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Abstract: Regulating plant factories is crucial for optimal plant growth and yield. Although LEDs
(light-emitting diode) are called cold light sources, more than 80% of the heat is still emitted into the
surrounding environment. In high-density vertical agricultural facilities, the crop canopy is positioned
close to the light source to maximize light absorption and promote plant growth. LED heat dissipation
can cause disturbances in the microclimate of crop canopies, which can lead to tip burn disease in
plant crops and result in economic losses for plant factories. CFD (computational fluid dynamics) is
used as the main technical tool to simulate and optimize the environment of agricultural facilities.
This study utilized Star-ccm+ to simulate the microclimate of plant factories under different light
treatments. Uniformity coefficient UI and disturbance coefficient θ were proposed to quantitatively
analyze LED heat dissipation’s impact on microclimate. In the T5 treatment group, which had a
PPFD of 350 µmol/m2·s in the growth zone and 250 µmol/m2·s in the seedling zone, the relative
humidity (RH), airflow, and temperature uniformity coefficients UI were 0.6111, 0.3259, and 0.5354,
respectively, with corresponding disturbance coefficients θ of 0.0932, 0.1636, and 0.1533. This study
clarifies the degree of perturbation caused by LED heat dissipation on microclimate, providing a
theoretical basis for regulating plant factory light and promoting sustainability.

Keywords: uniformity coefficient; disturbance coefficient; relative humidity; temperature; airflow

1. Introduction

Food safety is a growing concern due to environmental pollution and decreasing
cultivation land [1–3]. Artificial light plant factories allow for sustainable agriculture by
providing a controlled environment with regulated lighting, temperature, and humidity,
allowing for year-round plant production regardless of external weather conditions [4,5].
Precisely regulating environmental factors such as temperature, humidity, airflow, and
light levels is crucial for creating ideal conditions for plant growth in artificial light plant
factories [6]. Crops have a strong coupling with environmental factors such as light,
temperature, humidity, and airflow during photosynthesis. These factors affect the rate
of photosynthesis and plant growth. The microclimate around plants is in constant flux
due to changes in these factors, but it remains in a dynamic equilibrium state as plants
adapt to these changes through physiological responses [7,8]. Stagnant airflow around
crop canopies can limit plant growth potential and cause irregular microclimates within
the crop canopy, reducing plant quality and potentially leading to plant tip burn disease.
Adequate air movement is necessary to optimize climate control with minimal negative
effects on plant growth, as observed by Bake et al. [9–12]. Domestic and foreign scholars
explored the environmental factors of plant factories mostly in airflow fields, but less often
in a microclimate considering plant obstruction and light transition heat dissipation [13,14].
Light-emitting diodes (LEDs) are a recent lighting technology that has entered the arena of
artificial agricultural lighting. The majority of heat emitted from LEDs is conductive heat,
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which must be directed away from the lamp and the heat exchange with the surrounding
air. The direct radiation of heat by LEDs is not seen, but LEDs do produce heat that has to
be effectively removed from the system for better functionality [15]. The electric energy
of an artificial light source put into the plant factory is converted into light energy PAR
(400–700 nm), sensible heat QSL, and net long-wave radiation L [16]. LEDs have achieved
an efficiency of 38% (red) to 50% (blue), converting electrical energy to photons [17–19].
Graamans et al. developed a crop transpiration model to study the relationship between
sensible and latent heat exchange and corresponding vapor flux in lettuce production
within closed systems using LED as the only heat source. The model considered the
plant’s transpiration, crop canopy microclimate, and thermal buoyancy of the air caused
by the LED as a heat source, which could aggravate uneven microclimates in the crop
canopy [20]. Fang H. et al. used a computational fluid dynamics (CFD) model to analyze the
airflow pattern on the crop canopy in a single cultivation bed under different ventilation
modes, by inputting LED heat dissipation parameters into the simulation model [21].
Taking the heat dissipation of the LED light source into account is important for accurately
analyzing the energy balance equation of the crop canopy, which can help researchers
to better understand the microclimate environment of the crop canopy and optimize
growth conditions for crops [22]. Plant factories have a high indoor planting density and
excessive lighting can cause an uneven microclimate if air conditioning-fresh air system
design is improper [23,24]. Kitaya et al. found that a uniform and stable airflow field can
effectively improve plant tip burn by promoting plant transpiration [25,26]. Zhang Y et al.
evaluated five different air distribution system designs for indoor workshops and found
that arranging the inlet and outlet alternately in rows can eliminate heat dissipation in
lighting, but it does not improve average airflow velocity or uniformity [27]. Benyamin et al.
used the RNG turbulent model to simulate the airflow and temperature in each cultivation
area, taking into account the influence of obstacles and turbulence within the computational
domain. They also introduced an objective uniformity coefficient to assess the uniformity
of each cultivation area [28]. Some scholars have overlooked the impact of LED heat
dissipation on plant and crop canopy microclimate uniformity, believing that LEDs are
cold light sources that do not emit heat. However, recent research has shown that LED
heat dissipation can disrupt the microclimate uniformity of plant factories. Although there
have been simulation analyses and actual monitoring of plant factories, no one has yet
quantitatively analyzed the microclimate disturbance caused by LED heat dissipation in the
crop canopy [29,30]. Computational fluid dynamics (CFD) is an effective tool for simulating
physical complex phenomena with reasonable accuracy and analyzing environmental
uniformity in controlled environments [31–33]. The aim of this study is to examine how
LED heat dissipation affects canopy airflow based on the energy balance equation for the
crop canopy microclimate. By quantifying the perturbation of LED heat dissipation on the
crop canopy airflow field, this study provides essential insights for designing artificial light
source arrangements in plant factories.

2. Materials and Methods
2.1. The Plant Factory

The Jilin University Plant Factory, located inside a building, served as the basis for this
study. However, it should be noted that this facility does not account for heat exchange
caused by solar thermal radiation.

2.2. Experimental Measurements and Data Analysis

This study selected temperature, airflow, and relative humidity (RH) as indicators
for the crop canopy microclimate environment. To measure the temperature and indoor
relative humidity in the plant factory, an indoor air quality meter IAQ-CALC 7525 was
used with a retention rate of 2%. For measuring microclimate airflow, a heat wire handheld
anemometer RA620 with an accuracy of 1% was employed.
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2.3. Theory
2.3.1. Crop Canopy Microclimate Model

Farquhar et al. proposed a biochemical model for estimating the net photosynthetic
rate, which resolved the relationship between photosynthesis and transpiration. This
model was then transformed from the leaf scale to the canopy scale by assuming the
basic principles of the “large leaf” model [34,35]. The Penman–Monteith (P–M) model
is a widely used evapotranspiration model that provides a simple method for reflecting
the distribution of light energy intercepted by plants between sensible and latent heat.
This model combines equations for both energy and mass transfer from the canopy. The
parameters of stomatal resistance and aerodynamic resistance in the P-M model are typically
estimated through their relationships with specific environmental variables within the
canopy, as they are difficult to measure directly. In plant factories, the microclimate of a
canopy, which includes LED radiation, air temperature, and air humidity has been found
to be related to stomatal resistance [36,37].

Crop Canopy Microclimate Energy Balance

Plant factories are enclosed systems that rely on forced ventilation through air
conditioning-fresh air systems. Crops grown inside building structures are isolated from
mass heat exchange with the external environment due to insulated walls. Therefore, the
microclimate of the crop canopy inside a plant factory is crucial in determining the quality
of plant growth [38,39]. When constructing a model based on the interaction between
the crop canopy and microclimate, it is important to treat the crop canopy as a closed,
structurally homogeneous, and stable system. This enables a specific description of the
crop canopy microclimate using meteorological data such as temperature, humidity, and
wind speed. Environmental factors such as humidity, temperature, airflow, and light are
coupled with the crop canopy [40,41]. During the light period, crops undergo photosyn-
thetic physiological activities where water vapor from transpiration serves as the source
of humidity in the crop canopy, and the LED light source is the only source of heat and
light [42,43]. As shown in Figure 1, we established an energy balance equation for each
environmental factor of the crop canopy microclimate. WL refers to the power consumption
of the LED light source, while WC refers to the power consumption of other facilities such
as air conditioning. The calculations of sensible heat and heat dissipation caused by LED
heat dissipation are the basis for subsequent simulations.
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Figure 1. Crop canopy microclimate energy balance.

In this study, there are no additional volumetric heat sources or sinks besides the
LED lights. For the crop canopy, the LED light source electrical energy is converted
into light energy S (Par, wavelength 400–700 nm), sensible heat QSL, and net long-wave
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radiant energy L, the energy balance for the crop canopy microclimate is represented by
the following equation:

QSL + S + L + QL + QLP + QSP + QAP + QC = 0 (1)

where QLP is the latent heat exchange between the crop canopy and surrounding air, while
QSP refers to the sensible heat exchange between the crop canopy and surrounding air. A
portion of the sensible heat and long-wave radiant energy transferred to the crop canopy
and cultivation frame is consumed as latent heat, serving as a heat source for transpiration
dissipation. Compared to latent heat, sensible heat increases with an increasing transpi-
ration rate. The transpiration rate of plants is strongly coupled with the microclimate of
the crop canopy and the size of the plant’s leaves. Most of the WL is expelled from the
air conditioning system as sensible heat QC outside the closed system, while some of it is
absorbed by the plant as chemical energy QAP.

Plant Crop Energy Balance

In order to maintain the energy balance of the crop canopy, the latent and sensible
heat entering the crop must be balanced with other forms of effective energy. Ball et al.
proposed an empirical model based on the principle of electrical analogy for estimating
net photosynthetic rate and stomatal conductivity. This model resolves the relationship
between photosynthesis, coupled with transpiration, and stomatal conductance [44].The
core of the crop microclimate balance equation involves obtaining sensible heat exchange
using the aerodynamic method, followed by calculating net radiation using a suitable
equation. The residual term of the heat balance equation is then used to calculate latent
heat exchange, which leads to total water evaporation. The energy balance equation for a
transpiring plant surface involves net radiation Rnet, sensible heat exchange H, and latent
heat exchange λE, and can be represented by the following equation:

Rnet = λE + H (2)

The sensible heat flux H can be expressed as the difference in temperature between
the surrounding climate and the crop canopy using the following equation:

H = ρCρLAI
(

Tcrop − Ta

ra

)
(3)

To calculate latent heat exchange, it is necessary to determine the transfer of vapor.
This transfer can be represented by the following equation:

λE = ρLvLAI
(

ωcrop −ω

ra + rs

)
(4)

where Ta is air temperature of microclimate, K; Tcrop is temperature of crop canopy, K; ρ
is air density, kg/m3; cρ is atmospheric pressure heat ratio, J/kg·K; ωcrop is the saturated
water content of the air at canopy, g/kg; ω is the air water vapor content, g/kg; Lv is the
latent heat of vaporization of water, J/kg; ra is the aerodynamic resistance, s/m; rs is the
leaf stomatal resistance, s/m. The aerodynamic drag for the crop canopy is related to the
plant’s leaf area index LAI, which is a dimensionless quantity.

The entry of water from the crop into the plant microclimate through transpiration
is subject to crop canopy stomatal resistance ra as well as aerodynamic resistance rs, both
kinds of resistance are described separately below:

ra =
ρcp

0.288λ

√√√√ dvUi

‖
→
Ui‖

(5)
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where dV is the characteristic length of the leaf, m; Ui is the interior air speed, m/s; λ is the
air thermal conductivity, W/m·K.

rs = rsmin

{
1 + 0.11exp

[
0.34

(
6.107× 107.5Ti/(237.5+Ti) − 1629ωi − Dmax

)]}
(6)

where Ti refers to interior air temperature (K). The minimum stomatal resistance rsmin is
150 s/m; Dmax is 10 hPa [45].

2.3.2. CFD Theory
CFD Control Equation

The CFD solver (Star-ccm+) was used for simulations. The following generalized
governing equation, continuity, momentum, and energy equations were applied to predict
variables such as velocity, pressure, and temperature. The realizable k − ε turbulence
model is applied to our model. The time-averaged governing equations of continuity,
momentum, and energy can be derived in a three-dimensional cartesian coordinate system
as the following:

∂

∂xj

(
ρuj
)
= 0 (7)

∂

∂xj

(
ρuiuj

)
=

∂

∂xj

[
−Pδij + µ

(
∂ui
∂xj

+
∂uj

∂xi

)]
+ ρgi (8)

∂

∂xj

(
ρujCpT

)
− ∂

∂xj

(
λ

∂T
∂xj

)
= ST (9)

Crop Canopy Parameters

Therefore, the simulation of plant factory fluid must account for plant occlusion on
airflow. After establishing plants as porous media, the resistance coefficients in all directions
can be artificially defined to replace the resistance of solids to fluids in porous media, i.e., a
momentum sink related to velocity is added, and its expression formula is:

Si = −
(

∑ 3
j=1Dijµvj + ∑ 3

j=1Cij
1
2

ρ|v|vj

)
(10)

where Si is the source term of the momentum equation in the i (x,y,z) direction and v is the
velocity value; the air density ρ is 1.205 kg/m3 and the air viscosity µ is 17.9 × 10−6 Pa·s.
D and Cij are specified coefficient matrices: D represents the coefficient for the viscous loss
term, and Cij represents the coefficient for the inertial loss term.

For the plant crop canopy, this momentum source Si can be rewritten as an equation
related to the plant leaf area density:

Si = −LAICdρU2 (11)

where LAI is the leaf area index; U is the air speed; Cd is the drag coefficient of the vegetation
set to Cd = 0.32.

LED Simulation Model and Boundary Conditions

The experiment was conducted at Jilin University’s artificial light plant factory, which
had dimensions of 5575 mm × 3950 mm × 3175 mm, as shown in Figure 2. The cultivation
rack in the plant factory was a steel frame structure with an LED light source placed at the
top. A simulation of the crop canopy microclimate model is based on heat transfer between
the crop and surrounding airflow. Since the plant factory is located in an indoor building,
the plant factory walls are set to be insulated. The plant factory boundary conditions are
shown in Table 1. The impact of LED heat dissipation on the crop canopy microclimate was
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quantitatively analyzed under different lighting conditions for both seedling and growing
areas, as illustrated in Table 2.
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Table 1. Boundary conditions of CFD simulations for crop canopy microclimate.

Fluid: Air

Inlet airflow temperature: 293.15 K
Inlet humidity ratio: 0.0083

Seedling area Growth area
LED temperature: TS TG

Initial humidity ratio: 0.0344 0.0344
Model

Realizable k-εmodelViscous model
Boundary Type Settings

Inlet Velocity Inlet 8 m/s
Outlet Pressure Outlet Gauge pressure: 0 Pa

Plafond Wall Insulation
Wall Wall Insulation
Floor Wall Insulation

Lamp wall Wall Thermal property of glass
TS is lamp temperature at the seedling area, TG is lamp temperature at growth area. Relative humidity (RH)
needs to be converted to the ratio of water vapor mass to dry air mass, also known as the humidity ratio, during
simulation calculations.

Table 2. LED lighting treatments.

Treatment Seedling Area PPFD
LEDS µmol/m2·s

Growth Area PPFD
LEDG µmol/m2·s

CK 0 0
T1 50 150
T2 100 200
T3 150 250
T4 200 300
T5 250 350

CK refers to the control group where the light source is turned off. The photosynthetic photon flux density (PPFD)
of light in the seedling area will be denoted as LEDS, while the PPFD of light in the growth area will be denoted
as LEDG.
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2.4. Monitoring Point Layout

The cultivation area of the plant factory covers the seedling stage and growth stage,
and there are differences in the distance between the monitoring points in different areas
and the surface height of the cultivation rack. The numbering of cultivation racks and the
positions of monitoring points are shown in Figure 3. The monitoring point in the seedling
area is positioned 10 cm above the height of the cultivation rack, while the monitoring
point in the crop cultivation area during the growth stage is located 20 cm above the height
of the cultivation rack.
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2.5. Data Analysis

Previous studies have indicated that maintaining a uniform and stable microclimate
is crucial for crop growth in plant factories. However, LED heat dissipation can increase
the instability of the crop canopy microclimate. Therefore, this study established comfort
zone thresholds for each environmental factor of the crop canopy microclimate based
on previous research. In the seedling cultivation area, the air velocity should fall within
the range of 0.1–0.5 m/s, the temperature should be maintained at 20 ± 1 ◦C, and the
relative humidity should be between 80–90%. In the growth stage cultivation area, the air
velocity range should be 1.1–1.4 m/s, the temperature should be maintained at 20 ± 1 ◦C,
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and the relative humidity (RH) at 50–55% [46,47]. This study analyzed the uniformity of
airflow, temperature, and RH of the crop canopy microclimate and defined the uniformity
coefficient UI of physical indicators of the crop canopy microclimate under each treatment
as follows:

UI = 1−
(

σ

ωavg

)
(12)

σ =

√√√√ 1
n

n

∑
j=1

(
ωj −ωavg

)2 (13)

where ! represents the percentage of suitable growth threshold intervals in each cultivation
frame, i.e., growth comfort zone as a percentage of the area of the cultivation frame. The
environmental factors can be represented as temperature (T), relative humidity (RH), and
airflow (V). UI represents the uniformity of the proportion of the suitable growth zone in the
cultivation frame, σ is the standard deviation of the percentage of the suitable growth zone
for an environmental factor in microclimate, and ωavg is the mean value of the percentage of
the suitable growth zone for an environmental factor in microclimate. ωj is the percentage
of microclimate environmental factors of the suitable growth zone for cultivation frame
j. To express the quantitative disturbance of LED heat dissipation on the microclimate, a
quantitative disturbance coefficient θ was defined as follows:

θ =
1
n

√√√√ n

∑
j=1

(
ωij −ωoj

ωoj

)2

(14)

where θ is the quantitative disturbance of LED heat dissipation in the case i for the crop
canopy microclimate comfort zone ω, where ω can be percentage of suitable growth zone
for temperature, relative humidity, or airflow; ωij represents the percentage of suitable
growth zone for the crop canopy on the j-th cultivation frame under lighting treatment i;
and ωoj is the percentage of suitable growth zone of the j-th cultivation frame under the
control CK lighting treatment.

To convert the wet air humidity ratio (W) to relative humidity (RH) at standard
atmospheric pressure and 20 ◦C, we can use the following equation:

W =
0.662es

p− es
(15)

where es is the saturation vapor pressure at the given temperature, and p is the
atmospheric pressure.

RH =
e
es
× 100% (16)

where e represents the partial pressure of water vapor in the air. Using data for standard
atmospheric pressure (101,325 Pa) and 20 ◦C, es is 2339 Pa.

3. Results
3.1. Relative Humidity (RH) Fields

Figure 4 shows that the heat dissipation of LED lights has a significant impact on the
humidity field of the plant factory, leading to notable variations under different working
conditions. The results indicate that the humidity field of the plant varied significantly
depending on the operational parameters. As shown in Figure 5, when the LED light
source was turned on and the PPFD increased, the uniformity index of relative humidity
UIRH in the plant factory decreased significantly. The relative humidity disturbance
coefficient θRH first decreased and then stabilized under the T4 treatment group (LEDS is
200 µmol/m2·s, LEDG is 300 µmol/m2·s) and T5 treatment group (LEDS is 250 µmol/m2·s,
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LEDG is 350 µmol/m2·s). The disturbance coefficient θRH was 0.087 for the T4 treatment
group and 0.093 for T5 treatment group.

Figure 4. Wet air humidity ratio under different treatments.
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3.2. Airflow Fields

As shown in Figure 6, the simulation results demonstrate the impact of LED heat
dissipation on the airflow dynamics in the plant growth environment under various condi-
tions. The findings revealed that the impact of LED heat dissipation on airflow in plant
factories was significant, as shown in Figure 7. Specifically, as the PPFD increased, the
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uniformity coefficient UIV of airflow decreased notably, and the disturbance coefficient θV
increased significantly. Under the T5 treatment group (LEDS is 250 µmol/m2·s, LEDG is
350 µmol/m2·s), the uniformity coefficient UIV has been reduced to 0.326 and the distur-
bance coefficient θV has reached 0.164.
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3.3. Temperature Fields

The impact of LED heat dissipation on the temperature field of plants under various
operating conditions is illustrated in Figure 8. As shown in Figure 9, as the PPFD of
the treatment group increases, the coefficients of temperature field non-uniformity and
disturbance reach their extreme values in the T5 treatment group (LEDS is 250 µmol/m2·s,
LEDG is 350 µmol/m2·s). The coefficient of uniformity UIT decreased to 0.5354 while the
coefficient of disturbance θT increased to 0.1533.
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3.4. Simulation Model Validation

To verify the accuracy of the simulation models for humidity, airflow, and temper-
ature environments used in this study, the mean square error (RMSE) was calculated by
comparing the simulated values with actual measured values at monitoring points under
each working condition. As shown in Figure 10, the mean RMSE for the humidity field was
9.21, for the airflow field was 5.39, and for the temperature field was 5.86. Based on these
RMSE values, the regression results of each model in this study are reliable and accurate.
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4. Discussion

With the increasing popularity of plant factories in recent years, more and more
researchers considered the issue of LED light source heat dissipation during experimental
production [48]. Seungmi et al. aimed to minimize differences in growing environment by
measuring airflow distribution and environmental factors such as temperature, humidity,
and CO2 at each level of the planting lots within a fully artificial plant factory. They
achieved this by controlling various combinations of devices such as air conditioning
and fans for proper airflow [49]. However, scholars have only considered LED heat
dissipation and set it as a boundary condition in CFD simulation boundary conditions.
Nevertheless, there has been a lack of quantitative analysis regarding the extent of crop
canopy microclimate perturbation resulting from LED heat dissipation [50]. In this study,
we proposed a uniformity coefficient UI and a disturbance coefficient θ to quantitatively
analyze the effects of LED heat dissipation on the microclimate of plant factories in the
research center. To maximize the simulation and detection of microclimate changes in the
plant factory, we established 33 monitoring points in each cultivation frame. Moreover,
to account for mass heat exchange between plants and the surrounding microclimate
environment, as well as the mixed planting of seedlings at different ages within the plant
factory, we conducted this study.

Regarding the impact of LED heat dissipation on the microclimate of crop canopies
in various environmental physical fields, it was found that with the increase of PPFD, the
disturbance of LED heat dissipation on the microclimate is not simply proportional to a
linear change. Tip burn in plant factory crops was mainly caused by humidity, which plays
a crucial role in determining crop quality. As LED light sources increased, the uniformity
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coefficient UIRH of the humidity field showed a significant decreasing trend. The T5
treatment group had a decreased uniformity coefficient UIRH of 0.6111, which was caused
by the enhancement in PPFD. This increase in PPFD led to a significant perturbation of
LED heat dissipation on the humidity field, but eventually resulted in a smooth state under
the T4 treatment group with a disturbance coefficient θRH of 0.0877. The changes in crop
transpiration with an increase in PPFD may have contributed to the complexity of the
humidity field inside the plant when coupled with crops and microclimate factors.

The increased heat dissipation from LED light sources caused the surrounding air to
float upward, disturbing plant airflow. Experimental results showed that as PPFD increased,
the airflow field uniformity coefficient decreased linearly, and the disturbance coefficient
increased linearly. The group at T5 had an airflow uniformity coefficient UIV of 0.3259
and a disturbance coefficient θV of 0.1636. Although the airflow field is the main means of
regulating humidity, the uniformity and disturbance coefficients θV of both fields did not
exhibit significant non-linearity. This could be due to enhanced transpiration caused by the
increased light, which changed the crop canopy microclimate humidity field. The study
highlights the complex coupling relationship between crop canopy and microclimate in
plant factories.

Temperature increases and airflow stagnation caused by the large temperature vari-
ations between cultivation beds and close irradiation from artificial lighting in vertical-
type plant factories are chief factors contributing to the deterioration of crop quality and
growth [51]. Under the control group (CK) condition, when the LED light source is turned
off, the uniformity coefficient UIT of the temperature field in the plant factory is 0.9693.
With the opening of the light source and the increase of PPFD, the uniformity coefficient
of crop canopy temperature decreases significantly, and the disturbance coefficient in-
creases significantly. In the T5 treatment group, where the PPFD in the seedling area
is 250 µmol/m2·s and the PPFD in the growth area is 350 µmol/m2·s, the temperature
uniformity coefficient UIT is 0.5354 and the disturbance coefficient θT is 0.1533.

5. Conclusions

In this study, two coefficient values for uniformity coefficient UI and disturbance coef-
ficient θ were proposed to analyze the effect of LED heat dissipation on crop microclimate.
Simulation was conducted under six LED lighting treatments to observe changes in crop
canopy microclimate. Results showed that as PPFD increased, humidity, airflow, and tem-
perature uniformity significantly decreased while the disturbance coefficient significantly
increased. In the T5 treatment group, which had a PPFD of 350 µmol/m2·s in the growth
zone and 250 µmol/m2·s in the seedling zone, the relative humidity (RH), airflow, and
temperature uniformity coefficients UI were 0.6111, 0.3259, and 0.5354, respectively, with
corresponding disturbance coefficients θ of 0.0932, 0.1636, and 0.1533. Overall, this study
concluded that LED heat dissipation has a significant impact on plant microclimate, particu-
larly on airflow and relative humidity. Based on the findings of this study, the regulation of
lighting modes in plant factories should consider the photosynthetic physiological needs of
different stages of plants. Appropriate lighting can better avoid excessive heat dissipation
of LED light sources and reduce the electricity cost of removing these heat losses. These
findings provide a theoretical basis for regulating the selection and arrangement of LED
light sources in plant factories.
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Abbreviations

WC energy consumption of air conditioning ventilation systems
WL energy consumption of LED lights
QSL heat exchange between light sources and surrounding air
S effective radiation energy for photosynthesis
L net long-wave radiant energy
QLP latent heat exchange between crop canopy and surrounding air
QSP latent heat exchange between plants and the surrounding air
QL latent heat generated within the system.
QS sensible heat generated internally within the system
QC the heat rejected by a heat pump in the form of sensible heat
QAP chemical energy contained in plants
Rnet net radiation
H sensible heat flux
λE latent heat exchange
Ta air temperature of microclimate, K
Tcrop temperature of crop canopy, K
ρ air density, kg/m3

ωcrop the saturated water content of the air at canopy, g/kg
ω air water vapor content, g/kg
cρ atmospheric pressure heat rati, J/kg·K
Lv latent heat of vaporization of water, J/kg
LAI plant leaf area index
ra aerodynamic resistance, s/m
rs leaf stomatal resistance, s/m
Ui interior air speed, m/s
λ air thermal conductivity, W/m·K
µ air viscosity, 17.9 × 10−6 Pa·s
D coefficient representing the viscous loss term
C2 coefficient representing the inertial loss term
UI disturbance coefficient
θ uniformity coefficient
LEDS seedling area LED light intensity, 250 µmol/m2·s
LEDG growth area LED light intensity, 250 µmol/m2·s
W wet air quality score
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