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Abstract: Rapid ripeness assessment of fruit after harvest is important to reduce post-harvest losses
by sorting fruit according to the duration until they become ready to eat. However, there has been
little research on non-destructive estimation of the ripeness and ripening speed of avocado fruit.
Unlike previous methods, which classify the ripeness of fruit into a few categories (e.g., unripe and
ripe) or indirectly estimate ripeness from its firmness, we developed a method using hyperspectral
imaging coupled with deep learning regression to directly estimate the duration until ripeness of
Hass avocado fruit. A set of 44,096 sub-images of 551 Hass avocado fruit images was used to train,
validate, and test a convolutional neural network (CNN) to predict the number of days until ripeness.
Training, validation, and test samples were generated as sub-images of Hass fruit images and were
used to train a spectral–spatial residual network to estimate the duration to ripeness. We achieved
predictions of duration to ripeness with an average error of 1.17 days per fruit on the test set. A series
of experiments demonstrated that our deep learning regression approach outperformed classification
approaches that rely on dimensionality reduction techniques such as principal component analysis.
Our results show the potential for combining hyperspectral imaging with deep learning to estimate
the ripeness stage of fruit, which could help to fine-tune avocado fruit sorting and processing.

Keywords: avocado; deep learning; Hass; hyperspectral imaging (HSI); post-harvest; ripening

1. Introduction

Inadequate supply of human food and nutrition has long been recognized as a major
problem in many parts of the world [1]. Food and nutrition are fundamental for physical
and cognitive development and a well-functioning immune system [2]. Increasing the
production of nutrient-rich foods is important, but it is also essential to improve the food
supply chain by reducing food loss and minimizing food waste. Currently, one-third of
food produced for human consumption is lost or wasted globally [3]. Post-harvest food
loss represents both a nutrition loss and an economic loss [4]. Two of the main reasons
for post-harvest food loss are over-ripening and rancidity, which often cannot be detected
visually [3]. Visual estimation of ripeness in some fruits is also inaccurate and inefficient [5].
Rapid and accurate quality and ripeness assessment methods need to be developed to
reduce the loss of food.

Hyperspectral imaging (HSI) is emerging rapidly as a novel tool for the non-invasive
classification of food quality, utilizing spatial and spectral information of the sample [6,7].
Hyperspectral data are represented by a three-dimensional cube with two spatial dimen-
sions and one spectral dimension [5]. Importantly, HSI captures reflectance values across
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the visible (VIS) and the near infrared (NIR) wavelengths of the electromagnetic spec-
trum [8]. The spectral data contained within a spatial pixel of a HSI cube provide a unique
spectral signature of the sample which, in turn, provides information about its quality
characteristics. For this reason, HSI is utilized frequently for food quality inspection. In
recent years, HSI-based analyses have become a popular non-destructive method to esti-
mate the quality of agricultural products including fruit, meat, and vegetables [9–16]. HSI
analysis has been used to determine the firmness of strawberries, peaches, and many other
fruit [12,13]. VIS/NIR–HSI (400–1110 nm) has been used to predict beef color parameters
and tenderness [14]. Contamination of citrus fruits with Penicillium fungi has been detected
using machine learning combined with HSI [15]. HSI has also been used to estimate the de-
gree of rancidity of nuts using deep neural networks [16]. However, HSI-based technology
is underutilized for quality assessment of tropical fruit.

Among the many tropical fruit, avocado fruit have numerous health benefits [17].
They have high nutritional density and provide major antioxidants, fruit proteins, and
fiber [18–21]. They can also help with human weight control and stroke prevention [17].
Avocado fruit reach full maturity on the tree but do not ripen on the tree [5]. Hence, mature
avocado fruit are harvested from the tree canopy and are then ripened, partly or completely,
prior to retail display. The time needed to obtain full ripeness varies, even among fruit
collected from the same tree [22]. This variability can potentially lead to major fruit losses
due to over-ripening. A post-harvest management method is required to determine the
duration until ripeness so that fruit can be sorted into homogenous groups that ripen
simultaneously. Homogenous groups would provide better control over the supply chain
and help to guarantee fruit quality for consumers, thus reducing waste [5].

Using imaging technologies to predict internal fruit quality may be challenging for
fruit with thick skin [23]. However, HSI has been applied successfully to predict dry
matter concentration of Hass avocado fruit from images of the skin [23–25]. Dry matter
concentration correlates strongly with the oil concentration and maturity of avocado fruit
and is thus used to determine the harvest time [23]. Fatty acid composition and mineral
nutrient concentrations can also be predicted from flesh and skin images of Hass fruit [26].
Therefore, there is potential to predict the internal quality of avocado flesh using skin
images, and these might also be used to predict the duration to fruit ripeness.

Avocado fruit are harvested when the fruit are mature but ripening occurs after
harvest when fruit are taken out of cool storage and placed on shelves after harvest. It is
important to predict the duration to ripeness from mature avocado fruit or from fruit at
subsequent ripening stages. The ripening stage of Hass avocado fruit has been predicted
non-invasively through smartphone images and hyperspectral images [27–30]. However,
these approaches either predict the ripeness indirectly by estimating the firmness of the
fruit [31,32], or by classifying the fruit into a very limited number of ripeness categories
of unripe, ripe, and over-ripe [5,29,33]. Avocado fruit ripening is highly variable and
ripening time may vary between 6 and 15 days when fruit are placed on shelves after
harvest. Therefore, classifying a fruit into an unripe category would not suggest how
many days that the fruit needs to ripen. In our recent study, we were able to predict
the ripening time of Hass and Shepard avocado fruit when images were captured only
once from mature fruit after harvest [30]. Predicting the ripening time of mature fruit
after harvest allows fruit classification on the farm before sending the fruit to retail stores.
However, it is also important to be able to predict the ripening time at retail stores when
the fruit are placed on display with an unknown duration from harvest. Therefore, we
aimed to determine whether the duration that a Hass avocado fruit takes to ripen could
be estimated directly through machine learning models that are applied to hyperspectral
images of the fruit and, if so, with what accuracy. We developed a deep learning regression
model that takes advantage of the abundance of information present within hyperspectral
images to predict the time required to ripen avocado fruit. The research makes two novel
contributions: (a) we performed regression over a deep neural network, which was different
from previous approaches that are largely based on classification; and (b) we performed
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experiments involving conventional classification techniques using PCA and compared
the results with the regression approach. Through these experiments, we demonstrate that
deep regression performs better than classification and should be considered the preferred
approach for estimating the ripeness of Hass avocado fruit. This is in contrast to the
common understanding of deep learning, as reported in the literature, where classification
is considered a simpler problem than regression and deep learning classification methods
are considered more successful than their regression counterparts. These findings will
potentially help to increase the efficiency of post-harvest processing, improve the quality of
avocado fruit at retail outlets, and reduce post-harvest losses in the agri-food industry.

2. Materials and Methods
2.1. Site Description

We collected Hass avocado fruit in dry weather from two irrigated orchards (25◦13′32′′ S
152◦17′53” E and 25◦08′17′′ S 152◦22′40′′ E) in Queensland, Australia, in April and June
2018. The soil in the orchards is red clay-loam. The sites receive average precipitation of
1004 mm annually. The average maximum daily temperatures varied between 22.3 ◦C and
31.4 ◦C, and the average minimum daily temperatures ranged between 11.0 ◦C and 22.4 ◦C,
in 2018 (Bureau of Meteorology 2023).

2.2. Sample Collection and Preparation

Ten mature Hass avocado fruit were harvested from each of eight trees, providing
eighty fruit in total. Each tree was divided into five sectors, with one fruit harvested from
the inside and one fruit harvested from the outside of the canopy in each sector. The
fruit were transferred to a refrigerated room at 4 ◦C after harvest. The recommended
storage temperature for Hass fruit is approximately 4–6 ◦C [32,33]. Fruit were kept in the
refrigerated room for 10 or 20 days, before being stored at approximately 21 ◦C to let them
ripen. We confirmed ripeness by assessing skin firmness with a hand-held sclerometer
(8 mm head; Lutron Electronic Model: FR-5120, Coopersburg, PA, USA). A fruit was
considered ripe when the maximum force required to impress the sclerometer tip 1 mm
deep was <15 N for the skin [32,33]. The fruit were ripe after 10.6 ± 1.0 days (mean ± SE)
at room temperature. The number of days until ripeness was recorded for each individual
avocado, allowing us to match each hyperspectral image with the duration until ripeness.

2.3. Imaging System

We acquired hyperspectral images using a laboratory-based 12-bit line scanner cam-
era (Pika XC2, Bozeman, MT, USA) with a 2.3 cm focal-length lens. The camera had a
spectral resolution of about 1.3 nm and produced 462 bands in the wavelength range,
388.9–1005.33 nm. There were four current-controlled wide-spectrum quartz–halogen
lights for illumination. We placed each sample on a black tray on the translation stage and
imaged each individual fruit every day until it was fully ripe and the skin color was dark
purple rather than green (Figure 1). In total, 551 images were obtained. Some fruit became
ripe after 6 days at 21 ◦C and so the number of images captured per day decreased from
this day onward (Figure 2). The exposure time was adjusted to 19.4 ms. Image capture and
data extraction were performed using Spectronon Pro software (Version 2.112; Resonon,
Bozeman, MT, USA).
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Figure 2. (a) Number of original hyperspectral images of Hass avocado fruit in each ripeness-stage 
category; (b) number of hyperspectral images of Hass avocado fruit in each category after combin-
ing the categories with 11–14 days to ripeness. 

We set the pixel value to the mean corrected relative reflectance, which was calcu-
lated using Equation (1): 

R = (R0 − D)/(W − D) (1)

where R0 is the raw spectral reflectance, D is the reflectance of a pure dark image captured 
by the same camera with its lens covered, and W is the reflectance of a pure white Teflon 
sheet that reflected approximately 99% of incident light [11]. This adjustment was per-
formed to correct for the spectral curve of the sample surface. The reflectance data were 
scaled up by 10,000 automatically by the software. We captured images from 80 different 
fruit daily, a total of 551 images, until each fruit was found, by using the sclerometer, to 
be completely ripe. 

2.4. Generation of Training, Validation, and Test Samples 
The acquired hyperspectral images were partitioned randomly into three sets: train-

ing, validation, and testing. The training set was used to train the deep learning model, 
the validation set was used to ensure the model did not overfit the training data, and the 
test set was used to evaluate model performance in estimating the number of days to ripe-
ness. An implicit assumption was that the entire fruit was ripe after the same number of 
days and so any spatial variation was ignored. 

The original size of the HSI images was very large (1600 × 1 × 462 pixels) and included 
part of the tray on which the samples were placed (Figure 1). Additionally, a 551-image 
sample size was considered small for training a deep neural network. Therefore, sub-im-
ages were extracted using Envi (Version 5.5.3) and Interactive Data Language (IDL) (Ver-
sion 8.7.3) to eliminate the background and extract more training data from each HSI im-
age. Envi is an industry-standard spectral image processing and analysis software pack-
age that is written in IDL. We defined small regions of interest (ROIs) around the center 

Figure 1. RGB (red, green, blue) images generated through hyperspectral imaging of a single Hass
avocado fruit with (a) 14 days left to ripen; (b) 10 days left to ripen; (c) 6 days left to ripen; (d) 2 days
left to ripen; (e) 0 days left to ripen (completely ripe).
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Figure 2. (a) Number of original hyperspectral images of Hass avocado fruit in each ripeness-stage
category; (b) number of hyperspectral images of Hass avocado fruit in each category after combining
the categories with 11–14 days to ripeness.

We set the pixel value to the mean corrected relative reflectance, which was calculated
using Equation (1):

R = (R0 − D)/(W − D) (1)

where R0 is the raw spectral reflectance, D is the reflectance of a pure dark image captured by
the same camera with its lens covered, and W is the reflectance of a pure white Teflon sheet
that reflected approximately 99% of incident light [11]. This adjustment was performed
to correct for the spectral curve of the sample surface. The reflectance data were scaled
up by 10,000 automatically by the software. We captured images from 80 different fruit
daily, a total of 551 images, until each fruit was found, by using the sclerometer, to be
completely ripe.

2.4. Generation of Training, Validation, and Test Samples

The acquired hyperspectral images were partitioned randomly into three sets: training,
validation, and testing. The training set was used to train the deep learning model, the
validation set was used to ensure the model did not overfit the training data, and the test
set was used to evaluate model performance in estimating the number of days to ripeness.
An implicit assumption was that the entire fruit was ripe after the same number of days
and so any spatial variation was ignored.

The original size of the HSI images was very large (1600× 1× 462 pixels) and included
part of the tray on which the samples were placed (Figure 1). Additionally, a 551-image
sample size was considered small for training a deep neural network. Therefore, sub-
images were extracted using Envi (Version 5.5.3) and Interactive Data Language (IDL)
(Version 8.7.3) to eliminate the background and extract more training data from each HSI
image. Envi is an industry-standard spectral image processing and analysis software
package that is written in IDL. We defined small regions of interest (ROIs) around the center
of the fruit image, ignoring the background, using Envi. These ROIs were then extracted as
sub-images by executing a script in IDL.

The IDL script was programmed to generate 60 sub-images from each individual image
and these were allocated randomly into 40 training samples, 8 validation samples, and
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12 test samples (Table 1). Each of the extracted sub-images was unique and had no overlap
with neighboring sub-images. We set the size of each sub-image to 50 pixels × 50 pixels.
This led to a total of 29,392 training images, 5872 validation images, and 8832 test images,
each of 50 × 50 × 462 pixels (Table 1). The label of each sub-image (i.e., number of days to
ripen) was inherited from its original full HSI image.

Table 1. Number of sub-images of Hass avocado fruit in the training, validation, and test datasets.

Training Validation Test

Number of sub-images generated for each sample 40 8 12
Total number of sub-images 29,392 5872 8832

The number of samples in each category from 0 days to ripen to 14 days to ripen was
unbalanced (Figure 2a). Therefore, all the sub-images in the categories, 11, 12, 13, and
14 days to ripen, were combined into a single category (Figure 2b) for the classification
experiments to balance the dataset. In all classification experiments, the input labels were
one-hot encoded, allowing the representation of categorical labels to be more representative
of the actual categories.

2.5. Deep Learning Approach

Two major attributes of hyperspectral imaging need to be considered to obtain discrim-
inative features: (1) ample spectral information [34] which, in our study, was extracted from
462 contiguous spectral bands; and (2) spatial features that originate from homogenous
areas within the hyperspectral image [35]. To take advantage of abundant spectral bands,
traditional pixelwise HSI classification models mainly concentrate on feature engineering
and classifier training [36]. The main objectives of feature engineering are to reduce the
high dimensionality of HSI pixels and extract the most discriminative features or bands.
The classifiers are then trained using these extracted features [36,37]. Although these tradi-
tional classification frameworks are used frequently, they have some limitations. Firstly, the
feature engineering step might not generalize well to all categories. Secondly, the default
one-layer, non-linear transformation applied before classification has limited representation
capacity to fully utilize the abundant spectral and spatial features [36].

2.6. Network Architecture

We experimented with two different types of networks: a regression-based network
and a classification-based network. We adopted a spectral–spatial residual network (SSRN),
developed originally for satellite images, to perform the backbone feature extraction for
each network [36]. The network itself included consecutive learning blocks that took the
major characteristics of hyperspectral images into consideration. The designed spectral and
spatial residual blocks extract discriminative spectral–spatial features from HSI cubes and
can be regarded as an extension of convolutional layers in convolutional neural networks
(CNNs). The shortcut layers between every other convolutional layer allow the SSRN to
learn from the original HSI image.

A major challenge of CNN models used in our previous research is the large number
of learnable parameters in the convolutional layers, which requires a large set of training
samples to adequately train the network [30]. In practice, training data are scarce, due to the
cost and labor-intensiveness of manually labeling hyperspectral images of avocado fruit. In
the current work, we used the SSRN because the SSRN has the ability to allow the network
to learn from both the spectral features, which represent the reflectance properties of the
fruit across the wavelength band, and the spatial features, which represent the variation
in spectral reflectance across the fruit surface. In addition, the SSRN implements resid-
ual/shortcut links to alleviate the decreasing-accuracy caused by an increasing number
of convolutional layers [38], and applies batch normalization (BN) to prevent overfitting
unbalanced training data. Thus, SSRNs have frequently achieved state-of-the-art classifica-
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tion accuracy on HSI datasets using limited training data, making it an attractive network
for adoption.

The adopted SSRN in our study had a spectral feature learning module that included
two convolutional layers and two spectral residual blocks (Figure 3). This module was
followed by the spatial feature learning module that included a 3-D convolutional layer and
had two spatial residual blocks. Following the two feature learning modules, an average
pooling layer transformed the feature volume to a feature vector and then a fully connected
(FC) layer adapted to the residual network of the dataset according to the number of
categories or output units. A dropout layer was also included after the average pooling
layer for appropriate regularization (Figure 3).
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2.7. Regression

We developed a regression model using the underlying SSRN architecture. Input
labels were fed into the network in the form of integer values of the number of days to
ripeness. Additionally, the number of output units in the fully connected layer was a single
unit with a linear activation function, resulting in a single continuous value.

The regression model was trained by minimizing the loss function, defined as the
mean squared error (MSE) loss, as shown in Equation (2):

MSE =
1
n

n

∑
i=1

(
Yi − Ŷi

)2 (2)

where n is the number of data points, Yi are the observed/actual ground truth values, and
Ŷi are the predicted values.

We were able to use a regression model because the labels used from 0–11 “days to
ripeness” were not distinct categories, but had an ordinal relationship between them, which
is not taken into consideration by a cross-entropy-based softmax classifier.

2.8. Classification

The softmax classifier has a distinctive advantage when managing N-dimensional
vectors and has been widely used in deep learning with the rapid development of computer
vision [39]. In the model that we adopted here, the feature vectors of all samples were
extracted by training a softmax model for the classification-based experiments.
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The softmax score function gives a specific probability of mapping based on the final
score. The sum of the probabilities of all categories is 1. The function form is shown in
Equation (3) [40]:

fj(z) =
ezj

∑k ezk
(3)

where the zj values are the elements of the input vector and the denominator is the
normalization term to ensure that all the output values of the function will result to
1, constituting a valid probability distribution.

The softmax loss function mainly uses the form of cross-entropy loss, which can be
seen as the entropy of two probabilities, as shown in Equation (4) [40]:

H(p, q) = −∑x p(x) log(x) (4)

where p represents the probability of true classification and q represents the probability of
the predicted classification. The loss function measures the size of the error between the
true classification result and the predicted classification result.

2.9. Implementation Details

The raw input contained rich and redundant spectral information. The input layer
also had high dimensionality that needed to be reduced. Hence, we set the convolutional
layers in the spectral feature learning module to contain 32 kernels with a size of 1 × 1 × 7
to allow the extraction of low-level and deep spectral features of the image for consecutive
layers. The last convolutional layer in this module, however, had 128 kernels, with a size
of 1 × 1 × 128 to keep discriminative spectral features before it was sent as input to the
spatial learning module.

The first convolutional layer used in the spatial learning module contained 32 kernels
each with size 1× 1× 128, which extracted low-level spatial features and reduced the input
size of the feature cubes. We set a kernel size of 1 × 1 × 32 for the following convolutional
layers within the residual blocks, keeping the size of the feature cubes unaffected.

We used the ReLU activation function, defined below in Equation (5), in the SSRN due
to its benefits, as highlighted previously [41]:

σ
(

wTx
)
= max{0,wTx} (5)

where x is the input and w is the weight parameter learned using back-propagation [42].
The hyperparameters of the optimal SSRN used for learning are shown below (Table 2).

The weights were initialized by drawing samples from a truncated normal distribution
(HeNormal) centered on 0 with a standard deviation as in Equation (6) [43]:

stddev = sqrt
(

2
/

fanin

)
(6)

where fanin is the number of input units in the weight tensor.

Table 2. Hyperparameters for the optimal SSRN.

Parameter Value/Type

Weight initializer “HeNormal”
Optimizer SGD

Learning rate 0.01
Batch size 32

Number of kernels 32
Spatial input size 1 × 1

We developed our input pipeline and performed all experiments and evaluations
using the Keras deep learning library in Python. Keras allowed us to focus on the main
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concepts of deep learning while managing the fine details of tensors, their shapes, and their
mathematical elements [44].

Due to the high number of pixels in each training image (50 × 50 × 462), batchwise
model training was conducted using the University of Melbourne’s SPARTAN High Perfor-
mance Computing (HPC) facility [45]. This allowed for distributed synchronous training on
four separate P100 Nvidia Graphics Processing Units (GPUs) simultaneously on the HPC.

2.10. Evaluation Metrics

The evaluation metric used for the regression model was the root mean squared error
(RMSE), which is the square root of the MSE, as given in Equation (2), calculated over all
test samples. MSE is a measure of the degree to which the regression line fits the data. The
error is the mean deviation of the prediction from the true value [46]. A mean RMSE of 2,
for example, indicates a deviation of 2 days to ripeness on average for the batch of samples
under study.

The evaluation metric used for the classification experiments was categorical accuracy,
given by Equation (7). It is defined as the mean classification accuracy across all predictions.

Accuracy =
c0 + c1 + . . . + c11

n
(7)

where c0, c1, . . . , c11 are the number of correctly classified samples of avocado fruit in
categories 0, 1, . . . , 11 “days to ripen”, and n is the total number of samples tested.

2.11. Ablation Study

We compared the backbone SSRN with that of a DenseNet neural network. DenseNet
is used extensively for image classification problems due to numerous advantages. For
example, DenseNet maximizes the flow of information between layers since all layers are
connected directly with each other in the network [47]. It also encourages feature reuse
and alleviates the vanishing gradient problem. We further compared the performance of
the classifier and the regressor on each of the above network architectures and assessed
the effect of applying dimensionality reduction through PCA (10 bands). Each of these
experiments was performed without any change in other framework settings.

3. Results
3.1. Regression

Training loss was minimized and converged within 200 epochs in the regression
model (Figure 4). The root mean squared error (RMSE) on all samples of the test dataset
(estimation) was 1.32, indicating an overall mean deviation of 1.32 days to ripeness from
the actual value. We also computed the RMSE value for each whole fruit image from the
corresponding sub-images and calculated the mean RMSE per fruit sample to be 1.17 days
(~28 h). The avocado fruit with maximum misprediction had an RMSE value of 3.63 days
to ripeness and the fruit with the closest prediction had an RMSE value of 0.17 days to
ripeness (~4 h) (Table 3). These findings demonstrated that the regression-based model
could estimate the number of days to ripeness with an uncertainty of, on average, 1.17 days
per fruit.

Table 3. RMSE values after 200 epochs for the regression model for predicting ripeness of Hass
avocado fruit.

Evaluation Set RMSE (Days)

RMSE over all sub-images 1.32
Average RMSE per fruit sample 1.17

Minimum RMSE per fruit sample 0.17
Maximum RMSE per fruit sample 3.63
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3.2. Classification

The classification network was trained for 1400 epochs (Figure 5). The overall mean
prediction accuracy in the classification model on the test dataset across the 12 categories
from 0–11 days to ripeness was 51.43% (Table 4). The minimum accuracy per individual
fruit was 0%, indicating that there were few fruit where all sub-images of the test dataset
were completely misclassified (Table 4). However, the maximum prediction accuracy per
fruit was 100%, indicating that there were also fruit where all test sub-images had been
correctly classified (Table 4). The confusion matrix for the samples in the test dataset
indicated that the first few categories from 0–5 days to ripeness were predicted more
accurately than the categories from 6–11 days to ripeness (Table 5). However, the prediction
accuracy was still much higher than that of a random estimator (51.43% vs. ~8.34%). To
better understand the performance of the classification model, we visualized the output
feature maps of the model, i.e., the output from the model that went into the classifier
(Figure 6). We used a dimensionality reduction technique called t-distributed stochastic
neighboring entities (t-SNE) to visualize this in two dimensions [48].
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Table 4. Accuracy values after 1400 epochs for the classification model for predicting the duration to
ripeness of Hass avocado fruit.

Evaluation Set Accuracy

Accuracy over all test sub-images 51.43%
Average accuracy per fruit sample 51.43%

Minimum accuracy per fruit sample 0.00%
Maximum accuracy per fruit sample 100.00%

Table 5. Confusion matrix of duration to ripeness for samples of the test dataset predicted using
the classification model. The numbers in green indicate the number of correct predictions for that
category while the other values are false results.

Duration to
Ripeness (d) 0 1 2 3 4 5 6 7 8 9 10 11

0 729 67 0 0 9 0 0 0 0 0 0 0
1 143 594 0 1 112 2 0 0 0 0 0 0
2 0 0 54 217 0 1 0 4 24 8 38 38
3 0 0 10 750 0 0 0 0 27 6 40 19
4 3 95 0 0 600 143 20 3 0 0 0 0
5 0 8 0 2 149 527 190 22 1 0 0 1
6 0 1 0 2 4 216 415 191 53 4 1 0
7 0 1 0 5 1 43 200 475 140 10 8 5
8 0 0 10 20 1 10 85 286 291 33 11 9
9 0 0 7 26 0 2 24 151 247 55 56 44

10 0 0 27 93 1 0 9 54 202 31 74 61
11 0 0 29 122 0 0 1 10 131 35 54 98
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3.3. Ablation Study

The SSRN outperformed the DenseNet overall by providing higher accuracy for the
classification model and lower RMSE for the regression model (Tables 6 and 7). These
features can be attributed to the SSRN being designed specifically to extract both spectral
and spatial features from hyperspectral images independently and, hence, learning more
discriminative features at a deeper level. We also observed that the DenseNet performed
very poorly when 100% of the spectral data was fed into the model, as compared with the
dimensionally reduced data (PCA) (Table 6). This model was unable to extract features,
possibly because of the extremely high dimensionality of the data input to the DenseNet
architecture. Hence, the model was unable to learn, leading to poor performance.

Table 6. Effect of PCA (amount of original spectral data used) on RMSE of SSRN and DenseNet
regression models, over 200 epochs, for predicting the duration to ripeness of Hass avocado fruit.

PCA (88.73% Spectral Data) 100% Spectral Data

SSRN RSME (days) 2.64 1.32
DenseNet RMSE (days) 2.52 33.89

Table 7. Effect of PCA (amount of original spectral data used) on prediction accuracy of SSRN and
DenseNet classification models, over 200 epochs, for predicting the duration to ripeness of Hass
avocado fruit.

PCA (88.73% Spectral Data) 100% Spectral Data

SSRN accuracy 18.79% 37.83%
DenseNet accuracy 20.42% 31.24%

We further analyzed four main factors that control the performance of the trained
SSRN for the regression model, as recommended previously [36]. These factors included the
learning rate, the number of filters/kernels in the convolutional layers, the regularization
technique, and the spatial size of the input cubes. We set the batch size to 32 and adopted
the SGD optimizer that updated the model parameters iteratively by moving them in the
direction of the gradient calculated on a batch of training data [49]. In the training process,
only models with the best performance (lowest loss) in validation groups were saved, and
the results were all generated by these optimal models.

Firstly, learning rates dictate the amount by which the weights are updated for each
training iteration, i.e., the learning step. An improper learning rate could lead to divergence
or very slow convergence. Therefore, we used a trial-and-error method over multiple rec-
ommended learning rates to find the optimum value. Based on the outcomes of regression,
the optimum learning rate was 0.01 (Table 8).

Table 8. Effect of learning rate on SSRN performance over 200 epochs for predicting the duration to
ripeness of Hass avocado fruit.

Learning Rate RMSE (Days)

0.05 1.65
0.01 1.32
0.005 1.47
0.001 1.84

0.0005 1.63
0.0001 1.40

Secondly, the number of kernels determines the representation capacity and computa-
tional consumption of the SSRN. The network had the same number of kernels in every
convolutional layer of the residual blocks (Figure 3). We examined the performance with
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different numbers of kernels (Table 9). The model with 32 kernels in each convolutional
layer attained the lowest RMSE, i.e., best performance. These results were obtained in
200-epoch training processes for each setting.

Table 9. Effect of number of kernels on SSRN performance over 200 epochs for predicting the duration
to ripeness of Hass avocado fruit.

Number of Kernels RMSE (Days)

8 2.59
16 2.40
24 2.20
32 1.32
40 2.42
48 2.30

Thirdly, deep learning models tend to overfit training data. Batch normalization and
a dropout layer were used as regularization strategies when the model was in training
mode. We set the dropout rate to 50%, as recommended previously [36], and evaluated
the performance of the models with and without each of the above two regularization
techniques for 200 epochs under the same conditions. The SSRN performed best when
using both regularization strategies (Table 10). The reason for Nan (not a number) values
was that we were performing regression over a neural network, because of which the
output values were unbounded. This made the model prone to the exploding gradient
problem, which occurs when large error gradients accumulate, resulting in large updates
to the network during training, making the model unstable and unable to learn [50]. Batch
normalization not only regularized the model but also eliminated the exploding gradient
problem by applying a penalty to the large weights.

Table 10. Effect of regularization strategies on SSRN performance over 200 epochs for predicting the
duration to ripeness of Hass avocado fruit.

Regularization Strategy RMSE (Days)

None Nan
Dropout Nan

Batch normalization 1.88
Both 1.32

Fourthly, to assess the impact of spatialized input, we analyzed the performance of the
regression model with various spatial sizes of input cubes. The model performed optimally
when the spatial input was 1 × 1 (Table 11). This performance could be attributed to the
fact that the 1 × 1 sized input cubes were able to learn more discriminative features as
compared to larger ones, given that there was a limitation in the original number of HSI
avocado samples.

Table 11. Effect of spatial kernel size on SSRN performance over 200 epochs for predicting the
duration to ripeness of Hass avocado fruit.

Kernel Size RMSE (Days)

1 × 1 1.32
3 × 3 1.35
5 × 5 1.70
7 × 7 1.36
9 × 9 1.41

11 × 11 1.84
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4. Discussion

The regression model with the SSRN backbone performed best amongst all experi-
ments. This model estimated the duration to ripeness of Hass avocado fruit with an average
error of only 1.17 days.

The accuracy of the classification model was low with an average accuracy of 51.4%.
Previous works have reported high classification accuracies for three broad categories of
unripe, ripe, and over-ripe [5,33], whereas we categorized our data within 12 categories,
which may have contributed to decreased prediction accuracy of our model. We found
that there was a natural ordinal relationship between the original days-to-ripen categories.
Due to this relationship, we were able to convert a conventional classification problem
into a regression problem using the same underlying network architecture (i.e., SSRN).
In the classification task, the ordinal relationship was not taken into consideration in the
categorical cross entropy (CCE) loss function. The CCE loss was calculated based on
whether the actual and predicted categories aligned. Therefore, the CCE loss calculated was
the same if a fruit actually needed 3 days to ripen and the predicted value was 5 days or
the predicted value was 10 days. A unified palatalization for all categories was unfavorable
since the model should ideally be penalized more highly if the prediction was further away
from the true label. In contrast, the MSE loss in the regression model was higher for those
prediction values that were further away from the true value. This contributed to the higher
quality of results from the regression model.

We analyzed the visualized output feature maps of the model to better understand the
comparatively inadequate performance of the classification model (Figure 6). We observed
that, while there were clear clusters formed for each category, there was strong overlap
with neighboring clusters that accounted for frequent misclassification. This overlap was
also seen in the confusion matrix where there were multiple predictions made within 1 or
2 days to ripeness from the true duration, which drastically reduced the overall accuracy of
the model (Table 5). For this reason, we resorted to the regression-based model over the
classification model.

The essence of using deep learning models is to learn the representation of input
data automatically without any need for feature engineering because the models can
themselves extract the discriminative features given appropriate network architectural
designs and training process settings [36]. To allow for automatic feature extraction without
any loss of data, we experimented without using dimensionality reduction techniques.
This experiment, that fed 100% of spectral data into the model, led to better performance,
although it required a longer training time. This highlights that the models performed best
when they automatically learned features, given the complete spectral data, without any
form of dimensionality reduction (PCA).

Both the loss and evaluation metric in the regression model were based on mean
squared error (Equation (2)), but there was a slight difference between the values of the
loss (MSE) and square of the RMSE metric. This difference could be explained by the
regularization used in the model. In training mode, regularization was used in the different
layers of the network (batch normalization) to avoid the model overfitting. Hence, the
penalty applied to the weights led to a higher MSE loss value. On the other hand, the model
performs evaluation in testing mode. Therefore, the weights were frozen, and predictions
were made directly without any penalties added. These prediction values in testing mode
were closer to true values, which explained the higher value of MSE loss (training/test
dataset) when compared with the corresponding MSE evaluation metric.

Our study provided an RMSE of 1.17 days for ripening predictions, with the model
with 32 kernels in each convolutional layer providing the lowest RMSE. An RGB camera
has successfully been used to predict fruit firmness as an indicator of fruit ripeness without
predicting the exact ripening time [27]. In a previous study, RGB spectral information
provided lower prediction accuracy for nut rancidity than that obtained from hyperspectral
imaging [16]. The low RMSE in our study and those reported previously [30] might
be due to the ability of hyperspectral imaging cameras to capture a large number of
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spectral bands from avocado fruit skin. Additionally, both the learning rate and kernel
size are important for decreasing computing time and increasing prediction accuracy
when developing models [51]. For example, increased kernel size decreases the prediction
accuracy for dry matter concentration in avocado fruit due to the inclusion of unnecessary
spatial information from sub-images such as unnecessary information in the image corners
and edges [52]. Therefore, in this work, the learning rate and kernel size were optimized to
achieve the best prediction accuracy.

Hyperspectral imaging successfully predicted the ripening time for avocado fruit.
Ripening of avocado fruit has been extended by increasing their flesh calcium concentra-
tion [53]. We have previously predicted the concentration of calcium in the flesh from skin
images of Hass fruit [26]. Thus, successful prediction of ripening time from skin images
in the current study could be explained partly by the ability of hyperspectral cameras to
predict internal chemical concentrations and provide information on the flesh quality of
avocado fruit.

5. Conclusions

We developed a technique that predicted the duration to ripeness of Hass avocado
fruit. We performed regression using a three-dimensional, supervised, deep learning
framework. This allowed for spectral–spatial representation learning of hyperspectral
images of fruit. The regression model achieved an average root mean squared error (RMSE)
value of 1.17 days on the test set, indicating that the number of days to ripeness of Hass
avocado fruit was estimated with an average error of only 1.17 days without any form
of dimensionality reduction. Predicting the duration to ripeness with an accuracy of
1.17 days would be acceptable given that the fruit ripened over 7–15 days when held at
room temperature. Our results also indicate that direct estimation of duration to ripeness
via regression is a better approach than classification for estimating the ripeness of Hass
avocado fruit. Fruit are usually presented on retail shelves with an unknown duration from
harvest, and consumers often touch and squeeze avocado fruit to estimate the ripening
stage. Information on time-to-ripeness would allow consumers to select a fruit with the
desired shelf life. Our research showed great potential for combining hyperspectral imaging
and deep learning to estimate the ripeness of avocado fruit, thus helping with post-harvest
avocado processing, retail display, and waste reduction.
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