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Abstract: Facility horticulture plays a crucial role in modern agriculture by utilizing the environment
efficiently and ensuring food supply. The hoverfly Eupeodes corollae (Fabricius) (Diptera: Syrphidae)
performs a dual ecological function in facility agriculture as larvae prey on aphids and adults pollinate,
but it is not widely applied in agriculture due to the lack of a large-scale breeding technology. In this
study, we investigated the effects of different factors on the development and reproduction of the prey
(i.e., aphids), eggs, larvae, pupae and adults of E. corollae, and determined its propagation techniques.
We transferred five pairs of newly emerging E. corollae adults and 40 broad bean plantlets infested
with Aphis craccivora Koch to an insect cage. Aphid-infested broad bean seedlings were replaced
each day to encourage E. corollae reproduction. Following hatching, we fed the E. corollae larvae
with mixed populations of Myzus persicae (Sulzer), Megour japonica Matsumura and A. craccivora in
insect boxes, and covered E. corollae pupae with fresh broad bean leaves. Based on the experiment
results, an average female E. corollae produced 584.9 eggs. Survival, pupation and emergence rates
were 91.1%, 100% and 96.3%, respectively. In conclusion, each pair of E. corollae adults produced
391 adult offspring (58.8% females). This research supplies an optimized mass-breeding technique
for commercial production of the hoverfly, which will be helpful to promote its application in the
production of green fruits and vegetables.

Keywords: Eupeodes corollae; intensive breeding; horticultural crop; aphid control; pollination

1. Introduction

Facility agriculture is a specialized agricultural-production system that utilizes specific
equipment and techniques to regulate temperature, humidity and light. This approach
plays an important role in global food security and the economy [1,2]. The systems of
facility agriculture are semi-enclosed, providing a safe environment for crops but exclud-
ing pollinators as well. Therefore, mechanical vibrations, hand pollination or synthetic
hormones are used to promote fruit setting in facility agriculture [3,4]. Synthetic hormones
(i.e., plant-growth regulators) such as forchlorfenuron and 4-chlorophenoxyacetic acid are
widely used in facilities due to their high fruiting rate and ease of operation, but they are
susceptible to weather change [5]. Insect-pollinated crops produce high yields and quality
while benefiting the environment [6–8]. Traditionally, various species of bees provide the
bulk of the pollinating services in the world. Social bees appeared about 30 million years
ago, in the Oligocene era of the Tertiary [9], and in recent years European honeybees (Apis
mellifera L.) and bumblebees (Bombus spp.) have been introduced into facility agriculture
to ensure fruit set in horticultural crops [8]. Before the appearance of the bees, however,
other insects such as beetles, butterflies and Diptera (including hoverflies) were the main
pollinators, and today hoverflies are getting increasing attention. Just like bees, hoverflies
possess color vision [10] and use their eyes to detect suitable plants to collect pollen from
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and to deposit their eggs on [11]. However, many small farmers in China still use synthetic
hormones or hand pollinate to set fruit in their crops to save money.

Aside from pollination, pest control is another important aspect of facility agriculture.
Suitable temperatures and host plants that grow well in facility agriculture cause pest
proliferation, and small pests such as aphids, thrips, whiteflies and leaf mites adversely
affect crop yields [12,13]. Aphids are common pests in horticultural crops, reducing yields
through direct feeding and virus transmission, and they are commonly controlled with
insecticides. However, insecticide use has resulted in pesticide resistance, environmental
pollution, food safety concerns and a decline in pollinator populations [14,15]. Biological
control is an environmentally friendly alternative to insecticide-based approaches, such
as the parasitic wasps which have been introduced to control aphids in facility agricul-
ture [16,17]. Introducing pollinators and natural enemies simultaneously is a vital direction
in facility-agricultural-crop management [18]. For example, bumblebee pollinators car-
rying Beauveria bassiana (Balsamo) were introduced to pollinate sweet pepper crops and
control thrip populations [19]. However, it is possible that the simultaneous deployment
of insect pollinators and biological-control agents will adversely affect crop yields, such
as high pest loads, i.e., low levels of biological control, resulting in enhanced pollinator
benefits for oilseed-rape seed yields [20]. Due to the variable impact of pollinators’ and
natural-enemies’ simultaneous use on crop productivity, as well as the additional costs
involved, this practice has only received marginal attention in greenhouse agriculture.

The hoverfly Eupeodes corollae (Fabricius) (Diptera: Syrphidae) has the dual ecological
functions of pollination and biological control [21], and is distributed in Europe, North
Africa and North Asia [22–24]. The adults feed on pollen and nectar and deposit eggs on
aphid-infected plants [25–27], providing pollination services for a variety of horticultural
crops in facility agriculture, such as tomatoes, strawberries and melons [28–30]. The
larvae prey on many species of aphids [31,32], decreasing aphid populations in sweet
peppers, lettuces and strawberries [33–35] and increasing the yield and quality of crops [30].
Therefore, developing large-scale breeding techniques for E. corollae serves both economic
and ecological purposes.

In recent years, researchers have studied the effects on the development and reproduc-
tion of hoverflies from aphids, host plants, pollen, etc., and they have already mastered
indoor-breeding methods for hoverflies. These are as follows: (A) provide fresh pollen,
honey and plant hosts infested with aphid populations for hoverfly adults to consume and
lay eggs on; (B) provide enough aphids for larvae to feed on; and (C) preserve pupae until
they emerge. This method allows E. corollae to be bred for multiple generations [31,36]. As
well as pollen and honey, hoverfly fecundity is also affected by the aphid species used,
their density and the host-plant species [37–41]. Hoverfly adults produce no or few eggs
on plants with no aphids, or a moderate number of hoverfly eggs [38,42,43], and different
numbers of eggs on different kinds of plants infested with the same aphid species [39].
Breeding hoverflies on a large scale poses several problems: (a) Adults produce insufficient
eggs. They require a large amount of food, such as fresh pollen, which is difficult to obtain
in large quantities and expensive. (b) Hoverfly eggs hatch at a low rate. Hoverfly larvae
feed on aphids and self-mutilate to consume unhatched eggs when food is scarce. In terms
of larval survival and development, different types and numbers of aphids have different
effects on hoverfly larvae [44,45]. (c) Hoverfly pupae emerge at a low rate. The pupae will
shrivel and liquefy due to humidity.

Based on the above, this experiment examined the propagation method for E. corollae,
and specifically the effects of different feeding methods on the development of the prey
(i.e., aphids), eggs, larvae, pupae and adults of E. corollae. It studied the reproduction of
hoverflies when using different species and densities of aphids, as well as the hatching
rates with the different aphid species, the larval development and survival in different
rearing containers, and the emergence of pupae when covered with various substances. We
determined an efficient breeding method for E. corollae after analyzing the development
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and reproductive parameters of hoverflies when using different treatments, providing
guidance for commercial hoverfly production.

2. Materials and Methods
2.1. Insect Material

In June 2018, Eupeodes corollae (Diptera: Syrphidae) adults were collected by sweep
netting from wheat fields at the Langfang Experiment Station of the Chinese Academy
of Agricultural Sciences (CAAS) (39.53◦ N, 116.70◦ E, 18 m elevation) in Hebei Province,
China. Every 5 pairs of E. corollae adults (male and female) were placed in an insect cage
(0.5 × 0.3 × 0.4 m; 120 mesh; Beijing Luhebang Technology Development Co., Ltd., Beijing,
China). Each colony was provided with 10% honey-water solution and mixed pollen (3 com-
mercial rape pollen: 1 maize pollen, by weight) in two dishes (9 cm diam × 1.5 cm height),
along with 40 broad bean plantlets infested with Megoura japonica Matsumura aphids. A to-
tal of 40 soybean plantlets infested with Me. japonica (approximately 8000 individuals) were
cut and added to the cage daily to feed the E. corollae larvae. Upon pupation and emergence,
the hoverfly adults were transferred to another cage for further raising. Three separate
aphid populations of Me. japonica, Aphis craccivora Koch and Myzus persicae (Sulzer) were
established on broad bean plantlets. Aphid-culture rooms were maintained at 20 ± 1 ◦C,
20–40% RH and 16h L:8h D. Hoverflies were kept in climate-controlled rooms maintained
at 25 ± 1 ◦C, 30–70% RH and 16h L:8h D.

All the insects mentioned in this paper have been retained at the Langfang Experiment
Station of the Chinese Academy of Agricultural Sciences (CAAS) in Hebei Province, China,
and the voucher specimen labels are Ec-20180605, Me-20171010, My-20171011 and Ac-
20171012. The insect species were identified by the authors using two books [46,47].

2.2. Method of Aphid Culture

The mixed-aphid populations (Me. japonica, A. craccivora and My. persicae) were
maintained on broad bean seedlings grown in the laboratory and changed every 7 days. We
planted 20 broad bean seedlings in each basin (10 cm diam × 10 cm height), and we cut and
placed the broad bean seedlings (20 cm) infested with mixed aphids on the newly planted
seedlings at heights of 2 cm, 4 cm and 6 cm. The total number of aphids on each seedling
was recorded after 7 days. There were 20 seedlings in each treatment and each treatment
was replicated 10 times. Aphid populations were maintained in climate-controlled rooms
at 20 ± 1 ◦C, 20–40% RH and 16h L:8h D.

2.3. Method of E. corollae Culture
2.3.1. E. corollae Adult Culture

The reproduction of E. corollae depends on adult density, and on aphid density and
species, as shown in the figure below (Figure 1).
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Aphid Supply Method

As described in Section 2.1, one pair of E. corollae adults (<24 h) was reared in a cage
containing 10% honey water, mixed pollen and 40 broad bean plantlets (20 cm height)
infested with Me. japonica. Bean seedlings served as an oviposition substrate, and were
removed from rearing cages to collect and record the eggs. Hoverflies were provided with
different aphid densities during the breeding period by replacing broad bean seedlings
every day, every 2 days and every 4 days. Broad bean seedlings were not replaced in the
control treatment. We measured hoverfly-larvae numbers and calculated egg-hatching rates
after all aphids on the seedlings were eaten. The hoverflies were raised in a climate chamber
at 25 ± 1 ◦C, 30–70% RH and 16 h L:8 h D. There were 30 replicates of each treatment.

E. corollae Adult Density Treatment

Different numbers of recently emerged (<24 h) E. corollae adults were reared in a
cage containing 10% honey water, mixed pollen and 40 broad bean plantlets infested with
Me. Japonica, as described in Section 2.1. More specifically, the numbers of E. corollae
adults released in each cage were 1 pair, 5 pairs, 10 pairs and 20 pairs, respectively. We
changed bean seedlings in cages daily, counted the number of hoverfly eggs and larvae, and
calculated egg-hatching rates after all aphids on the seedlings were eaten. The laboratory
conditions were 25 ± 1 ◦C, 30–70% RH and 16 h L:8 h D, and each treatment was repeated
10 times.

Aphid Species Treatment

We transferred 5 pairs of newly emerged E. corollae adults (<24 h) into a cage containing
honey water and mixed pollen, as described in Section 2.1, and 40 broad bean seedlings
infested with either Me. japonica, A. craccivora, My. persicae, or a mixed population of the
3 aphid species (total of 4 different treatments). Aphid-infested broad bean seedlings were
replaced daily in another cage to record the number of hoverfly eggs. We counted the
hoverfly larvae and calculated egg-hatching rates after all aphids on the seedlings were
eaten. The laboratory conditions were 25 ± 1 ◦C, 30–70% RH and 16h L:8h D, and each
treatment was repeated 10 times.

2.3.2. Method of E. corollae Larvae Culture

Eupeodes corollae larvae feed on eggs in the absence of aphids or in limited space. In
this section, we examine how the aphid species used and different containers affect hoverfly
larval development and self-injury.

Aphid Species Treatment

We transferred 5 pairs of newly emerged E. corollae adults (<24 h) into a rearing cage
containing honey water and mixed pollen, as described in Section 2.1, and 40 broad bean
seedlings infested with either Me. japonica, A. craccivora, My. persicae, or a mixed population
of the 3 aphid species (total of 4 different treatments). During the 3rd, 4th and 5th days
of hoverfly breeding, the leaves on which E. corollae laid eggs were randomly cut and
placed into a dish (3.5 cm in diam × 1 cm height, egg/Petri dish). We fed new larvae of
E. corollae with the aphid species originating from where the eggs were located (one of
the 4 treatments), adding 80 aphids per dish daily until pupation. The development and
survival of hoverfly larvae were observed at 8:00 and 20:00 every day. Each treatment was
repeated 90 times. After pupation and emergence, the numbers of hoverfly pupae and
adults were recorded for all 4 treatments. Then, we moved 1 pair of newly emerged hoverfly
adults (which were developed from larvae feeding on either Me. japonica, A. craccivora,
My. persicae, or the mixed aphids) to a cage containing 10% honey water, mixed pollen
and 40 broad bean plantlets infested with Me. Japonica, as described in Section 2.1. The
seedlings were changed daily, and the total oviposition of hoverflies was observed and
recorded. The laboratory conditions were 25 ± 1 ◦C, 30–70% RH and 16 h L:8 h D, and each
treatment was repeated 15 times.
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Rearing Containers

As described in Section 2.1, five pairs of E. corollae adults were reared in a cage
containing 10% honey water, mixed pollen and 40 broad bean plantlets infested with Me.
japonica. During the 3rd, 4th and 5th days of hoverfly breeding, all the leaves on which
E. corollae laid eggs were cut off and placed in another cage or box. Insect cage: 60 broad
bean seedlings infested with mixed aphids were cut and added to the insect cage to feed
the hoverfly larvae at 8:00 daily. Insect box: 60 broad bean seedlings infested with mixed
aphids were cut and added to the insect box (44 × 30 × 15 cm) with a sifter (40 cm × 20 cm,
1.5 cm aperture mesh) to feed the hoverfly larvae at 8:00 daily. Hoverfly larvae were
observed daily until pupation, and pupae were weighed on the third day. The larval
survival rate, pupation rate and emergence rate were calculated. The laboratory conditions
were 25 ± 1 ◦C, 30–70% RH and 16h L:8h D, and each treatment was repeated 5 times.

Larval survival rate = (No. of mature larvae/No. of tested larvae) × 100%;

Pupation rate = (No. of pupae/No. of mature larvae) × 100%;

Emergence rate = (No. of adults/No. of pupae) × 100%.

2.3.3. Preservation Method for E. corollae Pupae

Considering the impact of humidity on hoverfly pupae emergence, 4 substances with
different water content were used to cover the pupae for their emergence. We placed
200 E. corollae pupae (<24 h) in Petri dishes (9 cm diam × 1.5 cm height) covered with
vermiculite, nutritive soil, foam balls or fresh broad bean leaves (1 cm thick) in insect
cages. Pupae were not covered with any material in the control group. We calculated the
emergence rate after pupa emergence. Each treatment was repeated 10 times. Laboratory
conditions were the same as in Section 2.1.

The factors affecting E. corollae intensive breeding are shown in the figure below
(Figure 2):
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Figure 2. Breeding process of E. corollae.

2.4. Statistical Analysis

The number of eggs and larvae of E. corollae, their hatching rates, emergence rates
and different instar durations of larvae fed on different aphid species were analyzed by
one-way analysis of variance (ANOVA). Larval survival rate, pupation rate and pupae
weight of hoverfly larvae reared in box versus cage were analyzed by Student’s t-test. Prior
to analysis, all data were checked for normality and heteroscedasticity. Where necessary,
data were transformed to meet normality assumptions. Statistical analysis was conducted
by SPSS 21.0 (IBM, Armink, NY, USA) and images were plotted with SigmaPlot 14.0 (Systat
Software, Inc., Hamburg, Germany).
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3. Results
3.1. Optimized Breeding Technique for Aphid Populations

Broad bean seedlings displayed varying degrees of damage when inoculated with the
mixed aphids (Me. japonica, A. craccivora and My. persicae) at different heights (Figure 3).
Broad bean seedlings inoculated with aphids at 2 cm (Figure 3A) and 4 cm (Figure 3B)
exhibited a higher number of aphids after 7 days than seedlings inoculated with aphids at
6 cm (Figure 3C). When inoculated with aphids at 2 cm, a broad bean seedling’s aphids
gathered at the top of the leaves, causing the leaves to curl and negatively affecting the
seedling’s growth (Figure 3a), while those inoculated at 4 cm (Figure 3b) and 6 cm (Figure 3c)
displayed fewer aphids and normal leaf development.
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(A–C) represent broad bean seedlings inoculated with mixed aphids at 2 cm, 4 cm and 6 cm for 7 days;
(a–c) are the broad bean leaves of (A–C), respectively. The mixed aphids consisted of Me. japonica,
A. craccivora and My. persicae.

Aphid numbers were lowest on seedlings inoculated at 6 cm after 7 days of inoculation
(69.1), and were markedly lower than for those inoculated at 2 cm (231.4) and 4 cm (217.3)
(F2,597 = 358.169, p = 0.000)(Figure 4).
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3.2. Optimized Breeding Technique for E. corollae
3.2.1. Reproduction of E. corollae Reared Using Different Methods
Reproduction of E. corollae Using Different Aphid Densities

The fecundity of E. corollae increased with aphid density (i.e., replacement frequency
of broad bean seedlings) (Table 1). In this experiment, a single E. corollae had the greatest
fecundity when the broad bean seedlings were replaced daily. The total number of eggs, the
hatching rate and the number of surviving larvae under this treatment were 584.9, 95.6%
and 549.3, respectively, markedly higher than at other replacement frequencies of broad
bean seedlings (Table 1) (total spawning number: F3,116 = 0.58, p = 0.000; egg-hatching rate:
F3,116 = 0.14, p = 0.000; number of hoverfly larvae: F3,116 = 0.44, p = 0.000).

Table 1. Reproduction of E. corollae using different aphid densities.

Replacement Frequency of
Broad Bean Seedlings (d)

Total Spawn
Number/Hoverflies Egg-Hatching Rate (%) Number of Hoverfly

Larvae/Adults

1 584.9 ± 22.92 A 95.6 ± 6.52 A 549.3 ± 17.65 A
2 450.0 ± 16.23 B 84.2 ± 5.11 B 301.0 ± 15.26 B
4 283.5 ± 23.43 C 77.6 ± 3.20 C 198.6 ± 12.72 C

No replacement 168.2 ± 26.20 D 43.5 ± 4.50 D 73.2 ± 4.55 D

Note: The data in the table are means ± SE, and different capital letters indicate significant differences between
data in the same column by one-way ANOVA (p < 0.05, Tukey).

Reproduction of E. corollae with Different Adult Numbers

With increasing hoverfly adult population numbers, the number of eggs produced
by every E. corollae decreased (Figure 5). There were 35.5 and 35.6 eggs laid per female
adult when 1 pair or 5 pairs of hoverflies, respectively, were housed in the cage during the
breeding period, which was significantly higher than the number of eggs laid by 10 pairs
(28.9) and 20 pairs (22.6) (F3,36 = 5.102, p = 0.003).
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Figure 5. Number of eggs (means ± SE) laid by E. corollae daily with different numbers of adults
housed in cages.

Additionally, hoverflies’ lifespans decreased as the number of adults in the cage
increased (Figure 6). The life expectancies of 1 pair and 5 pairs of E. corollae adults kept
in cages were 17.3 d and 16.8 d, respectively, which were longer than those for 10 pairs
(15.4 d) and 20 pairs (14.2 d) (F3,36 = 5.007, p = 0.004).
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Figure 6. Survival rate of E. corollae adults with different numbers of adults housed in cage.

The fecundity of E. corollae declined as the number of adults in the cage increased
(Table 2). When 5 pairs and 1 pair of hoverflies were in the cage, the number of eggs laid
by a single hoverfly was 546.4 and 584.9 individuals, respectively, which was significantly
higher than that for 10 pairs (424.8) and 20 pairs (303.7) (F3,36 = 36.41, p = 0.000) (Table 2).
The egg-hatching rates of E. corollae were 95.6% and 94.5% when there were 1 and 5 pairs of
hoverfly adults housed in the cage, respectively, markedly higher than those for 10 and
20 pairs (F3,36 = 4.120, p = 0.000). When there were 5 pairs of E. corollae adults in the cage,
489.5 larvae survived in the offspring per hoverfly, which is comparable to the offspring for
1 pair of hoverflies in the cage (549.3), and markedly higher than for 10 pairs (231.6) and
20 pairs (96.4) (F3,36 = 17.21, p = 0.000) (Table 2).

Table 2. Reproduction of E. corollae with different numbers of adults housed in cage.

Number of
Hoverfly Adults

Total Spawn
Number/Hoverflies

Egg Hatching
Rate (%)

Number of Hoverfly
Larvae/Adults

1 pair 584.9 ± 22.92 A 95.6 ± 6.52 A 549.3 ± 17.65 A
5 pairs 546.4 ± 19.40 A 94.5 ± 3.52 A 489.5 ± 20.33 A
10 pairs 424.8 ± 19.43 B 58.3 ± 5.47 B 231.6 ± 16.52 B
20 pairs 303.7 ± 20.32 C 33.4 ± 6.20 C 96.4 ± 6.87 C

Note: The data in the table are means ± SE, and different capital letters indicate significant differences between
data in the same column by one-way ANOVA (p < 0.05, Tukey).

Reproduction of E. corollae Using Different Aphid Species

The fecundity of E. corollae was highest when using A. craccivora compared with
Me. japonica, followed by My. persicae and the mixed-aphid populations (Table 3). The
number of eggs laid by every E. corollae female when using the A. craccivora populations was
highest (546.4), higher than those for My. persicae (289.5) and Me. japonica (483.2) and the
mixed-aphid population (425.9) (F3,36 = 76.370, p = 0.000). The egg hatching rate was 94.5%,
and the number of surviving larvae was 489.5 under this treatment, which was significantly
higher than that for the other two aphid species and the mixed-aphid population (egg
hatching rate: F3,36 = 12.036, p = 0.000; number of surviving larvae: F3,36 = 53.2, p = 0.000).

Table 3. Reproduction of E. corollae using different aphid species.

Aphid Species Total Spawn
Number/hoverflies Egg-Hatching Rate (%) Number of Hoverfly

Larvae/Adults

Me. japonica 483.2 ± 12.2 B 58.3 ± 6.41 C 367.9 ± 15.72 B
A. craccivora 546.4 ± 19.40 A 94.5 ± 3.52 A 489.5 ± 20.33 A
My. persicae 289.5 ± 23.2 C 81.3 ± 4.86 B 206.6 ± 26.42 C

Mixed aphids 425.9 ± 16.8 C 78.3 ± 5.43 B 316.4 ± 15.20 B
Note: The data in the table are means ± SE, and different capital letters indicate significant differences between
data in the same column by one-way ANOVA (p < 0.05, Tukey).
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3.2.2. Development of E. corollae Larvae Reared Using Different Methods
Development of E. corollae Larvae Fed on Different Aphid Species

The larval stage of E. corollae fed on My. persicae was 6.0 d, much shorter than for those
fed on Me. japonica (6.6 d), A. craccivora (7.6 d) or the mixed aphids (6.8 d) (F3,116 = 15.962,
p = 0.000) (1st instar: t = −7.539, df = 53.783, p = 0.000; 2nd instar: t = −2.115, df = 58,
p = 0.039; 3rd instar: t = −4.292, df = 58, p = 0.000; larval stage: t = −7.180, df = 58, p = 0.000)
(Figure 7).
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Figure 7. Larval development time of various E. corollae instars feeding on different aphid species.
Note: Different lowercase letters indicate significant differences between treatments at the same age
by one-way ANOVA (p < 0.05, Tukey).

The larval survival rate, pupation rate and emergence rate of E. corollae varied signifi-
cantly depending on the aphid species used (Table 4). Survival, pupation and emergence
rates of E. corollae larvae fed on the mixed-aphid populations were all higher than 90%
(larval survival rate: F3,8 = 10.227, p = 0.000; pupation rate: F3,8 = 7.512, p = 0.01; emergence
rate: F3,8 = 11.892, p = 0.003). In addition, 65.6%, 77.8%, 42.2% and 87.7% of E. corollae larvae
fed on My. persicae, A. craccivora, Me. japonica and mixed aphids, respectively, developed
into adults.

Table 4. Development of E. corollae larvae fed on different aphid species.

Aphid Species

My. persicae A. craccivora Me. japonica Mixed Aphids

Larval survival rate (%) 94.4 ± 2.33 A 87.8 ± 4.93 A 63.3 ± 6.94 C 91.1 ± 1.10 A
Pupation rate (%) 83.5 ± 1.41 C 92.2 ± 2.35 B 90.1 ± 4.14 B 100 ± 0.00 A

Emergence rate (%) 83.2 ± 2.12 B 95.5 ± 2.63 A 74.9 ± 3.26 C 96.3 ± 3.70 A
Note: The data in the table are means ± SE, and different capital letters indicate significant differences between
data in the same column by one-way ANOVA (p < 0.05, Tukey).

The aphid species which E. corollae larvae feed on significantly influence the hoverfly’s
fecundity (Figure 8). Mature E. corollae females laid 563.4 eggs when their larvae fed on Me.
japonica, which is similar to the number when they areg reared on mixed aphids (550.4) but
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higher than when they are given access only to My. persicae (390.6) or A. craccivora (360.2)
(F3,56 = 32.7, p = 0.000).
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Figure 8. Number of eggs (means ± SE) laid by E. corollae whose larvae feed on different aphid species.
Note: ns indicates no significant difference between data by Student’s t-test (p > 0.05); *** indicates
significant difference between data by Student’s t-test (p < 0.001). Triangles, dots, rhombus, and
squares represent the number of eggs laid by hoverflies whose larvae feed on class Me. japonica,
A. craccivora, My. persicae and Mixed aphids (each dot represents the number of eggs laid by one
female hoverfly).

Development of E. corollae Larvae Reared in Box versus Cage

Different rearing containers affected the larval development of E. corollae (Table 5). Of
the larvae reared in a box, 79.9% survived, and 95.6% of the survivors pupated and they
had an average pupal weight of 30.1 mg. These values were significantly higher than those
for larvae reared in a cage (49.3% survived; 72.3% pupated and average pupal weight was
25.4 mg) (larval survival rate: t = 14.941, df = 30, p = 0.000; pupation rate: t = 21.164, df = 19,
p = 0.000; pupae weight: t = 3.851, df = 30, p = 0.001).

Table 5. Development of E. corollae larvae reared in box versus cage.

Larval Rearing Method Larval Survival Rate (%) Pupation
Rate (%) Pupae Weight (mg)

Insect box 79.9 ± 3.42 A 95.6 ± 3.25 A 30.1 ± 5.42 A
Insect cage 49.3 ± 6.85 B 72.3 ± 4.32 B 25.4 ± 1.84 B

Note: The data in the table are means ± SE, and different capital letters indicate significant differences between
data in the same column by Student’s t-test (p < 0.05).

3.2.3. Emergence of E. corollae Pupae When Covered with Different Substances

Covering them significantly affected the pupae emergence of E. corollae (F4,45 = 278.431,
p = 0.000). The emergence rate of the pupae covered with broad bean leaves was 93.3%,
significantly higher than that for vermiculite (22.2%), nutritive soil (67.3%), foam balls (20%)
or no mulch (48%) (Figure 9).
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4. Discussion

Facility horticulture regulates crop fruiting with synthetic hormones, which requires
considerable manpower and pollutes the environment with chemical residues [5]. Pollina-
tors such as bumblebees provide efficient pollination services in horticulture facilities, but
are easily weakened by chemical pesticides used for pest management [6,19]. The joint-use
technique of combining pollinators and natural enemies in facility agriculture is not mature,
and the input costs are high. Eupeodes corollae are beneficial in horticulture facilities as
pollinators and biocontrol agents, both decreasing aphid populations and increasing seed
retention and yield, making it worthwhile to explore an intensive breeding technology for
them [28,30,35].

Commercial insect production emphasizes improving insect fertility and reducing
mortality and breeding costs. In E. corollae adult culture, the study of the “aphid supply
method” (i.e., the replacement frequency of broad bean seedlings infested with aphids)
had a different objective from the “E. corollae adult density treatment” in the cage. Eupeodes
corollae continue to lay eggs in aphid colonies during the breeding period. A lower fre-
quency of replacement of broad bean seedlings in cages would result in hoverfly larvae
overlapping and self-injury increasing. To minimize material and manpower costs, this
experiment initially investigated the effect of aphid density (i.e., replacement frequency
of broad bean seedlings infested with aphids) on hoverfly reproduction. As soon as the
ideal replacement frequency of broad bean seedlings was determined, the experiment
continued to study hoverfly reproduction with various adult numbers in the cages to
maximize hoverfly reproduction without any restriction by aphid numbers, maximizing
hoverfly population growth and minimizing economic expenditure.

The aphid species used affects E. corollae’s growth, development and reproduction [32,48].
Due to the lack of mature artificial food for E. corollae, many host plants were grown to feed
aphids and thus hoverflies. Selecting and identifying host-plant species that are easy to grow
indoors, have a short growth cycle and can support aphid proliferation is a crucial step to solve
hoverfly-breeding problems. We selected broad bean seedlings as hosts based on their ease of
reproduction and low cost. Eupeodes corollae lay eggs in wheat-aphid colonies and their larvae
significantly reduce wheat-aphid populations through predation (such as Rhopalosiphum padi
(L.) and Sitobion avenae (Fabricius)) [22,49]. As wheat seeds can be hydroponically grown in-
doors, quickly, easily and in a cost-effective manner, it is advantageous to propagate hoverflies
and feed aphids from indoor wheat seedlings.

Aphid populations affect hoverfly fecundity [37]. Hoverflies rarely lay eggs in aphid
colonies already having enough eggs, to prevent their offspring from self-injury due to
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lack of food [50]. Consequently, large-scale hoverfly breeding requires a large number of
aphids and host plants, which in turn require a large amount of space and are costly. There
is no doubt that artificial feeds are an effective method of breeding natural enemies on a
large scale. Researchers have shown that Episyrphus balteatus (De Geer) larvae can become
adults by feeding on artificial feed containing bee pupae, but adults cannot reproduce
normally [51,52]. Providing young hoverfly larvae with aphids and older larvae with
artificial diets is a more rational way to accurately regulate hoverflies’ propagation.

For hoverfly applications, studies suggest that hoverfly adults should be used dur-
ing the spawning period to facilitate precise positioning for biocontrol and pollination
purposes, but the transportation cost is high. In this experiment, pupae were used as the
product form and their emergence was observed when covered with different substances.
Temperature and humidity affect pupa emergence [53,54]. Hoverfly pupae overwinter in
the shallow soil layer of fertile soil and emerge from the moist and loose soil created by
plant roots. We conducted the study indoors, and pupae placement should be adapted to
the ambient temperature and humidity of the application site. Studies have shown that
the introduction of parasitic wasps in potted plants can significantly reduce the aphid
population in greenhouses [17]. As a consequence, the introduction of eggs, larvae and
pupae from potted plants at the same time may facilitate the stable colonization of hover-
flies at application sites and allow them to perform their pollination and biological control
functions to the fullest possible extent.

Natural-enemy insects should not only be utilized for indoor propagation and out-
door release, but should also be utilized for wild population conservation in a given
area [55–59]. To increase the number of wild hoverflies, honey plants were planted in
protected areas to provide nutrition for adults [33], functional plants were preserved for
larvae development [60–63] and sufficient weeds were retained to provide overwintering
sites for hoverflies. In addition, changing the planting pattern, i.e., expanding the single
farm ecosystem into a more rational farmland-landscape ecosystem, and enhancing polli-
nator populations and natural enemies, are important directions for agriculture’s future
development [64–66].

5. Conclusions

Hoverflies’ fecundity is affected by the aphid species that the larvae feed on and
those present on the plant where the adults lay eggs. Their fecundity when using A.
craccivora populations was highest, compared with Me. japonica, My. persicae or mixed-
aphid populations. The survival, pupation and emergence rates of E. corollae larvae fed
on mixed-aphid populations were all higher than for those fed on the three single-aphid-
species populations. In addition, the E. corollae obtained higher fecundity when their larvae
fed on Me. japonica or mixed aphids.

We integrated the breeding methods for the prey (aphids), larvae, pupae and adults
and established indoor-propagation techniques for E. corollae. Five pairs of E. corollae adults
were placed in a cage with 40 broad bean seedlings infested with A. craccivora that were
replaced daily. The larvae were fed a mixture of aphids (A. craccivora, My. persicae and
Me. japonica) and covered with fresh broad bean leaves after pupation. In summary, each
pair of E. corollae adults produced 391 adult offspring. This study will assist with the
commercial production and application of E. corollae.
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