic reticulum or the cytoplasm, where the wax was
formed or transported [7], except for SlCER13 and SlCER16, which were located on the
nucleus. In total, one-hundred-seventy-seven CERs identified from the different species
were divided into five clades. In Brassicaceae, some CERs have been demonstrated to
be paralogs, such as CER1 and CER3 and CER6 and CER60 [62,63]. Our phylogenetic
tree showed consistent results with it. Furthermore, we found that SlCER2, SlCER16 and
SlCER26 shared more homology with CERs of C. annuum and S. tuberosum on Clade 4,
reflecting a closer relationship among Solanaceae plants. SlCER3 was closer to HanCER3s
than StCER3 and CaCER3, suggesting the existence of a non-conserved relationship in
Solanaceae plants. However, the relationships of the remaining CERs still need to be
addressed further due to the limited Solanaceae CERs’ sequences information.

Plants have evolved a complex regulatory system to challenge environments. The
phytohormones play an important role during this procedure [64]. To find clues of how
SlCERs respond to stresses, we focused on cis-acting elements involved in responsiveness
of phytohormone and stress, combined with transcriptome analysis. Surprisingly, although
almost all the SlCERs showed responses to drought stress in transcriptome analysis, only
13 of 26 SlCERs had cis-acting elements involved in drought stress (Figures 5c and 7a).
The remaining SlCERs without drought-responsive cis-acting elements have cis-acting
elements involved in kinds of phytohormone, such as abscisic acid, auxin, gibberellin,
methyl jasmonate and salicylic acid. This evidence hinted that these SlCERs without
drought-responsive cis-acting elements might respond to drought stress mediated by
the phytohormones.

Up to now, ample evidence has demonstrated the high correlation between expression
levels obtained from sequencing-based methods and those from qRT-PCR-based meth-
ods [65–67]. Recently, the expression patterns of PeCERs in passion fruit were characterized
by RNA-seq and confirmed by qRT-PCR. Both results showed the expected consistency [36].
All these findings hinted at availability for analysis of gene expression by RNA-seq inde-
pendently. In this study, the expression profiles of SlCERs in the different development
stages and under abiotic/biotic stress were analyzed by RNA-seq data. To further validate
our results, the previous expression profiles of SlCER1s and SlCER3 quantified by qRT-PCR
in different tomato organs were compared with our RNA-seq results and the evidence
showed that there was much parallelism. Further, these results were verified again in
cucumber crop under drought and salt stresses [28,29]. Hence, we suggested that RNA-seq
data could appropriately characterize gene expression profiles independently.

The findings from this study show that 22 out of 26 SlCERs were involved in the domes-
tication of the tomato crop. However, only four of twenty-two SlCERs (SlCER1-2, SlCER1-3,
SlCER4-5 and SlCER9-1) could be located in the putative domestication sweeps [41]. The
bias might result from the different calculations. In the previous identification, the putative
domestication sweeps were calculated by slide window [41]. It absolutely can provide a
global view of the selection over the genome but may ignore the differentiation among
single-locus ones [68]. Instead, calculating FST with CDS-region SNP sites as used in our
analysis can improve the insight on specific genes and avoided false positives caused by
neutral selection, as demonstrated in human [69], rice [70] and tomato [71]. Meanwhile,
the diversity of 22 SlCERs decreased rapidly during the domestication and improvement,
indicating that they might have been subject to strong selection pressure. As is widely
known, all the wild tomato relatives, including S. pimpinellifolium, are distributed in the
dry desert or pre-desert environments of the western Andes [72], which endows them with
diverse stress-resistant genes, particularly those that confer drought resistance. Meanwhile,
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S. lycopersicum var. cerasiforme grows either in humid environments as a true wild species
or human-modified areas as a cultivated crop [73]. This evidence suggests that the domesti-
cation of tomato involved at least two selective pressures, one imposed naturally through
changes in the growth environment and another artificially imposed through selection for
fruit appearance. The expression profiles of SlCERs showed their expression in leaves and
fruits (Figure 6a), implying their contribution to drought resistance and fruit quality. Hence,
we supposed that the decreased diversity in SlCERs might be caused by (1) the consecutive
self-pollination, and the selection happened in a predominantly inbreeding species [74];
(2) the decreased diversity for challenging environments during the domestication [75]
and (3) artificial selection on human favor traits influenced by SlCERs somehow, which
should be focused on in the further functional studies. This evidence might provide the
approach for genetic improvement regarding tomato crop against environmental stresses
in the near future.

5. Conclusions

Overall, twenty-six SlCER genes were identified in S. lycopersicum, and they were
classified into four clades. These SlCERs were mainly expressed in leaves, flowers or fruits
and played roles in response to abiotic stresses, especially drought stress. The decline in
diversity in 22 SlCER genes during the domestication process suggests a tradeoff between
environmental adaptation and domestication traits. Deciding how to properly combine
and apply these genes in stress-resistant breeding is a consideration regarding our next
steps, and the specific effects of these genes on phenotypes still need to be experimentally
validated. Nevertheless, our identification of the SlCER genes would lay a foundation
for future functional research and provide insights for anti-stress improvement regarding
tomato crop.
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