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Abstract: ‘Giant Green’ is one of the Syzygium samarangense cultivars planted throughout Malaysia
because it has great potential for benefitting human health. However, its variation in chemical com-
pounds, especially in the leaves at different maturity stages, cannot be systematically discriminated.
Hence, Fourier transform infrared spectroscopy (FTIR) and gas chromatography–mass spectrometry
(GCMS) coupled with chemometric tools were applied to discriminate between the different stages
of leaves, namely, young, mature, and old leaves. The chemical variability among the samples was
evaluated by using principal component analysis (PCA) and hierarchical clustering analysis (HCA)
techniques. For discrimination, partial least squares discrimination analysis (PLS-DA) was applied,
and then partial least squares (PLS) was used to determine the correlation between biological activities
(antioxidant and alpha-glucosidase inhibitory assay) and maturity stages of ‘Giant Green’ leaves. As
a result, the PCA, HCA, and PLS-DA of the FTIR and GC-MS data showed the separation between
clusters for the different maturity stages of the leaves. Additionally, the PLS result demonstrated that
the young leaves showed a strong correlation between metabolite quantities and biological activities.
The findings of this study revealed that FTIR and GC-MS coupled with chemometric analyses can be
used as a rapid method for the discrimination of bioactive structural functions in relation to their
biological activity.

Keywords: Giant Green cultivar; antioxidant; alpha-glucosidase inhibition; FTIR; GC-MS; PLS; HCA;
PLS-DA; PLS

1. Introduction

Syzygium samarangense, commonly known as wax apple, jambu air, water apple, or bell
fruit, is a nonclimacteric tropical fruit plant that has been cultivated in Malaysia and other
neighboring countries such as Thailand, the Philippines, Vietnam, and Taiwan [1]. The
three major S. samarangense cultivars are Giant Green, Masam Manis Pink, and Jambu Madu
Red [2]. Traditionally, it is a medicinal plant: various parts are used to treat some health
problems such as edema, cracked tongue, asthma, diarrhea, bronchitis, fever, ulcer, sore
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throat, and to reduce blood pressure [3,4]. Additionally, the Giant Green cultivar contains
an abundance of valuable phytochemicals such as phenolic acids, flavonoids, anthocyanins,
and carotenes [5], which show antioxidant, antibacterial, antidiabetic, anticancer, and
anti-inflammatory activities [6–8].

Metabolomics is the comprehensive analysis of a metabolite profile, either as a tar-
geted or global application in drug discovery, phytomedicine, toxicology, and disease
development [9]. Various spectroscopy and chromatography techniques are applied to
detect and characterize the presence of metabolites in experimental samples [10]. Two ana-
lytical techniques for this task are Fourier transform infrared spectroscopy (FTIR) and gas
chromatography–mass spectrometry (GC-MS). FTIR is an important technique used to iden-
tify the type of functional groups present in a compound. It also is a useful spectroscopic
tool for profiling and fingerprinting molecular structures because it is non-destructive, sim-
ple to use, quick, and accurate [11]. The common absorption range used in plant studies is
the mid-infrared (mid-IR) range. In the mid-IR range, infrared radiation is passed through
a sample with a range of absorbance from 4000 cm−1 to 400 cm−1 [12]. Not all of the
infrared radiation is absorbed by the sample: some of it passes through the sample and is
transmitted to a detector. The resulting spectrum represents the molecular absorption and
transmission, creating a molecular fingerprint of the sample. GC-MS is the most commonly
used instrument for the separation and identification of compounds, especially in the drug
discovery, pharmacology, and food industry fields [13]. The advantages of GC-MS are its
low viscosity, higher sensitivity, rapid mass transfer velocity, and high resistance, so it has
been widely used in chemical fingerprinting [14].

However, the abundance of metabolites present in plants poses challenges: analyzing
them precisely without using a comprehensive method is difficult. Therefore, for several
decades, many researchers have applied chemometric analyses coupled with spectroscopy
and chromatography techniques to analyze the metabolites present in medicinal plants.
Unsupervised multivariate analysis (MVDA) including principal component analysis
(PCA); hierarchical clustering analysis (HCA); and supervised MVDA, including partial
least squares discrimination analysis (PLS-DA) and partial least squares (PLS), are required
to handle the huge dataset of the whole spectra recorded from plant samples. For example,
Wijayanti et al. [15] successfully classified and discriminated the Curcuma xanthorrhiza
from different regions using PCA and PLS-DA tools. Basyirah et al. [16] used PCA and
HCA to classify and discriminate Heterotrigona itama propolis using different extraction
methods (maceration, sonication, and Soxhlet). Additionally, PLS correlated the antioxidant
activity and chemical contents of five varieties of Pegaga (Centella) extract [17]. From these
studies, it can be concluded that chemometric analysis coupled with spectroscopy or
chromatography techniques is a reliable tool that can be used in the metabolomics field.

Judging from the literature, it can be concluded that the metabolites in plants can
be identified using spectroscopy and chromatography techniques. Additionally, the dis-
crimination between experimental samples and the relationship between metabolites and
biological activity can also be determined using multivariate data analysis (MVDA). Hence,
this work aimed to discriminate the leaves of Syzygium samarangense cv. Giant Green at
different stages of maturity and to correlate these maturity stages with their antioxidant
and alpha-glucosidase inhibitory activities using FTIR- and GCMS-based metabolomics
coupled with chemometrics. The findings help with identifying the most promising stages
of Giant Green leaves to be used in pharmaceuticals.

2. Materials and Methods
2.1. Collection and Preparation of Plant Materials

The Giant Green cultivar of wax apple leaves, namely, young (YL), mature (ML), and
old (OL) leaves, at three maturity stages were collected several times from an orchard
located at Kampung Olak Lempit, Banting, Selangor, Malaysia (1028◦ N, 1110◦20′ E), at
an elevation of about 45 m above sea level. Five biological replicates of each sample were
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used in this study. The leaves were selected carefully based on the below picture (Figure 1)
physical examination reported by our previous study [18].
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Figure 1. Different types of Giant Green leaves were used in this study. (A,A1)—adaxial and
abaxial surfaces of the young leaf (YL), (B,B1)—adaxial and abaxial surfaces of the mature leaf (ML),
and (C,C1)—adaxial and abaxial surfaces of the old leaf (OL).

2.2. Extraction Procedure

The fresh samples (5 g) were crushed using a mortar and pestle. The samples were
soaked in methanol (25 mL) and kept for three days. Then, the extracts were heated in a
water bath (70 ◦C for 15 min), followed by being centrifuged (1789× g for 15 min). The
supernatants were collected and put under a fumehood until methanol was removed. The
extracts were completely dried by being freeze-dried (24 h) and were stored at 4 ◦C before
being used.

2.3. Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR)
2.3.1. Sample Analysis using ATR-FTIR Machine

The diamond crystal stand was cleaned with ethanol and non-abrasive tissue. The
small quantities of extracts were located on the surface stand and screwed in tightly
before being analyzed by using a Shimadzu Prestige-21 Spectrophotometer (Shimadzu
Brand, Kyoto, Japan) equipped with an air-cooled Deutrated Triglycin Sulphate (DTGS)
detector (Shimadzu Brand, Kyoto, Japan) and scanned with a Golden Gate Single Reflection
Diamond ATR accessory with an incident angle of 45◦ (Shimadzu Brand, Kyoto, Japan). The
IR spectra of the extracts were measured with absorbance at 4000–400 cm−1 using 4 cm−1

and 16 scans of resolution. For each sample, three repetition measurements were collected.

2.3.2. Data Pre-Processing

The spectra were normalized and smoothed to reduce the error during data analysis.
The data were saved in .txt format and then copied to Microsoft Excel.
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2.4. Gas Chromatography-Mass Spectrometry (GC-MS)
2.4.1. Sample Preparation

The stock solution was prepared by diluting 2.5 mg of extract with 100% methanol
(1 mL). For phytochemical screening, 200 µL of each leaf sample with a similar maturity
stage was transferred out from the stock solution and put into the same vial for producing
the final concentration of 500 µg/mL. However, for multivariate data analysis, individual
samples (30 samples) were prepared by diluting 200 µL stock solution with 1 mL of 100%
methanol. The solutions were vortexed for one minute and ready for analysis by using a
GC-MS Agilent (19091S-433UI system) machine (Agilent Brand, Santa Clara, CA, USA).

2.4.2. GC-MS Condition

The condition system of GC-MS and Oven temperature parameters were used as
below (Table 1).

Table 1. Condition system of GC-MS and Oven temperature parameter.

Item Description

Column type HP5MS (30 m × 250 µm)
Film thickness 0.25 µm
Carrier gas Helium
Flow rate and pressure 1.0 mL/min; 9.3825 Psi
Volume of injection 1.0 µL
Temperature of detector 250 ◦C
Temperature of injector 250 ◦C
Temperature of oven 80 ◦C
Temperature of transfer line 150 ◦C
Mode Splitless
Mass scan mode 50–55 m/z
Oven temperature parameter
Item Rate (◦C/min) Value (◦C) Hold Time (min) Run Time (min)
Initial - 80 4 4
Ramp 1 7 105 1 9
Ramp 2 7 180 1 20
Ramp 3 5 235 1 32
Ramp 4 5 275 2 42

2.4.3. Data Pre-Processing

Each of the GC-MS spectra that contain the peak with a percentage of probability
score of 80% and above was accepted as a particular compound and used in this analysis.
For chemometric analysis purposes, the data of the percentage relative area (RA) of the
compound detected in the spectrum was used. RA (%) was calculated based on the formula
below [19].

Percentage of relative area = (area of particular compound/total area of all compound detected) × 100

2.5. Chemometric Analysis

FTIR and GC-MS spectra were subjected to four chemometric tools which are Principal
Component Analysis (PCA), Hierarchical Cluster Analysis (HCA), Partial Least Squares
Discriminant Analysis (PLS-DA), and Partial Least Squares (PLS). All of the data were ana-
lyzed using XLSTAT Pro 2014 software (Addinsoft, Paris, France), add-in Microsoft Excel.

2.5.1. Principal Component Analysis (PCA)

PCA is unsupervised multivariate data analysis (MVDA) which is used to find a
relationship between two or more groups of ‘Giant Green’ leaves regarding the most
variation of those variables. In the PCA technique, the new variables formed and are equal
to the number of original variables. The new variables are known as principal components
(PCs) and the values of new variables are known as principal component score (PCS). These
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variables are not correlated with each other. The first new variable, PC1, explains the most
information among the samples. Then, PC2 carries the residual information, and so on [20].

2.5.2. Hierarchical Cluster Analysis (HCA)

Hierarchical Cluster Analysis (HCA) is a technique combination of the same character-
istic among the samples into one group or cluster. The technique of Ward’s method and
Euclidean distance was used for grouping ‘Giant Green’ leaves at different maturity stages
into certain classes (clusters).

2.5.3. Partial Least Squares Discriminant Analysis (PLS-DA)

PLS-DA is a supervised method for classifying each sample into predefined classes.
PLS-DA is complementary to PCA analysis whereas the separations between the groups of
samples have been well improved. In this analysis, the dummy Y-axis (maturity stages) was
responsible for separating ‘Giant Green’ leaves into different clusters in the score plot. The
variables such as wavenumber or peak area (x-axis) that contributed to the discrimination
among samples were identified from the loading plot. The global goodness of fit and
quality model was confirmed by the cumulative Q2, R2Y, and R2X values. The accuracy and
preciseness of the model were detected by using the confusion matrix. The confusion matrix
represented the classifying of the observation (in percentage). The value closest to 100%
shows a well-classified observation [15]. Besides, the variable importance to projections
(VIP) was used to validate the variable contributed to discriminating of samples. A VIP
value greater than 0.85 is known as a strong variable. The highest VIP value indicated the
most relevant variable that influences the separation between the samples [21].

2.5.4. Partial Least Squares (PLS)

PLS is a supervised multivariate data analysis and is used when complex data with a
lot of explanatory variables are involved [22]. Two variables, the dependent variable (Y)
and explanatory variable (X) are used. In this study, PLS was applied to find a correlation
between the FTIR fingerprint (for spectroscopy) and metabolite (for chromatography), (X)
contribution in biological activities (antioxidant and alpha-glucosidase), (Y). The cumula-
tive value of Q2 is >0.5 and R2 is close to 1, indicating a good model [23]. The variable (X)
responsible in biological activity was identified by the variable importance in the projection
(VIP). Only a VIP value greater than 0.85 indicated that a strong impact on the model
was chosen.

3. Results
3.1. ATR-FTIR Fingerprint and Chemometric Analysis
3.1.1. Assignment and Comparison of ATR-FTIR Spectra

Similar patterns of IR spectra were shown in old, mature and young leaves (Figure 2).
It was observed that the broad peak at 3300 cm−1 was assigned to intermolecular hydrogen
bond (O-H) of alcohol, phenol, or carboxylic acid groups [24]. Two strong signals of
C=O stretching and C-N stretching were present at 1610 cm−1 [25] and C-O stretching at
1040 cm−1 [26]. The C-O stretching and C-C stretching was detected at 1440 cm−1 [27],
C-N stretching at 1340 cm−1 [21] and C-O stretching or O-H bending at 1204 cm−1 [27].
Besides, there was methylene (CH2) stretching presence at 2928 cm−1 and 2857 cm−1 [24],
C=O stretching at 1710 cm−1 and [26,27], and C-H out-of-plane bending at 924 cm−1 [24].
Two peaks of aromatic group presence at 824 cm−1 and 765 cm−1 attributed to C-H out-
of-plane bending [24]. The peak at around 586 cm−1 was assigned to the vibration of O-H
out-of-plane bending [28]. The assignment of each peak is summarized in Table 2.
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Figure 2. FTIR Spectra of ‘Giant Green’ cultivar of S. samarangense leaves at three maturity stages
(a) Young leaves (b) Mature leaves (c) Old leaves.

Table 2. List of assignments of FTIR for ‘Giant Green’ cultivar of S. samarangense leaves at three
maturity stages.

Frequency Range (cm−1) Assignment of FTIR Specific Frequency (cm−1)
Leaves

YL ML OL

3500–3200 O-H stretching 3300 P P P
2942–2904 C-H stretching asymmetric 2928, 2933 P P P
2863–2846 C-H stretching symmetric 2857 P P P
1715–1710 C=O stretching 1710, 1715 P P P
1700–1600 C=O stretching and C-N stretching (amide I) 1610, 1642 P P P
1580–1510 N-H bending and C-N stretching (amide II) 1535 A A A
1450–1380 C-O stretching and C-C stretching 1440, 1443 P P P
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Table 2. Cont.

Frequency Range (cm−1) Assignment of FTIR Specific Frequency (cm−1)
Leaves

YL ML OL

1365–1343 C-N stretching 1340, 1345 P P P
1270–1150 C-O stretching or O-H bending 1204, 1217 P P P
1052–1035 C-O stretching 1040, 1045 P P P

925–910 C-H out-of-plane bending (alkene) 925 P P P
826–824 C-H out-of-plane bending of the aromatic ring (meta) 824 P P P
773–743 C-H out-of-plane bending of the aromatic ring (para) 765, 773 P P P
590–586 O-H out-of-plane bending of alcohol 590 P P P

P = present, A = absent, YL = young leaves, ML = mature leaves, and OL = old leaves.

3.1.2. Chemometric Analysis
Principal Component Analysis (PCA)

PCA was performed in this study for unsupervised classification of leaves of the ‘Giant
Green’ cultivar of S. samarangense at different maturity stages. Based on the score plot
(Figure 3A), the total variance accounting for the first two principal components in the
leaves extract was 96.64% (PC1: 50.57%; PC2: 46.07%) (Figure 3B). The model showed a
separation between the maturity stages of leaf samples. The interpretation of the score plot
within the loading plot gave a clear picture of the factor influencing the clustering of leaf
extracts. The loading plots with a score ≥0.75 were accepted as a strong factor. Table 3
shows the variables that contributed to leaf variation along PC1 and PC2. The loading plots
of leaf extracts revealed that wavenumbers at 3300, 2928, 1710, 1610, 1440, 1340, 1204, 1040,
924, 824, 765, and 590 cm−1 contributed to variation in PC1.
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Figure 3. PCA-Derived of FTIR spectra representing ‘Giant Green’ cultivar of S. samarangense leaves
at three maturity stages (A) Score Plot (B) Loading Plot of PC1 and PC2.

Table 3. Summary of strong loading variables (≥0.75) on the varimax rotation of principal component
(PCs) analysis for the ‘Giant Green’ cultivar of S. samarangense leaves.

Variable Name of Metabolite PCs

3 Cyclotetradecane PC1
8 2,6,11,15-Tetramethylhexadecane PC2
9 1-Iodododecane PC2

10 9-Methyl-1-undecene PC1
11 2-Butyl-1-decene PC1
12 (E)-9-Eicosene PC1
14 Phthalic acid, butyl hept-4-yl ester PC2
21 Phosphonofluoridic acid, methyl-, nonyl ester PC2
23 Diethylene glycol dibenzoate PC1
25 Decanol PC1
27 Hexadecanol PC1
29 Octadecanol PC1
32 6,10,14-Trimethyl-2-pentadecanone PC2
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Hierarchical Cluster Analysis (HCA)

The similarities and differences among the three maturity stages of ‘Giant Green’
leaves were evaluated with HCA analysis (Figure 4). Three clusters of leaf samples were
suggested. Cluster one contained all old leaf replicates and one replicate from the mature
leaf sample. Then, cluster two contained the rest of the mature leaf replicates and cluster
three contained all young leaf replicates. The sample formed with the same cluster tended
to have a high similarity parameter.
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Partial Least Square–Discriminant Analysis (PLS-DA)

PLS-DA belongs to the supervised pattern recognition method. It was complementary
to PCA analysis. It also had abilities to improve the separation between the groups of
samples. As seen in Figure 5A,B, the separation of the three maturity stages of leaf samples
was improved. This PLS-DA model had an overall Q2 cumulative of 0.444, R2Y cumulative
of 0.608, and R2X cumulative of 0.972. The model had a Q2 cumulative value of <0.5,
indicating no global goodness of fit. This suggested that the quality of the fit varies a
lot depending on the maturity stage of the leaves. Besides, the efficiency of PLS-DA in
classifying and discriminating the samples can be accessed through the confusion matrix.
The confusion matrix result showed that all of the leaf extracts have been classified with
93.33% of correction. Besides, the variable importance to projections (VIP) was used to
validate the variable contributed to the discriminating of samples. Most of the peaks have
VIP values greater than 0.85 except 1204 and 1040 cm−1 which contributed the highest in
discrimination between young, mature, and old leaves. The overall VIP values are shown
in Table 4.
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Figure 5. The PC1 and PC2 of FTIR results of the ‘Giant Green’ cultivar of S. samarangense leaves at
three maturity stages of (A) PLS-DA score plot (B) PLS-DA bi-plot (X = FTIR wavenumber; Y = leaf
maturity stages) (C) PLS bi-plot.

Table 4. Summary of strong variable importance to projections (VIP) scores (≥0.85) correspond to
the partial-least square-discrimination analysis (PLS-DA) and partial-least square analysis (PLS) of
‘Giant Green’ cultivar of S. samarangense leaves at three maturity stages.

Variables (cm−1) Assignment of FTIR (PLS-DA) VIP Score

2857 C-H stretching symmetric 1.11

2928 C-H stretching asymmetric 1.10

1709 C=O stretching 1.02

924 C-H out-of-plane bending (alkene) 1.00

3300 O-H stretching 0.98

1439 C-O stretching and C-C stretching 0.96

824 C-H out-of-plane bending of the aromatic ring (meta) 0.96

1609 C=O stretching and C-N stretching (amide I) 0.94

764 C-H out-of-plane bending of the aromatic ring (para) 0.90

590 O-H out-of-plane bending of alcohol 0.89

1339 C-N stretching 0.85

Variables (cm−1) Assignment of FTIR (PLS) VIP Score PCs

2857 C-H stretching symmetric 1.0 PC1

2928 C-H stretching asymmetric 0.89 PC1

3300 O-H stretching 0.87 PC1
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Partial Least Square (PLS)

PLS was established to investigate the relationship between bioactivities of antioxi-
dants and alpha-glucosidase (Y variable) with FTIR fingerprint (x variable). The details
about the antioxidant and alpha-glucosidase inhibitory activities of ‘Giant Green’ leaves
at three maturity stages were reported in our previous study [18]. As seen in the bi-plot
(Figure 5C), most young leaf samples were located at the upper right-hand quadrant on
the t1 axis. This revealed that the young leaves possessed the strongest bioactivities as
compared to mature and old leaves. This analysis showed a good PLS prediction model
with the cumulative values of Q2 at 0.591, R2Y at 0.724, and R2X at 0.972. The peaks related
to this relationship were evaluated based on the loading plot (w*c). The influencer peaks
were 2857, 2928, and 3300 cm−1 which were detected to have the highest w*c [1] values.
This result also aligned with data from VIP coefficients where the peak at 2857 cm−1 had
the highest VIP value than other peaks. The overall VIP values are shown in Table 4.

3.2. Gas Chromatography-Mass Spectrometry (GC-MS) and Chemometric Analysis
3.2.1. Assignment and Comparison of GC-MS Spectra

Based on the chromatogram shown in Figure 6a–c, the total number of metabolites
identified in leaf extracts was 37. The quantities of metabolites that were found in each of
the samples were not the same, whereby in young leaves it was 25 (Figure 6a), in mature
leaves it was 29 (Figure 6b) and in old leaves it was 27 (Figure 6c). Six major metabolites
were detected in all of the maturity stages of leaf samples which were aligned in similar
retention times. These major metabolites were cyclotetradecane; octadecanol; 5(2,4-di-tert-
butylphenoxy)-5-oxopentanoic acid; methoxyl; hexadecanol; and demethoxymatteucinol.
Moreover, some metabolites were detected only in one or two leaf samples, while some of
them were also present in all the samples but differed in peak intensities. For example, the
metabolites of methyl (9Z,15Z)-9,15-octadecadienoate and stearic acid, butyl ester were only
detected in young leaves but 2,6,11,15-tetramethylhexadecane, 1-iodododecane and phytol
were detected in mature and old leaves. The detailed information on these metabolites is
tabulated in Table 5.
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Figure 6. GC-MS chromatogram of major volatile metabolites present in ‘Giant Green’ cultivar of
S. samarangense leaves at three maturity stages (a) young leaves (b) mature leave (c) old leaves;
(1): cyclotetradecane; (2): 5(2,4-di-tert-butylphenoxy)-5-oxopentanoic acid; (3): hexadecanol; (4): oc-
tadecanol; (5): methoxyl; and (6): demethoxymatteucinol.

Table 5. List of metabolites present in the ‘Giant Green’ cultivar of S. samarangense leaves at three
maturity stages with a percentage of probability score of 80% and above.

Group Variable Name of Metabolite RT (Min) Molecular
Formula

Relative Area (%)

YL ML OL

Alkane 1 Decane 4.57 C10H22 0.94 ± 0.16 a 0.73 ± 0.25 a 0.39 ± 0.53 a

2 2,3-Dimethyloctane 12.73 C10H22 0.09 ± 0.21 a 0.09 ± 0.20 a 0.10 ± 0.22 a

3 Cyclotetradecane 14.1 C14H28 5.79 ± 0.82 a 4.78 ± 0.54 a 4.57 ± 1.21 a

4 Tetradecane 14.26 C14H30 0.40 ± 0.07 a 0.26 ± 0.15 ab 0.14 ± 0.91 b

5 3,5-Dimethylundecane 16.97 C13H28 0.09 ± 0.13 a 0.05 ± 0.11 a 0.24 ± 0.31 a

6 4,6-Dimethyldodecane 16.15 C14H30 ND 0.06 ± 0.14 a ND
7 6-Ethyl-2-methyldecane 17.99 C13H28 0.06 ± 0.14 a ND ND
8 2,6,11,15-Tetramethylhexadecane 19.86 C20H42 ND 0.12 ± 0.27 a 0.22 ± 0.34 a

9 1-Iodododecane 20.66 C12H25I ND 0.05 ± 0.12 a 0.05 ± 0.11 a

Alkene 10 9-Methyl-1-undecene 11.52 C12H24 0.91 ± 0.16 a 0.78 ± 0.08 a 0.64 ± 0.30 a

11 2-Butyl-1-decene 13.11 C14H28 0.74 ± 0.10 a 0.61 ± 0.08 a 0.51 ± 0.29 a

12 (E)-9-Eicosene 25.09 C20H40 0.90 ± 0.17 a 0.79 ± 0.09 a 0.66 ± 0.38 a

Ether 13 Decyl octyl ether 11.83 C18H38O 0.12 ± 0.28 a 0.10 ± 0.22 a 0.20 ± 0.27 a

Ester 14 Phthalic acid, butyl hept-4-yl ester 24.54 C19H28O4 ND 0.03 ± 0.07 a 0.04 ± 0.08 a

15 Methyl benzoate 6.92 C8H8O2 2.00 ± 0.22 a 1.76 ± 0.49 a 1.65 ± 0.15 a

16 Bis(2-ethylhexyl) carbonate 10.9 C17H34O3 0.37 ± 0.71 a ND 0.07 ± 0.10 b

17 5(2,4-Di-tert-butylphenoxy)-5-oxopentanoic acid 16.44 C19H28O4 10.43 ± 1.20 a 8.86 ± 1.17 a 8.89 ± 1.92 a

18 Methyl palmitate 23.85 C17H34O2 2.00 ± 1.04 a 0.49 ± 0.30 b 0.50 ± 0.46 b

19 Methylox 24.20 C18H28O3 8.80 ± 1.23 a 7.40 ± 0.62 a 7.95 ± 0.73 a

20 Methyl (9Z,15Z)-9,15-octadecadienoate 26.92 C19H36O2 0.07 ± 0.16 a ND ND
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Table 5. Cont.

Group Variable Name of Metabolite RT (Min) Molecular
Formula

Relative Area (%)

YL ML OL

21 Phosphonofluoridic acid, methyl-, nonyl ester 27.03 C12H26FO2P ND ND 0.04 ± 0.08 a

22 Stearic acid, butyl ester 31.95 C22H44O2 0.21 ± 0.46 a ND ND
23 Diethylene glycol dibenzoate 33.44 C18H18O5 2.38 ± 0.53 a 2.23 ± 0.33 a 1.84 ± 1.07 a

24 4-Methylhexanol 12.02 C7H16O 0.09 ± 0.13 a 0.04 ± 0.10 a ND
Alcohol 25 Decanol 9.36 C10H22O 1.35 ± 0.23 a 1.13 ± 0.08 a 0.99 ± 0.56 a

26 Dodecanol 14.12 C12H26O 7.55 ± 6.68 a 10.16 ± 6.84 b 4.83 ± 5.08 c

27 Hexadecanol 17.86 C16H34O 6.07 ± 0.89 a 5.04 ± 0.54 a 4.92 ± 1.09 a

28 Intermedeol 19.04 C15H26O ND 0.33 ± 0.32 a 0.11 ± 0.24 a

29 Octadecanol 21.37 C18H38O 3.06 ± 0.48 a 2.61 ± 0.28 a 2.47 ± 0.69 a

30 Phytol 27.25 C20H40O ND 0.15 ± 0.33 a 0.05 ± 0.12 b

Ketone 31 2-(1,1-Dimethylethyl)-cyclobutanone 18.1 C8H14O ND ND 0.04 ± 0.10 a

32 6,10,14-Trimethyl-2-pentadecanone 22.35 C18H36O ND 0.13 ± 0.18 a 0.23 ± 0.34 a

33 7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-
2,8-dione 23.77 C17H24O3 1.32 ± 0.30 a 0.96 ± 0.21 ab 0.69 ± 0.47 b

34 Pinostrobin chalcone 32.1 C16H14O4 ND 0.54 ± 0.53 a 0.28 ± 0.38 a

35 Pinocembrin 33.94 C17H16O4 0.72 ± 0.72 a 1.66 ± 0.98 b 0.78 ± 0.67 a

36 Demethoxymatteucinol 35.02 C17H16O4 0.03 ± 0.07 a ND ND
Amine 37 5-Aminotetrazole 9.58 CH3N5 1.30 ± 2.90 a ND 0.51 ± 1.14 b

ND = not detected. YL = young leaves; ML = mature leaves; OL = old leaves. Values are the means ± standard
deviation for five biological replicates of experiments (n = 5). Data from the same horizontal row with different
superscript letters refer to a significant difference (p < 0.05).

3.2.2. Chemometric Analysis
Principal Component Analysis (PCA)

The PCA analysis was established to give better information about the similarities and
differences between the three maturity stages of leaves of ‘Giant Green’ in the context of
their metabolites. It can be seen from Figure 7A, the score plot of leaf samples revealed that
the total variance of the first two principal components was 43.50% with values of PC1 at
27.79% and PC2 at 15.71%. The model showed no separation between the maturity stages
of leaf samples. The loading line plot (Figure 7B) of leaf samples identified the metabolites
contributing to the variation in PC1 that were 3, 10, 11, 12, 23, 25, 27, and 29. Meanwhile,
the metabolites 8, 9, 14, 21, and 32 contributed to PC2. The details about the metabolites are
explained in Table 6.

Horticulturae 2023, 9, x FOR PEER REVIEW 12 of 23 
 

 

 17 
5(2,4-Di-tert-butylphenoxy)-5-oxo-

pentanoic acid 
16.44 C19H28O4 10.43 ± 1.20 a 8.86 ± 1.17 a 8.89 ± 1.92 a 

 18 Methyl palmitate 23.85 C17H34O2 2.00 ± 1.04 a 0.49 ± 0.30 b 0.50 ± 0.46 b 
 19 Methylox 24.20 C18H28O3 8.80 ± 1.23 a 7.40 ± 0.62 a 7.95 ± 0.73 a 
 20 

Methyl (9Z,15Z)-9,15-octadecadi-
enoate 

26.92 C19H36O2 0.07 ± 0.16 a ND ND 

 21 
Phosphonofluoridic acid, methyl-, 

nonyl ester 
27.03 C12H26FO2P ND ND 0.04 ± 0.08 a 

 22 Stearic acid, butyl ester 31.95 C22H44O2 0.21 ± 0.46 a ND ND 
 23 Diethylene glycol dibenzoate 33.44 C18H18O5 2.38 ± 0.53 a 2.23 ± 0.33 a 1.84 ± 1.07 a 
 24 4-Methylhexanol 12.02 C7H16O 0.09 ± 0.13 a 0.04 ± 0.10 a ND 

Alcohol 25 Decanol 9.36 C10H22O 1.35 ± 0.23 a 1.13 ± 0.08 a 0.99 ± 0.56 a 
 26 Dodecanol 14.12 C12H26O 7.55 ± 6.68 a 10.16 ± 6.84 b 4.83 ± 5.08 c 
 27 Hexadecanol 17.86 C16H34O 6.07 ± 0.89 a 5.04 ± 0.54 a 4.92 ± 1.09 a 
 28 Intermedeol 19.04 C15H26O ND 0.33 ± 0.32 a 0.11 ± 0.24 a 
 29 Octadecanol 21.37 C18H38O 3.06 ± 0.48 a 2.61 ± 0.28 a 2.47 ± 0.69 a 
 30 Phytol 27.25 C20H40O ND 0.15 ± 0.33 a 0.05 ± 0.12 b 

Ketone 31 
2-(1,1-Dimethylethyl)-cyclobuta-

none 
18.1 C8H14O ND ND 0.04 ± 0.10 a 

 32 6,10,14-Trimethyl-2-pentadecanone 22.35 C18H36O ND 0.13 ± 0.18 a 0.23 ± 0.34 a 
 33 

7,9-Di-tert-butyl-1-ox-
aspiro(4,5)deca-6,9-diene-2,8-dione 

23.77 C17H24O3 1.32 ± 0.30 a 0.96 ± 0.21 ab 0.69 ± 0.47 b 
 34 Pinostrobin chalcone 32.1 C16H14O4 ND 0.54 ± 0.53 a 0.28 ± 0.38 a 
 35 Pinocembrin 33.94 C17H16O4 0.72 ± 0.72 a 1.66 ± 0.98 b 0.78 ± 0.67 a 
 36 Demethoxymatteucinol 35.02 C17H16O4 0.03 ± 0.07 a ND ND 

Amine 37 5-Aminotetrazole 9.58 CH3N5 1.30 ± 2.90 a ND 0.51 ± 1.14 b 
ND = not detected. YL = young leaves; ML = mature leaves; OL = old leaves. Values are the means ± 
standard deviation for five biological replicates of experiments (n = 5). Data from the same horizon-
tal row with different superscript letters refer to a significant difference (p ˂ 0.05). 

3.2.2. Chemometric Analysis 

Principal Component Analysis (PCA) 
The PCA analysis was established to give better information about the similarities 

and differences between the three maturity stages of leaves of ‘Giant Green’ in the context 
of their metabolites. It can be seen from Figure 7A, the score plot of leaf samples revealed 
that the total variance of the first two principal components was 43.50% with values of 
PC1 at 27.79% and PC2 at 15.71%. The model showed no separation between the maturity 
stages of leaf samples. The loading line plot (Figure 7B) of leaf samples identified the me-
tabolites contributing to the variation in PC1 that were 3, 10, 11, 12, 23, 25, 27, and 29. 
Meanwhile, the metabolites 8, 9, 14, 21, and 32 contributed to PC2. The details about the 
metabolites are explained in Table 6. 

  

OL1

OL2
OL3

OL4

OL5

ML1
ML2

ML3
ML4

ML5

YL1

YL2

YL3
YL4

YL5

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3

PC
2 

(1
5.

71
 %

)

PC1 (27.79 %)

A

1

2

3

4

5

6

7

89

10
11
12

13

14

15

16
17

18

19

20

21

22

23

24

25
26

27

28 29
30

31

32

3334
35
36

37

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

PC
2 

(1
5.

71
 %

)

PC1 (27.79 %)

B

Figure 7. PCA-Derived of the GC-MS result representing the ‘Giant Green’ cultivar of S. samarangense
leaves at three maturity stages (A) Score Plot (B) Loading Plot of PC1 and PC2.
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Table 6. Summary of strong loading variables (≥0.75) on the varimax rotation of principal component
(PCs) analysis for the ‘Giant Green’ cultivar of S. samarangense leaves.

Variable Name of Metabolite PCs

3 Cyclotetradecane PC1
8 2,6,11,15-Tetramethylhexadecane PC2
9 1-Iodododecane PC2
10 9-Methyl-1-undecene PC1
11 2-Butyl-1-decene PC1
12 (E)-9-Eicosene PC1
14 Phthalic acid, butyl hept-4-yl ester PC2
21 Phosphonofluoridic acid, methyl-, nonyl ester PC2
23 Diethylene glycol dibenzoate PC1
25 Decanol PC1
27 Hexadecanol PC1
29 Octadecanol PC1
32 6,10,14-Trimethyl-2-pentadecanone PC2

Hierarchical Cluster Analysis (HCA)

The cluster analysis of ‘Giant Green’ leaves was illustrated clearly in the HCA dendro-
gram. Based on GC-MS data, the samples were grouped into three groups. The result of
HCA revealed that all of the leaf samples in similar maturity stages formed a heterogeneous
cluster (Figure 8). Cluster one represented three replicates from old leaves and young leaves
and two replicates from mature leaves. Cluster two represented two replicates from mature
and young leaves and one replicate from old leaves. Cluster three represented one replicate
from mature and old leaves.
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Figure 8. Dendrogram from Hierarchical Cluster Analysis (HCA) corresponded to GC-MS data for
the ‘Giant Green’ cultivar of S. samarangense leaves at three maturity stages.

Partial Least Square-Discriminant Analysis (PLS-DA)

PLS-DA analysis was done to improve the separation between leaf samples obtained
from PCA results. Pattern recognition of PLS-DA from leaves extract was carried out and is
shown in Figure 9A,B. The results revealed that the separation between the maturity stages
of leaf samples had improved. The model had a Q2 cumulative of 0.875, R2Y cumulative of
1.000, and R2X cumulative of 0.959. This model was indicated as a good model because it
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had a Q2 cumulative value greater than 0.5. The result of the confusion matrix also showed
that young, mature, and old leaves were discriminated efficiently with a 100% correctly
produced overall classification rate with no misclassified sample. Based on the results of
the variable importance to projections (VIP), 24 metabolites were identified that influenced
the separation of young, mature, and old leaf samples. These metabolites were 18, 33, 4, 3,
27, 1, 19, 11, 29, 17, 15, 10, 34, 25, 32, 24, 12, 16, 20, 22, 36, 7, 8, and 28. The overall result is
summarized in Table 7.
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Table 7. Summary of strong variable importance to projections (VIP) scores (≥0.85) correspond to the
partial-least square-discrimination analysis (PLS-DA) of the ‘Giant Green’ cultivar of S. samarangense
leaves at three maturity stages.

Variable Name of Metabolite VIP Score

18 Methyl palmitate 1.87
33 7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione 1.58
4 Tetradecane 1.51
3 Cyclotetradecane 1.39
27 Hexadecanol 1.38
1 Decane 1.33
19 Methylox 1.22
11 2-Butyl-1-decene 1.21
29 Octadecanol 1.21
17 5(2,4-Di-tert-butylphenoxy)-5-oxopentanoic acid 1.20
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Table 7. Cont.

Variable Name of Metabolite VIP Score

15 Methyl benzoate 1.14
10 9-Methyl-1-undecene 1.09
34 Pinostrobin chalcone 1.07
25 Decanol 1.05
32 6,10,14-Trimethyl-2-pentadecanone 1.04
24 4-Methylhexanol 1.00
12 (E)-9-Eicosene 0.96
16 Bis(2-ethylhexyl) carbonate 0.95
20 Dodecanol 0.94
22 Stearic acid, butyl ester 0.94
36 Demethoxymatteucinol 0.94
7 6-Ethyl-2-methyldecane 0.94
8 2,6,11,15-Tetramethylhexadecane 0.89
28 Intermedeol 0.86

Partial Least Square (PLS)

Variation of metabolites between the leaves of ‘Giant Green’ at different maturity
stages and their correlation with bioactivities (antioxidant and alpha-glucosidase inhibitory
activities) was evaluated using PLS analysis. The details about these bioactivities were
reported in our previous study [18]. As seen in the biplot (Figure 9C), the young leaves
were located at the upper right-hand quadrant on the t1 axis which is influencing a strong
relationship with antioxidant and alpha-glucosidase activities compared to mature and old
leaves samples. Besides, it also revealed that this PLS model was good. It had the values
of Q2 cumulative at 0.903, R2Y cumulative at 1.000, and R2X cumulative at 0.980. The
metabolites’ correlations with bioactivities in leaf samples were deduced from the loading
plot; 17 metabolites were identified that contributed to this relationship. These metabolites
were 18, 4, 1, 3, 33, 27, 11, 15, 29, 10, 36, 19, 17, 25, 12, 7, and 24. The variable importance to
projections (VIP) was further examined to validate the significance variable. This result also
aligned with data from VIP coefficients where the metabolite (18) (rt: 23.85) had the highest
VIP value than other peaks which indicates it is the highest influencer to antioxidant and
alpha-glucosidase activities. The details about the metabolites are summarized in Table 8.

Table 8. Summary of strong loading variables that correspond to the partial-least square analysis
(PLS) of the ‘Giant Green’ cultivar of S. samarangense leaves at three maturity stages.

Variable Name of Metabolite VIP Score PCs

18 Methyl palmitate 1.89 PC1
4 Tetradecane 1.65 PC1
1 Decane 1.50 PC1
3 Cyclotetradecane 1.40 PC1
33 7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione 1.39 PC1
27 Hexadecanol 1.38 PC1
11 2-Butyl-1-decene 1.27 PC1
15 Benzoic acid, methyl ester 1.24 PC1
29 Octadecanol 1.23 PC1
10 9-Methyl-1-undecene 1.20 PC1
36 Demethoxymatteucinol 1.16 PC1
19 Methylox 1.14 PC1
17 5(2,4-Di-tert-butylphenoxy)-5-oxopentanoic acid 1.09 PC1
25 Decanol 1.07 PC1
12 (E)-9-Eicosene 1.04 PC1
7 6-Ethyl-2-methyldecane 0.99 PC1
24 4-Methylhexanol 0.85 PC1

4. Discussion

In the present study, the fingerprints of old, mature, and young leaves were found to
be similar but slightly different in peak intensity and this might be due to the presence of
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the same type or quantity of metabolites. The similarities between the absorbance peaks
also are related to the insignificance among leaf stages in antioxidant and antibacterial
activities reported in our previous study. The peak at 1710 cm−1 which is assigned to the
C=O in the phenolic group is believed to have contributed to these bioactivities. Besides,
this is in agreement with the finding by Easmin et al. [24], where they found that FTIR
spectra for ethanol and water extracts of Phaleria macrocarpa fruit look similar because
of the similarity in their chemical composition. Besides, the variation of peak detected
between the leaf samples also might be related to different levels of enzyme activities
for each maturity stage [21]. In addition, Kharbach et al. [29] reported that the resulting
compound fingerprint is mostly related to plant maturity, variation of season, and location
of geographic. However, the comparison among spectra only cannot provide the final
conclusion about the specific fingerprint that contributed to variations between ‘Giant
Green’ leaves at three maturity stages. So, the data of FTIR was further analyzed and
subjected to chemometric analysis.

Principal Component Analysis (PCA) is unsupervised multivariate data analysis
(MVDA) that is used to reduce the dimensional large dataset and at the same time has
preserved important information. The most important information from the dataset is
explained in PC1 and the second most important information is explained in PC2. The
score plot was used to differentiate among the samples and the loading plot was used to
determine the variable contributed to the samples cluster. In the present study, the PCA
was established to find the relationship between ‘Giant Green’ leaves at three maturity
stages and identify the functional group that contributed to the sample separation. The
PCA result showed that the young leaves were clearly separated from mature and old
leaves. But one biological replicate from mature leaves (ML1) is located near the old leaf
samples. This might be why some metabolites in ML1 are also present in old leaf samples
or their quantity is almost similar. Some of the previous studies also found no defined
cluster between Ficus deltodeia syconia varieties [30], cabbage cultivar [31], and Ipomoea
aquatica [32] because of the identicalness of their chemical contents. Besides, Eugenia uniflora
leaves showed a clear distance of cluster between the different fruit color biotypes due to
their distinctive volatile compounds [33].

Unsupervised Hierarchical Cluster Analysis (HCA) is complementary to PCA analysis.
HCA was applied to determine the similarities and dissimilarities between the individual
experimental samples. The sample with similar in investigated variable matched in the
same cluster but the sample showed the highest dissimilarity was arranged in other clusters.
The position of the cluster in the dendrogram also takes into account the far position among
clusters that shows the highest dissimilarity between the individual samples [34]. The
results obtained from this study demonstrate that the leaf extracts at three maturity stages
were arranged in three different clusters and might be influenced by metabolite biosynthesis.
Lee et al. [35] reported that metabolite presence varies at the young, mature, and old stages
of S. samarangense cv. pink leaves. The HCA model also revealed that most leaf extracts
present in the same maturity stages formed a homogeneous cluster. It was expected that
the samples with the same maturity stage was similar because they consisted of metabolites
of the same quality and quantity. However, one of the mature leaves (ML1) deviated
away from other mature leaf samples, but arranged in cluster 1 belonging to old leaf
samples, indicating that the metabolite can also develop differences among leaves at the
same maturity stage. This phenomenon also might be affected by environmental factors,
cultivar practices, plant ages, and soil factors of wax apple cultivar. The environmental
factors such as temperature, light intensities, and climatic change influence the changes of
metabolites in plants [36].

Partial Least Square-Discriminant Analysis (PLS-DA) is a supervised multivariate
data analysis (MVDA) tool that is gaining more interest, especially in the analysis of
metabolomics data. PLS-DA has the capability to improve the classification of experimental
data that cannot be achieved by using PCA. Unlike PCA, PLS-DA is focused on class
reductive in achieving the separation between the samples. In this study, PLS-DA is
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performed to discriminate the ‘Giant Green’ leaves at three maturity stages based on their
FTIR dataset. In good accord with PCA and HCA analysis, one of the samples from the
mature leaf stage that is ML1 cannot clearly be separated from the samples of the old
leaf stage might be due to the similarities of metabolites in both samples. However, the
other samples from young, mature, and old leaves were well improved in their separation
than in PCA. The prediction ability of this PLS-DA model in the classification of the leaf
samples with different maturity stages has been validated by the achievement of a 93.33%
score in the confusion matrix. The maximum data among class (maturity stage) were
collected in PLS-DA analysis, making the variable that discriminates in this model may
be unlike those with PCA. Most of the discriminative variables detected in FTIR spectra
contributed to the classification of young, mature, and old leaves according to variable
importance to projection (VIP) coefficients. The highest VIP score represented the stronger
variable attributed to the clustering of the sample. The peaks at 2857, 2928, 1709, and
924 cm−1 were mostly related to describing the differences between the maturity stages
of leaf samples. The previous literature reported that the asymmetrical (2970 cm−1) and
symmetrical (2856 cm−1) of the methylene group (CH2) and C=H bond (980 cm−1) in
the FTIR spectrum were commonly related to flavonoid structure [37]. Then, the peak
around 1718 cm−1 could be attributed to the presence of the ester compound [26]. This
finding revealed that the flavonoid and ester compounds could be the largest influencer
in separating between maturity stages in leaf samples. So, it can be concluded that the
variation of metabolites could be attributed to discrimination between three maturity stages
of ‘Giant Green’ leaves. In good accordance with the previous study, as reported by Lee
et al. [35], the chemical compounds such as terpene and terpenoid of wax apple leave
cv. pink changes during the maturation stages. Other than that, Gouvinhas et al. [38]
reported that the oil from three stages of olive fruit was successfully discriminated by
using supervised MVDA. They found that the changes in biochemicals happened with the
ripening stages of the olive fruit. Considering the discrimination explained in the PLS-DA
model, it is proven that the ‘Giant Green’ leaves were well-classified according to their
maturity stages than using PCA.

Partial Least Square (PLS) belongs to supervised MVDA where the Y-axis represented
a dependent variable and X-axis represented an independent variable in the PLS model.
PLS is used to find the correlation between the two variables that are generated from the
dataset of spectroscopic or chromatographic analysis and bioactivity. The validation and
prediction of the goodness of the model are evaluated based on R2Y (variance explained
in predictor variable), R2X (variance explained in response variable), and Q2Y (variance
predictive of the goodness of fit according to cross-validation). A cross-validated corre-
lation coefficient (Q2) value higher than 0.5 indicates a good PLS model. In the current
study, the relationship between FTIR spectra absorbance (wavenumber) with biological
activities such as antioxidant (DPPH, NO, and ABTS) and alpha-glucosidase inhibitory
activity were investigated. However, the information accessed from FTIR was limited
because it just provided a clue about the class of metabolite but the specific metabolite
that is responsible for activeness in biological activities is still unknown. The relationship
between biological activity (Y-axis) and wavenumber (X-axis) of leaf samples at three
maturity stages was illustrated in the bi-plot. Bi-plot was the combination of a score plot
and a loading plot. Based on the present results, the bi-plot of leaf extracts revealed that
the Y-variables (DPPH, NO, ABTS, and alpha-glucosidase) were located near the sample
of the young leaf stage. It revealed that young leaf samples were highly correlated with
biological activities. The strongest peaks were obtained at 2857, 2928, and 3300 cm−1 which
possessed the highest value in the loading plot and VIP score and may be responsible
for antioxidant and alpha-glucosidase inhibitory activities of young leaves. The peak at
2857 cm−1 and 2928 cm−1 may be due to methylene stretching of asymmetrical and sym-
metrical vibration in methoxyl derivative and aldehyde group, and at 3300 cm−1 may be
assigned to intermolecular hydrogen bond in alcohol, phenol or carboxylic acid. These
peaks showed that the possibility of primary metabolites such as carbohydrates, proteins,
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lipids, and polysaccharides, and secondary metabolites such as phenolic acids, flavonoid,
terpenes, and terpenoids were present in the leaf sample. In good accordance with a
previous study as reported by Christou et al. [39] where they found that the most important
peaks in the FTIR spectrum were at the 4000–2500 cm−1 which indicates the presence of
carbohydrate, protein, lipid, and polysaccharide groups. Saidan et al. [40] also revealed
that the sharp peak in the range of 1760–1600 cm−1 may be characterized by the presence
of flavonoid and terpenoid groups. In addition, the leaves of S. samarangense have been re-
ported with an abundance of valuable metabolites such as quercetin, ellagic acid, myricetin,
lupeol, sitosterol, triterpenes, betulin, p-cymene α-pinene, β-pinene and limonene [41].
These metabolites have been proven to have a significant effect on bioactivities such as
antioxidant and alpha-glucosidase inhibitory activities [41–43].

Gas chromatography (GC) is the most intensive instrument used for separation of
compounds in a mixture [44]. It becomes the crucial tool in identification of compounds
especially in drug discovery or pharmacology and food industry fields. In this study,
37 compounds were detected in three maturity stages of ‘Giant Green’ leaf extracts. How-
ever, only six major compounds were identified and present at the same retention time in all
of the leaf extracts. The variation of metabolites in the samples may influent their potency
in biological activities. Thus, the strongest antioxidant, antibacterial and alpha-glucosidase
activities of ‘Giant Green’ leaves in our previous study [18] could be related to the greater
number of metabolites present in each of the leaf extracts. Some of the metabolites from
classes of phenolic, triterpenes, ester, alkane, and carbohydrate have been given more
attention by researchers because these metabolites can exhibit various pharmacological
activities [45–47]. Previous literature had reported that alkane-based compounds such
as tetradecane, hexadecane [48], and nonadecane [49] showed antibacterial and antifun-
gal effects. The presence of metabolites such as methyl benzoate; methyl (9Z,15Z)-9,15-
octadecadienoate [50,51], diethylene glycol dibenzoate [52] and 9-Eicosene [53] also have
potent antibacterial activity. Other than that, Saleh et al. [46] reported that the metabolites
based on fatty acid, organic acid, phenolic acid, carbohydrate, alkane, and sterol may
possess alpha-glucosidase inhibitory activity. Fatty acids such as palmitic acid and stearic
acid were known to exhibit potent alpha-glucosidase inhibitory activity [54,55] as well
as possess strong antioxidant and antibacterial, antitumor, anticholesteremic, immunos-
timulant properties and anti-inflammatory activities [56,57]. Another metabolite that had
the strongest alpha-glucosidase inhibitory activity is phytol [54,58]. Phytol is an acyclic
diterpene alcohol and is commonly produced through the degradation process of the
plant cell wall [54]. The same metabolite also was reported by other researchers to inhibit
the strongest antimicrobial, antioxidant, antinociceptive, and anticancer activities [59,60].
However, the other metabolites found in this analysis might not yet be described in detail
by previous literature. Hence, this study revealed that GC-MS is an efficient tool to profile
the untargeted peak of the ‘Giant Green’ cultivar of wax apple leaf samples. However, the
huge dataset which was obtained from hundreds of peaks of GC-MS analysis provided a
barrier to providing a significant conclusion in terms of specific metabolites that contribute
to discrimination between ‘Giant Green’ leaves at three different maturity stages. Thus, a
more manageable size of GC-MS data was obtained by chemometric analysis that applied
multivariate data analysis (MVDA).

PCA is performed to reduce the dataset aiming at the structuring of data and clustering
of experimental samples. PCA detected the similarities between the samples and classified
them into similar clusters. In this study, the ‘Giant Green’ cultivar of S. samarangense
leaves did not provide good separation between their maturity stages. The grouping
in PCA is based on the strength of variables in the loading plot on PC1 and PC2 axis.
Similarly, our findings agreed with the work of Steingass et al. [21]. In their study, one of
the green-ripe pineapple fruit did not match with other samples with the same maturity
stage and the authors ascribed the variation due to the development of metabolites among
the individual fruits that were different even at the same maturity stages. However, our
result contradicted a previous study as reported by Maamoun et al. [61] in which there
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was clear discrimination between two stages of the ripening stage of Luffa egyptiaca Mill
fruit. They noted that young fruit exhibits a negative score along PC1 and old mature
fruit exhibits a positive score along PC2. Zhang et al. [62] also found a good separation
between the three stages of tobacco leaves. The rosette and vigorous growth stages are
located along PC1 whereas the mature leaves are located along PC2. The accumulation of
certain compounds such as nicotine, sucrose, D-glucose, L-proline, D-fructose, quinic acid,
glyceric acid, L-threonic acid, inositol, and DL-malic acid at various quantities in tobacco
growth stages were indicated may contribute to this separation. Hence, it can be concluded
that the variation and quantity of metabolites in each of the experimental samples played a
significant role in the discrimination between them.

Complex chemical reactions occur at each of the maturity stages of plants suitable for
their growth and cell development process. So, this process automatically changes the com-
position of metabolite in the plant. Hierarchical cluster analysis (HCA) is an unsupervised
MVDA used to identify the natural grouping between the plant samples characterized
by the values of a set of measured properties [63]. The similarity and dissimilarity of the
entire set of samples are displayed in the HCA dendrogram. The results revealed that
‘Giant Green’ leaves were discriminated into three clusters, similar to the results in the
PCA. However, each of the clusters did not represent the different maturity stages of leaf
samples as expected. It showed that the data as accessed from GC-MS analysis was not able
to well-discriminate between ‘Giant Green’ leaves at three maturity stages. Many factors
could be influencing this result such as the similarities of metabolites in each of the samples,
location of sampling, and biological replication of samples [30,64,65]. Despite this fact, all
of the samples and their biological replicates were collected at a similar location, which has
been attributed to the slight differences between metabolites as compared to those samples
collected from other locations.

Partial Least Square-Discriminant Analysis (PLS-DA) is further adapted from the un-
supervised classification of PCA. The supervised PLS-DA model was applied to investigate
the metabolites that contributed to discrimination between ‘Giant Green’ leaves at three
maturity stages. Its results were not in accordance with previous PCA and HCA results
where all stages of leaves improved their separation from each other. The validation of the
model was also proven with 100% of the confusion matrix result. The metabolites involved
in this separation were confirmed with variable importance in the projection (VIP) values.
The twenty-four metabolites were identified that consisted of VIP values greater than 0.85
in leaf extracts. From the results, it showed that the variation of metabolites from the groups
of alcohol, ester, alkene, alkane, and ketone were involved in the discrimination of leaves
(young, mature, and old leaf stages) samples. However, the understanding of factors that
influence the discrimination among samples was very complex. Some researchers revealed
that the factors of climate, soil, temperature, maturity stage, irrigation, and fertilizer vary
the composition of metabolites in plants [31,36,66]. According to Yunusa [30], two possible
factors responsible for the separation between the samples are the particular metabolite
presence in all samples but different in concentration, and undetected particular metabolites
in certain samples. All of these factors also affected the results of PLS-DA analysis. In
addition, it was also expected that the PLS-DA model showed better performance in the
classification of ‘Giant Green’ leaves at three maturity stages than PCA since PLS-DA was
most effective in discriminating the samples based on their similarities and dissimilarities
of metabolite profile.

Partial least square (PLS) is applied to find the correlation between the biological
activities (antioxidant and alpha-glucosidase) and metabolites in three maturity stages
of ‘Giant Green’ leaves. From the PLS bi-plot, the young leaves were located near the
bioactivities. This finding confirmed the biological activity results, which showed that
the sample from young leaf stages had the highest activity compared to samples from
other stages. Based on the VIP score, the metabolites contributing the highest to these
activities in leaf extract along PC1 were fatty acid (methyl palmitate, 18) and alkane-based
compound (tetradecane, 4; decane, 1; cyclotetradecane, 3). This result was consistent with
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previous literature showing that the metabolites from fatty acid and alkane derivatives
possessed antioxidant and alpha-glucosidase activities [46,54,67]. Anh et al. [68] found that
the methyl palmitate presence in Clausena indica fruit possesses potent antioxidant and
antidiabetic activities. Another study as reported by Murugesu et al. [54], revealed that
methyl palmitate and pentadecanoic acid presence in Clinacanthus nutans Lindau leaves
inhibited the stronger alpha-glucosidase inhibitory activity. The alkanes, fatty acid, methyl
ester, and aromatics chain in the essential oil of Daphne mucronata Royle leaves and stems
showed good antioxidant and antibacterial activities [69]. Considering the relationship as
described in the PLS model, it was proven that the metabolites and biological activities
in the ‘Giant Green’ leaves were well-correlated. Then, young leaves also showed the
strongest relationship with antioxidant and alpha-glucosidase inhibitory activities than
mature and old leaves.

5. Conclusions

The ATR-FTIR and GC-MS-based metabolomics approach have well-determined the
metabolite variation between the three maturity stages of the ‘Giant Green’ cultivar of
S. samarangense leaves. Unsupervised and supervised MVDA were successfully discrim-
inated between the leaf samples and visualized the specific metabolites correlated to
the biological activities (antioxidant and alpha-glucosidase). Thus, this work concludes
that spectroscopy and chromatography fingerprinting coupled with chemometrics can be
applied to select the best maturity of ‘Giant Green’ leaves for further use in the pharmaco-
logical field.
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