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Abstract: Biological treatments may be employed to combat viral plant infections. In this study,
Trichoderma viride was applied as a biocontrol agent to enhance the systemic resistance of potato
plants against potato virus Y (PVY). T. viride isolate Tvd44 (OQ991378) was isolated and molecularly
characterized before being used as an agent against PVY. The foliar application of Tvd44 on PVY-
inoculated potatoes significantly promoted plant growth, height, roots, and number of leaves. Results
also showed that the levels of peroxidase (POX), polyphenol oxidase (PPO), total proteins, and
chlorophyll increased in potato leaves 21 days post-inoculation compared to untreated plants. Results
of qPCR assays conducted on Tvd44-treated plants exhibited a reduction in PVY-CP accumulation
levels up to 18.76-fold compared to untreated plants (101.82-fold). qPCR results also showed that
defense-related genes (PR-1, POD, PAL, CHS, and HQT) were highly expressed in all Tvd44-treated
plants. Three compounds: thiocarbamic acid, N,N-dimethyl, S-1,3-diphenyl-2-butenyl ester; 1,1-
dicyano-2-methyl-4-(p-cyanophenyl) propane; and trans-[(2,3-diphenylcyclopropyl)methyl] phenyl
sulfide were the most abundant compounds detected in the ethyl acetate extract of Tvd44-culture
filtrate using GC–MS analysis. Our finding supports the efficacy of T. viride isolate Tvd44 as a
potential agent that can successfully control PVY infections in potatoes and increase the productivity
of the crop.

Keywords: Trichoderma viride; PVY; potato; biological control; defense-related genes; gene expression

1. Introduction

Potato virus Y (PVY, genus Potyvirus, family Potyviridae) is characterized by a single-
stranded positive-sense RNA [1]. PVY is known to have a significant impact on potato
crops, the third most widely consumed crop after rice and wheat [2]. PVY has a detrimental
effect on both the quantity and quality of potato tubers, leading to losses ranging from 10
to 90% [3]. The extent of these losses depends on various factors, such as the year, cultivar,
and region [4]. Plants belonging to the Solanaceae family, such as peppers, tomatoes, and
tobacco, exhibit susceptibility to PVY infection [5]. There are more than 40 distinct species
of aphids that are responsible for the transmission of PVY. The efficacy of chemical means
in managing intracellular pathogens such as viruses is limited. Therefore, in instances of
PVY epidemics, plants that have been infected with the virus are rogued or insecticides
are employed to reduce the population of vectors that transmit the pathogen [6]. The
imperative to investigate biological control alternatives has intensified in response to the
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hazards associated with the utilization of chemical pesticides to manage plant diseases.
The potential utilization of Trichoderma as a pathogen management strategy that is both
safe for the environment and effective at preventing the spread of viral plant diseases has
captured the attention of many researchers [7].

Trichoderma spp., a group of plant growth-promoting fungi (PGPF), are considered
promising microorganisms with potential applications in sustainable agriculture [8]. Tri-
choderma mechanisms include competition, antibiosis, and induction of the synthesis of
glucanase, chitinase enzymes, and mycoparasitism [9,10]. Moreover, its defensive re-
sponses are linked to germination-stimulant metabolism and the development of systemic
acquired resistance [11–13]. Trichoderma spp. colonize plant roots and alter gene expression
to induce plant metabolism. Various secondary metabolites enhance PR protein produc-
tion during the Trichoderma–plant interaction, activating plant defense systems against
the pathogen [14]. The introduction of various Trichoderma species into the rhizosphere
has been observed to confer protection to plants against a multitude of plant pathogens.
Pathogens observed in plants, comprising viral, fungal, and bacterial infections, prompt the
activation of resistance mechanisms akin to the hypersensitive response, induced systemic
resistance, and systemic acquired resistance [15]. There is currently little data on the role of
Trichoderma spp. in the induction of plant defenses to viruses [16,17].

Trichoderma viride is mostly employed as a biofertilizer and as a biocontrol agent for
fungi that cause plant disease in crops [18]. It has been observed that T. viride culture
filtrates can inhibit the growth and aflatoxin production of Aspergillus flavus [19]. While
there exists some evidence indicating the involvement of Trichoderma spp. in the resistance
of plants to viral diseases, no prior research has investigated the impact of T. viride on
plant physiology and antiviral properties in the context of plant viral infections. Thus, the
present study aimed to evaluate the antiviral activity of T. viride against PVY infection in
potato plants under greenhouse conditions for the first time. Furthermore, the effects of T.
viride Tvd44 on plant growth parameters were evaluated. Antioxidant enzymes such as
peroxidase (POX) and polyphenol oxidase (PPO), which participate in the metabolism of
reactive oxygen species (ROS), were measured. The protein content and photosynthetic
pigment chlorophyll were determined. The accumulation level of the PVY-CP gene was
quantified. Expression levels of some defense-related genes (PR-1, POD, PAL, CHS, and
HQT) were also evaluated. Additionally, potential bioactive components of the secondary
metabolites of the T. viride Tvd44 isolate were identified using GC–MS.

2. Materials and Methods
2.1. Fungal Isolation, Molecular Identification, and Culture Preparation of Trichoderma viride

The Tvd44 strain of Trichoderma viride was isolated from the roots of asymptomatic
tomato plants located in Damanhour, El-Behira governorate, Egypt. T. viride was charac-
terized through morphological traits as well as molecular identification via the ITS region.
The methodology of serial dilution was utilized to isolate the Trichoderma sp. The culture
that was acquired underwent purification through hyphal tip isolation. Subsequently,
it was sustained on PDA slants to facilitate identification. For DNA isolation, T. viride
cultures were grown at room temperature in potato extract broth for 3 to 4 days. Hyphae
were collected on cheesecloth in a Buchner funnel and then washed with 25 mM EDTA
followed by distilled water. The samples were frozen in liquid nitrogen until used in the
DNA extraction method according to Castle et al. [20]. Identification of the specimens was
carried out through a combination of morphological characteristics and molecular typing
utilizing the ITS1 and ITS4 primers, as described in references [21,22]. Table 1 displays the
primer sequences. The PCR reactions were composed of 1 µL of both forward and reverse
primer, 10 µL of 2× Taq Ready Mix, and 1 µL of DNA template. A volume of 25 µL was
achieved by the addition of dsH2O. Using a Techne Prime thermal cycler, an initial denat-
uration at 95 ◦C for 3 min was followed by 35 cycles of 94 ◦C for 45 s, 55 ◦C for 45 s, and
72 ◦C for 1 min, and a final extension step at 72 ◦C for 5 min. The amplified PCR product
was subjected to purification using a PCR cleanup column kit manufactured by QIAGEN,
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Hilden, Germany. The DNA nucleotide sequence that was acquired underwent analysis by
NCBI-BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on 21 March 2023). MEGA
11 software was utilized to analyze the phylogenetic tree, which was generated through the
application of the maximum likelihood statistic method [23]. This approach was employed
to determine the evolutionary relationships among the taxa under investigation.

Table 1. Nucleotide sequence primers used in this study.

Gene Primer Sequence (5′–3′) Functional Annotation

PR-1 Forward: CCAAGACTATCTTGCGGTTC
Reverse: GAACCTAAGCCACGATACCA Pathogenesis related protein-1

POD Forward: TGGAGGTCCAACATGGCAAGTTCT
Reverse: TGCCACATCTTGCCCTTCCAAATG Peroxidase

PAL1 Forward: ACGGGTTGCCATCTAATCTGACA
Reverse: CGAGCAATAAGAAGCCATCGCAAT Phenylalanine ammonia-lyase

CHS Forward: CACCGTGGAGGAGTATCGTAAGGC
Reverse: TGATCAACACAGTTGGAAGGCG Chalcone synthase

HQT Forward: CCCAATGGCTGGAAGATTAGCTA
Reverse: CATGAATCACTTTCAGCCTCAACAA

Hydroxycinnamoyl Co A quinate
hydroxycinnamoyl transferase

Beta-actin Forward: ATGCCATTCTCCGTCTTGACTTG
Reverse: GAGTTGTATGTAGTCTCGTGGATT Housekeeping gene

ITS Forward: TCCGTAGGTGAACCTGCGG
Reverse: TCCTCCGCTTATTGATATGC Internal transcribed spacer

PVY-CP Forward: CAACTCCAGATGGAACAATTG
Reverse: CCATTCATCACAGTTGGC Potato virus Y coat protein

2.2. Viral Source and Molecular Identification

Samples of potato (Solanum tuberosum L.) exhibiting severe leaf mosaic distortion and
chlorosis along with characteristic PVY-like symptoms were obtained from Borg El-Arab,
Alexandria governorate, Egypt. The viral RNA was extracted using the RNeasy Mini Kit,
following the guidelines provided by the manufacturer. The initial cDNA strand was
synthesized according to the methodology outlined by Aseel et al. [24]. Subsequently,
PCR amplification was performed on the cDNA using primers specific to the PVY coat
protein (CP) gene, as listed in Table 1. The PCR program was performed as mentioned
above with the annealing step at 58 ◦C for 45 s. The duration of the final elongation phase
was 5 min, with a temperature of 72 ◦C. The PCR products were checked on 2% agarose
gel electrophoresis, purified, and subjected to sequencing, and the phylogenetic tree was
analyzed utilizing MEGA 11 software, as previously detailed.

2.3. Antiviral Activity Assay in the Greenhouse

The experimental setup involved the utilization of plastic pots with a diameter of
25 cm, which were filled with sterilized soil consisting of a 1:1 ratio of clay and sand
(w/w). The experiment involved cultivating virus-free potato tubers of the Spunta cultivar
for 21 days in an insect-proof greenhouse, maintaining constant conditions of 26 ± 2 ◦C
and a 14/10 h day/night cycle. To prepare the Tvd44 culture filtrate (spraying solution),
1 mL containing 1 × 109 conidia was inoculated in 100 mL of potato dextrose broth and
incubated at 28 ◦C for 6 days on a rotary shaker at 150 rpm. Subsequently, culture filtrate
was obtained by filtration through Whatman filter paper No. 1. The filtrate was passed
through a 0.2µm pore biological membrane filter before application on the plant leaves. In
addition, 1 mL of PVY solution (20 µg/mL) was used as a viral inoculum. The experimental
treatments utilized in this study were labeled as follows: a healthy control group denoted
as “C”, potato plants that were inoculated with PVY labeled as “V”, potato plants that
were subjected to leaf spraying with Tvd44 culture filtrate labeled as “T”, and potato
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plants that were treated with Tvd44 48 h before PVY inoculation labeled as “T + V”. The
entire plant was sprayed with culture filtrate until the leaves appeared to be doused. The
PVY inoculation was performed on the two upper true leaves of each potato plant via
mechanical inoculation by dusting them with carborundum, as per the previously described
method [25]. The experimental design consisted of five biological replicates, each of which
was represented by five pots. Each container was populated with a triad of potato plants.
To conduct sample analysis, each biological replication was comprised of nine potato leaves
that were collected from each of the three potato plants, with three leaves being obtained
from each plant in every pot. Each evaluation involved the execution of three technical
replicates for every biological replicate.

2.4. Disease Assessment

According to Mansour and Al-Musa’s description, disease symptoms were visible in
all infected pots 21 days after PVY inoculation [26]. As per the findings of Imran et al. [27],
the assessment of disease severity in affected plants was conducted using a six-point scale
that took into account the observable disease symptoms and the extent of leaf damage.
The scale was as follows: 0 denoting the absence of any symptoms, 1 indicating a range of
1–20%, 2 representing 21–40%, 3 denoting 41–60%, 4 denoting 61–80%, and 5 indicating
81–100%. Subsequently, the disease severity values were converted into the percent disease
index (PDI) using the subsequent formula:

PDI = ∑ ab
AK
× 100

where a is the number of infected plants with the same severity grade, b is the severity
grade, A is the total number of plants, and K is the maximum infection grade.

By dividing the number of infected plants by the total number of plants and multi-
plying the result by 100, it is possible to express disease incidence as a percentage. The
categorization of incidence levels was as follows: low incidence was defined as ranging
from 1% to 20%; moderate incidence was defined as ranging from 21% to 49%, and high
incidence was defined as ranging from 50% to 100%.

2.5. Growth Parameter Evaluation

Five plants were selected at random from each treatment, uprooted, and subsequently
washed under running water. The plants were then evaluated for their height (cm), shoot
and root fresh weight (g), and shoot and root lengths (cm), as well as the number of leaves.

2.6. Estimation of Antioxidant Enzyme Activity
2.6.1. Leaf Sample Preparation

A quantity of 1 g of powdered leaf tissue was homogenized using 4 mL of a
0.1 M phosphate buffer solution with a pH of 7. The extracts were filtered using a nylon
cloth. Subsequently, the extracts underwent centrifugation at 10,000× g for 20 min at a
temperature of 4 ◦C, as previously described [28]. The supernatants were preserved at
−80 ◦C and subsequently utilized for the assessment of peroxidase and polyphenol oxidase
activities, as well as for the quantification of protein content.

2.6.2. Peroxidase (POX) Activity

The procedure for measuring the activity of the peroxidase (POX) enzyme has been
described by Angelini et al. [29]. This involved the addition of 80 µL of the crude extract
to a solution containing 500 µL of a 0.1 M phosphate buffer with a pH of 7, 500 µL of
5 mM guaiacol, and 60 µL of 2 mM H2O2. The complete solution was incubated at 30 ◦C for
10 min, leading to the formation of tetraguaiacol. After this, absorbance was measured at a
wavelength of 480 nm, wherein the molar extinction coefficient (
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2.6.3. Polyphenol Oxidase (PPO) Activity

PPO activity was evaluated through the measurement of purpurogallin at a wave-
length of 420 nm, utilizing an extinction coefficient of 26.40 M−1 cm−1 [30]. The reaction
mixture, consisting of 2 mM pyrogallol in 0.1 M K-phosphate buffer pH 6, was subjected
to enzymatic treatment by the addition of enzyme extract. The reaction was allowed to
proceed for 5 min at 25 ◦C, following which it was terminated by the addition of 2.5 N
H2SO4. The absorbance of the reaction mixture was measured and enzyme activity was
quantified in µM g−1 FM min.

2.7. Protein Content

Total protein was extracted from potato leaves (200 mg fresh weight), which were
ground with liquid nitrogen with a mortar and pestle. After that, the powdered leaves
were homogenized in protein extraction buffer (0.050 g polyvinyl polypyrrolidone, 1 mL
0.05 M Tris buffer) and transferred to a new Eppendorf tube. The mixture was vigorously
vortexed for 15 s before being placed on ice for 10 min. After centrifuging the lysate at 4 ◦C
at 12.000 rpm for 20 min, 100 µL of supernatant was taken to a new Eppendorf tube for
protein concentration determination with bovine serum albumin [31].

2.8. Chlorophyll Photosynthetic Pigment

For total chlorophyll content (TCC) determination, shoot tissue was immersed in
5 mL of 80% acetone and left overnight at 4 ◦C in the dark [32]. At A663 and A645 nm,
Photometric readings were used to calculate TCC (a + b) using the following equation:
(8.02 × A663 + 20.2 × A645) × V/1000 ×W; where V = volume and W = fresh weight [33].

2.9. Transcriptional Level of Defense-Related Genes
2.9.1. RNA Extraction and cDNA Synthesis

The RNeasy Plant Mini Kit was utilized to isolate total RNA from 100 mg (fresh
weight) potato leaves that were collected at 21 days post-inoculation (dpi), following the
manufacturer’s instructions. Following the assessment of RNA purity and concentration,
2 µg of DNase-treated RNA underwent cDNA synthesis utilizing M-MuLV reverse tran-
scriptase, according to previous studies [34,35]. The transcription reaction was conducted
in a thermal cycler (Eppendorf, Hamburg, Germany) at a temperature of 42 ◦C for 1 h, and
subsequently deactivated at a temperature of 80 ◦C for 10 min. The mixture of reactants
was preserved at −20 ◦C until its utilization.

2.9.2. Quantitative PCR (qPCR) Assay

The impact of Tvd44 on the accumulation level of defense-related transcripts against
PVY was assessed by qPCR. This study utilized a set of primers (as outlined in Table 1) that
were specific to various genes, including PR-1, POD, PAL, CHS, HQT, and PVY-CP. The
expression levels were normalized to β-actin as a housekeeping gene. qPCR reactions were
performed in triplicate for each sample using the Rotor-Gene 6000 system according to the
protocol described by Rashad et al. [36]. The quantification and calculation of the relative
expression level of the target gene were performed using the amplification program, as
previously described in reference [37].

2.10. GC–MS Analysis

As per the findings of Abdelkhalek et al. [38], the fungal culture filtrate was collected
after 48 h of incubation in broth media. The culture filtrate was then combined with
ethyl acetate in a 1:1 (v/v) ratio. Following 20 min of intense agitation, the amalgam
was partitioned using a funnel. Subsequently, a rotary evaporator concentrated the ethyl
acetate phase through evaporation at 40 ◦C. GC–MS analysis was conducted on the residue.
Helium gas was transported through a carrier at a 1 mL/min flow rate. The temperature of
the injector was 250 ◦C. Mass spectra were recorded for 53 min at an energy level of 70 eV.
The components were identified by comparing them with data from the GC–MS libraries.
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2.11. Statistical Analysis

The data acquired underwent statistical analysis via one-way ANOVA utilizing CoStat
software. Concurrently, Tukey’s honest significant differences method (HSD) was employed
to determine the statistical differences in the mean at a significance level of p ≤ 0.05.
The standard deviation (±SD) was depicted as a column bar. There was no statistically
significant difference observed among columns that share the same letter.

3. Results
3.1. Fungal Isolation and Molecular Identification

Trichoderma viride Tvd44 hyphae were identified by colony shape and color on PDA.
Under a light microscope, Tvd44 hyphae were seen to be septate, have multiple nuclei,
be clamped together, and have conidia. The molecular identity of Tvd44 was determined
using PCR-amplified products of about 550 bp of the ITS region. The verified sequence
was deposited in GenBank with the accession number OQ991378. The phylogenetic tree
(Figure 1) observed that T. viride isolate Tvd44 was closely related to other T. viride isolates
available in GenBank, especially those from Thailand (Acc #OM084773). Not surpris-
ingly, the ITS locus alone was not able to clearly resolve GenBank isolates within the T.
viride/atroviride/koningii species complex.
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Figure 1. A maximum likelihood-based unrooted phylogenetic tree shows the connection between
T. viride Tvd44 (red box) and other T. viride, Trichoderma atroviride, and Trichoderma koningii isolates
based on the ITS marker sequences available in GenBank.

3.2. Viral Source and Identification

For the viral isolation, the typical PVY symptoms of naturally infected potato samples,
including chlorosis, mosaic, and necrotic lesions, were confirmed by RT–PCR, using a
specific primer of the PVY-CP gene, which amplified about 820 bp. The PCR purification
and sequencing, the NCBI-BLAST alignment, and the analysis of the phylogenetic tree
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revealed that PVY strain DA55 was related to other PVY isolates, mainly from Mexico (Acc
#AY700020) (Figure 2).

1 
 

 
Figure 2. A phylogenetic tree analysis using the maximum likelihood method shows the relationship
between PVY strain DA55 (red box) and other PVY isolates based on PVY-CP sequences available
in GenBank.

3.3. Disease Assessment

Compared to untreated plants, those that had been sprayed with a Tvd44 culture
suspension on their leaves (48 h before virus inoculation) showed considerably reduced
disease symptoms and increased plant development (Figure 3). The symptoms of PVY,
including mosaic, chlorosis, yellowing, leaf deformation, size decrease of some plant leaves,
and necrotic lesions, were shown on potato plants inoculated with PVY at 14 dpi (Figure 3).
No observable symptoms were detected in either the control group or the group of plants
treated with Tvd44 (Figure 3). The response of disease severity to the applied treatments (T.
viride 48 h before PVY-inoculated plants) significantly limited and reduced both disease
severity and incidence compared with infected potato plants treated with PVY only. No
symptoms were shown on the control plants or Tvd44-treated plants (Table 2).
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Figure 3. Effect of T. viride Tvd44 on PVY infection of potato plants under greenhouse conditions.

Table 2. Disease assessment of potato plants infected with PVY (21 days after inoculation) pre-
inoculated or not with T. viride. C = untreated control, T = T. viride Tvd44, V = infected with PVY,
T + V = T. viride 48 h before inoculation with PVY, and PDI = percent disease index.

Treatment Disease Incidence
(%) *

Disease Incidence
Grade PDI (%)

C 00.0 c - 00.0 c

T 00.0 c - 00.0 c

V 89.4 a high 83.6 a

T + V 21.4 b moderate 11.2 b
* The values presented in each column that share the same letter are not significantly different as per Tukey’s HSD
test (p ≤ 0.05). Each value is representative of five biological replicates.

3.4. Growth Parameter Evaluation

Tvd44 generated a 37.7 cm plant height, followed by Tvd44 before PVY inoculation
(34.3 cm). Moreover, the potato plants inoculated with PVY had a lower plant height
(15.7 cm) compared to the control plants (Table 3). In addition, the root length increased
with T and T + V (19.7 and 18.0 cm, respectively) more than did the shoot length for the
same treatments. When compared to potato plants infected with PVY and potato plants
used as a control, treatment with Tvd44 resulted in substantial increases in the fresh weights
of shoot systems to 5.27 g and root systems to 1.39 g. There was also a significant increase
in the treatment with Tvd44 before PVY inoculation in the fresh weight of shoots and
root systems (4.53 g and 2.15 g, respectively). Potato plants treated with PVY alone had
significantly lower shoot and root weights (1.5 g and 0.5 g, respectively) (Table 3).

Table 3. Effect of T. viride on the growth parameters of potato plants infected with PVY (21 days after
inoculation). C = untreated control, T = T. viride Tvd44, V = infected with PVY, and T + V = T. viride
48 h before inoculation with PVY.

Treatment * Plant Height (cm) Shoot Length (cm) Root Length (cm) Shoot Fresh Weight (g) Root Fresh Weight (g) No. of Leaves

C 25.0 ± 2.65 b 15.7 ± 2.08 a 08.0 ± 2.00 b 03.6 ± 0.61 b 1.02 ± 0.24 bc 29.7 ± 1.53 b

T 37.7 ± 2.52 a 18.0 ± 1.00 a 19.7 ± 3.51 a 5.27 ± 0.72 a 1.39 ± 0.51 b 57.7 ± 2.08 a

V 15.7 ± 2.10 c 10.0 ± 1.00 b 05.7 ± 1.53 b 1.50 ± 0.50 c 0.53 ± 0.21 c 11.7 ± 5.85 c

T + V 34.3 ± 4.04 a 16.3 ± 3.51 a 18.0 ± 01.0 a 4.53 ± 0.31 ab 2.15 ± 0.15 a 31.3 ± 2.08 b

* The values presented in each column that share the same letter are not significantly different as per Tukey’s HSD
test (p ≤ 0.05). Each value is representative of five biological replicates.



Horticulturae 2023, 9, 716 9 of 19

3.5. Estimation of Antioxidant Enzyme Activity
3.5.1. Peroxidase (POX) Activity

The POX enzyme activity was significantly increased in potato plants treated with
Tvd44, followed by the treatment with Tvd44 and PVY inoculation. The POX activities
reached 5.59 and 3.7 U L−1 min−1, respectively. When compared with untreated potato
plants, those that had been infected with PVY showed significantly lower levels of POX
activity, which peaked at a value of 2.42 U L−1 min−1 (Figure 4).
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Figure 4. Effect of T. viride Tvd44 on the peroxidase activity and polyphenol oxidase activity in potato
leaves at 21 dpi. Values are means and standard deviations of five biological replicates. Bars followed
by the same letters are not significantly different according to Tukey’s HSD test (p ≤ 0.05).

3.5.2. Polyphenol Oxidase (PPO) Activity

PPO activity in the Tvd44 treatment displayed the highest level (1.82 U L−1 min−1)
compared to the control treatment (0.81 U L−1 min−1) and the PVV treatment
(1.10 U L−1 min−1). Likewise, the Tvd44 + PVY treatment induced significantly increased
PPO activity (1.48 U L−1 min−1) compared to the control and PVY treatments (Figure 4).

3.6. Protein Content

Protein content significantly increased with treatment with T. viride isolate Tvd44,
reaching a maximum value of 754.1 mg mL−1 compared to the other treatments. Potato
plants that were treated with T. viride 48 h before being PVY inoculated had a protein
content of 589.6 mg mL−1, with no significant differences between this treatment and those
inoculated with PVY alone, which had a protein content of 588.5 mg mL−1 (Figure 5).
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Figure 5. Effect of T. viride Tvd44 on the protein content in potato leaves at 21 dpi. Values are
means and standard deviations of five biological replicates. Bars followed by the same letters are not
significantly different according to Tukey’s HSD test (p ≤ 0.05).
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3.7. Chlorophyll

The chlorophyll a and chlorophyll b content increased in potato plants treated with T.
viride isolate Tvd44 (4.28 a and 5.57 b ug/mg f.wt.), followed by the potato plants treated
with T. viride 48 h before PVY inoculation (2.04 a and 3.45 b ug/mg f.wt.); these were
found to be greater than those in the potato plants inoculated with PVY alone, where the
chlorophyll a and b contents decreased (1.02 a and 2.14 b ug/mg f.wt.), as presented in
Figure 6.
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3.8. Effect of T. viride on PVY Accumulation Level

The results indicate that virus-infected plants exhibited a significantly higher relative
gene expression of PVY-CP (101.82-fold) compared to the control group (Figure 7). In
comparison, the plants treated with T. viride 48 h before PVY inoculation exhibited a lower
level of PVY-CP accumulation, as evidenced by a relative gene expression level of 18.76-fold,
as depicted in Figure 7.
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3.9. Defense-Related Transcriptional Levels

The qPCR results revealed the upregulation of PR-1 in all treatments compared with
the control (Figure 8). The protective T. viride had a higher relative gene expression level
(18.34-fold). The treatment with T. viride and virus-inoculated potato plants showed that
the relative gene expression levels were 7.31-fold and 5.62-fold higher, respectively, com-
pared with healthy potato plants (Figure 8). POD showed upregulation of expression in all
treatments, especially potatoes with PVY only (32.44-fold), followed by treatment with T.
viride (22.16-fold) and T. viride 48 h before PVY inoculation (12.41-fold) compared to the
control expression level (Figure 8). All treatments showed transcriptional upregulation
expression of PAL, whereas PVY-infected potato plants showed transcriptional downregu-
lation expression that was 0.61-fold lower than the control (Figure 8). The highest relative
gene expression level (2.63-fold higher compared with control) was found in protective T.
viride 48 h before PVY inoculation. After that, the T. viride treatment had a relative gene
expression level of 1.69-fold compared to PVY alone (Figure 8). Regarding CHS-relative
gene expression, upregulation was noted in the protective treatment with T. viride 48 h
before PVY inoculation (3.89-fold higher). Subsequently, potatoes with PVY showed a
transcriptional upregulation of gene expression that was 2.33-fold. T. viride alone resulted
in a 0.68-fold lower transcriptional downregulation expression level in potato plants than
in untreated potato plants (Figure 8). Similar to CHS, the gene expression level of HQT
showed upregulation in T. viride 48 h before PVY (2.93-fold higher) and in the PVY treat-
ment (1.31-fold), while the downregulation of expression levels for the T. viride treatment
was 0.48-fold lower compared to the control (Figure 8).
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Figure 8. The relative gene expressions of PR-1, POD, PAL, CHS, and HQT at 21 dpi of the T. viride
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of five biological replicates. Bars followed by the same letters are not significantly different according
to Tukey’s HSD test (p ≤ 0.05).
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3.10. Identification of Bioactive Metabolites of Tvd44

In this study, GC–MS was used to find the bioactive components of an ethyl acetate
extract of Tvd44 culture filtrate. Figure 9 shows the GC–MS histogram of the compounds
that were found. The GC–MS study showed that Tvd44-CF had more than 16 compounds.
Table 4 presents the compounds with the highest relative abundance, along with their corre-
sponding retention time (RT), relative abundance (RA%), molecular formula, and biological
activity. The first compound, thiocarbamic acid, N,N-dimethyl, S-1,3-diphenyl-2-butenyl
ester, showed the highest concentration at an RT of 35.39, while the second compound
was 1,1-dicyano-2-methyl-4-(p-cyanophenyl) propene, which appeared at an RT of 35.11.
The third detected compound was trans-[(2,3-diphenylcyclopropyl)methyl] phenyl sulfide,
having an RT of 33.83. The other three compounds, 1-propene, 3-(2-cyclopentenyl)-2-
methyl-1,1-diphenyl; 6-amyl-α-pyrone; and S-(1,3-diphenylbutyl) dimethyl thiocarbamate,
were detected at RTs of 35.63, 14.65, and 36.90, respectively (Figure 9 and Table 4).
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Table 4. Chemical properties of the highest six compounds detected in the ethyl acetate extract of T.
viride Tvd44 culture filtrate using GC–MS analysis.

* RT RA% Compound Molecular Formula Biological Activity References

14.65 4.29 6-Amyl-α-pyrone C10H14O2 Antifungal [39–41]

33.83 14.06 trans-[(2,3-Diphenylcyclopropyl)methyl]
phenyl sulfide C22H20OS Anticandidal and

antioxidant [42]

35.11 16.90 1,1-Dicyano-2-methyl-4-(p-
cyanophenyl)propene C13H9N3

Antifungal and
insecticidal [43]

35.39 31.78 Thiocarbamic acid, N,N-dimethyl,
S-1,3-diphenyl-2-butenyl ester C19H21NOS Antimicrobial [44]

35.63 9.02 1-Propene,
3-(2-cyclopentenyl)-2-methyl-1,1-diphenyl C21H22 Antifungal [42]

36.90 2.95 S-(1,3-diphenylbutyl) dimethyl thiocarbamate C19H21NOS Antioxidant and
anticancer activity [45]

* RT: retention time, RA: relative abundance.

4. Discussion

To our knowledge, this is the first study to demonstrate the inhibition of PVY by T.
viride isolate Tvd44. Trichoderma species such as T. viride, T. atroviride, and T. harzianum are
effective and among the most adaptable biological control agents [17,46,47]. In the current
study, the enhancement in potato plant growth upon the foliar application of T. viride
Tvd44 agrees with previous studies that found that increased plant growth, including in
stressed plants, is one of the impacts of T. harzianum-T22 treatment [48,49]. In addition, the
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results are similarly consistent with those obtained by Yedidia et al. [50] with T. harzianum
treatment on cucumber plants, which increased by 80% in dry weight, 95% in shoot length,
and 75% in root length when compared to control plants. The application of T. viride
triggered systemic resistance against disease in potato plants [51]. Additionally, Jamil [52]
reported that T. viride-treated tomato plants infected with Fusarium oxysporum showed
lower disease severity, better growth and yield, the highest physiological activity, the least
amount of disease, and the highest biochemical and antioxidant activities. In a similar
case, greenhouse experiments showed that T. viride and T. harzianum were either directly
protective against Fusarium solani or indirectly connected to the plant’s defense system
when treated singly or in combination [53]. Additionally, according to Aggarwal et al. [54],
T. viride isolate TV5-2 detoxified the Bipolaris sorokiniana toxin and decreased the disease
severity of spot blotch in wheat.

The evaluation of symptoms and disease severity indicated that the administration
of Tvd44 resulted in a reduction of PVY in all treated plants. The data obtained from
the study indicate that Tvd44 has the potential to activate the innate immune system of
the host and/or initiate systemic acquired resistance (SAR), leading to the suppression of
PVY and/or inhibition of its replication. The results are in agreement with the protection
shown for other plants [17,55]. It has been documented that treatment of tomato plants
with two endophytic bacterial strains, B. subtilis 26D and B. subtilis Ttl2, induces systemic
resistance and reduces the accumulation level of PVY at 7 and 14 dpi by approximately 1.8 to
4.7 times [56]. Furthermore, the application of Bacillus amyloliquefaciens strain MBI600
through drenching exhibited a delay in the systemic accumulation of PVY [57].

Trichoderma intermediates impact systemic resistance by affecting the levels of defense-
related enzymes and metabolites such as PAL, POX, β-1–3-glucanase, PPO, phenols, and
chitins. These pathogenesis-related enzymes are critical for plant resistance to viral dis-
eases [17,58]. In the present study, POX activity was triggered and increased significantly
in potato plants treated with Tvd44, followed by those treated with Tvd44 and PVY. Fur-
thermore, the PPO activity was significantly increased in the Tvd44 and Tvd44 + PVY
treatments compared to the control and PVY treatments. In another study after treatment
with T. asperellum and the virus CMV, the activities of stress-resistance enzymes such as
POX, SOD, PAL, LOX, and CAT in the leaves were investigated. In comparison to control
plants, infection with CMV, Trichoderma, and CMV + Trichoderma resulted in an overall
increase in antioxidant enzyme activity. Trichoderma asperellum treatment was found to
have a different impact on the activity of these enzymes [59]. POX is a component of the
plant defense system that is responsible for reducing the detrimental effects of stress by
scavenging ROS [60,61]. Many studies have found an increase in POX, CAT, and PPO
activity in virus-infected plants [62].

The protein content significantly increased in potato plants treated with Tvd44 com-
pared with control plants, followed by the treatment with Tvd44 and PVY, and potato
plants infected with PVY were observed to have no significant differences between each
other. Similarly, Abdel-Shafiet al. [63] discovered that the total protein content of squash
plants infected with ZYMV and plants treated with Trichoderma sp. filtrate with ZYMV
increased significantly. This may be due to the formation of new antiviral proteins that
play a role in inducing systemic resistance. Similarly, T. harzianum-T22 increased photo-
synthesis, as evidenced by the chlorophyll content being greater in all plants treated with
T22 and inoculated with CMV [16]. Furthermore, our findings support a growing body
of evidence that Trichoderma species can improve photosynthetic ratio and effectiveness
in plants [49]. In contrast, there is typically a reduction in chlorophyll in plants infected
with plant viruses [64,65]. To obtain a potential understanding of the mechanism under-
lying T. viride-induced resistance against PVY, the transcriptional activity of select plant
defense-related genes in PVY-challenged plants was assessed using qPCR. By stimulating
transcriptional expression levels of these genes, T. viride Tvd44 triggered defense mecha-
nisms against PVY. The decrease in virus concentration and disease intensity showed that
various defense pathways are involved in Trichoderma-induced resistance against viruses.
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The results agree with Tamandegani et al. [59], who reported that increased transcription
levels of resistance-related genes increase the effectiveness of T. asperellum against CMV.

Generally, PR-1 is a principal regulator of SAR and a signal of the early defense
response [66]. Indeed, the accumulation of SA and increasing resistance of numerous plants
were linked to the induction of PR-1 [67,68]. In this study, the PR-1 gene was observed to
have upregulated expression in all treatments and also in potato plants inoculated only
with PVY. Our results agree with Abdelkhalek et al. [17], who found that T. hamatum Th23
can cause tomato plants to upregulate PR-1 and PR-7 upon infection with TMV. Similarly,
when Arabidopsis was infected with the Beet severe curly top virus, the PR-1 gene, as well
as several genes involved in the SA pathways, showed increased expression levels [69].
In other experiments, results demonstrated increased relative expression of SA-inducible
genes such as PR-1 and PAL-1 in the leaves of cucumber plants treated with T. asperellum, as
well as JA/ET-inducible genes such as LOX-1 and ETR-1 in the cucumber plants’ leaves [59].

POD gene activity has been related to improved plant defense against pathogens and
alternative producers as a potential source of ROS [70]. In addition to the activation of an-
tioxidant and PR genes in response to pathogen infection, ROS also increases programmed
cell death at the cell level and sites of infection [71,72]. It has been reported that PVY
infection increased peroxidase activity and the PR genes PR-1b and PR-1a [73]. We suggest
that PVY-infected potato plants and Tvd44 treatment both stimulate the expression of the
POD gene separately. Then, in the treatment of Tvd44 and PVY together, they decrease
POD gene expression. PAL is a key regulator enzyme in the phenylpropanoid pathway
as well as SA biosynthesis [74,75]. The downregulation of PAL activity was associated
with PVY infection in the current study, whereas PAL upregulation was observed in Tvd44
only and T. viride + PVY inoculation. In contrast, POD and PAL activities were increased
after trichokonin treatment, which was extracted from T. pseudokoningii SMF2 against TMV
infection. After 4 days of treatment, POD and PAL reached their peaks of activity with a
5.2-fold and 8.4-fold increase, respectively, compared with control plants [76].

CHS is the first enzyme in the flavonoid pathway, and it produces primary metabolites
that are essential for flavonoid synthesis in many plant tissues [77,78]. In the present study,
Tvd44 induced potato plants to become resistant to PVY infection. Thus, we suggest the
high expression of both CHS and HQT genes in treatment by Tvd44 and PVY accumulates
both flavonoids and polyphenols in potato leaves and thus protects them from viral infec-
tion. According to a previous study, overexpression of CHS has been linked to a substantial
buildup of flavonoid and isoflavonoid molecules with a broad antimicrobial action against a
variety of phytopathogens [79,80]. Over-expression of HQT and PAL increased chlorogenic
acid content [81–83], which was a plant response to viral infection, and vice versa [24].
Chlorogenic acid is a polyphenolic component that helps plants fight diseases and prevent
pathogens such as viruses [84,85]. Thus, the increased transcriptional expression of CHS
and HQT genes reveals their antiviral functions, showing that polyphenolic chemicals can
be used by the potato plant as one of its defenses against viral infection and spread.

The GC–MS spectral analysis demonstrated that the culture filtrate derived from Tvd44
comprises more than 16 compounds. Thiocarbamic acid, N,N-dimethyl, S-1,3-diphenyl-
2-butenyl ester was the major compound in ethyl acetate extract, which is one of the
best-known herbicides and has insecticidal activity [44,86]. Moreover 1,1-Dicyano-2-methyl-
4-(p-cyanophenyl)propene and trans-[(2,3-Diphenylcyclopropyl)methyl] phenyl sulfide
exhibited different antimicrobial activities [42,43]. 6-Amyl-α-pyrone, a primary-secondary
metabolite, has been found to have a notable impact on the biological regulation of pests [39].
6-Amyl-α-pyrone is classified as an unsaturated lactone and has been recognized as a
significant bioactive constituent of various Trichoderma species [39,87]. Therefore, it is
plausible that Tvd44 may serve as a potential biocontrol agent for mitigating infections
caused by PVY. However, additional investigations are required to validate the feasibility
of implementing the findings in potential field applications.
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5. Conclusions

The findings of the present investigation indicate that T. viride Tvd44 can stimulate the
growth of potato plants, decrease the level of PVY accumulation, elicit systemic resistance,
and enhance the production of certain defense enzymes. The potential utilization of
Tvd44 as a biological control agent for mitigating PVY infection is being considered. The
application of T. viride Tvd44 resulted in the upregulation of peroxidase, polyphenol oxidase,
protein content, and chlorophyll content in potato plants. Treatment with Tvd44 reduced
the PVY accumulation level compared to treatment with the virus alone. In addition,
Tvd44 increased the plant height, number of leaves, and fresh weight of the shoots and
root systems of potato plants. Treatment with Tvd44 and inoculation with PVY showed
increased transcript upregulation of the relative expression levels of the PAL, PR-1, CHS,
and HQT genes, except for the POD gene, whose gene expression was reduced compared
with other treatments. In general, we can conclude that the utilization of T. viride for
treatment or protection purposes has potential for the control and management of plant
viral diseases.
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