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Abstract: Ascorbic acid (AsA) is the most abundant antioxidant in plants and is an important
nutritional index for agricultural products. Some plants, such as Rosa roxburghii Tratt., contain
exceptionally high levels of AsA, but are relatively unpalatable. In view of its role in human health,
as well as plant growth and development, we examined the effects of two important AsA regulatory
genes from R. roxburghii in tomato, with the aim of producing a crop of higher nutritional quality.
RrGGP2 and RrDHAR were cloned from R. roxburghii fruit. The overexpression vectors were made
using 35S promoters and mediated by Agrobacterium tumefaciens to obtain the overexpression lines. A
PCR and qRT-PCR verified that the two genes had been inserted and overexpressed in the tomato
leaves and fruits. The results showed that the overexpression of RrGGP2 increased tomato leaf and
fruit AsA content by 108.5% and 294.3%, respectively, while the overexpression of RrDHAR increased
tomato leaf and fruit AsA content by 183.9% and 179.9%. The overexpression of RrGGP2 and RrDHAR
further changed the expression of genes related to AsA metabolism, and the upregulation of one such
gene, SlGGP, may have contributed greatly to the increase in AsA. Results here indicate that RrGGP2
contributes more towards fruit AsA accumulation in tomato than RrDHAR.

Keywords: Rosa roxburghii Tratt; tomato; ascorbic acid; RrGGP2; RrDHAR

1. Introduction

Ascorbic acid (AsA, Vitamin C) is an essential antioxidant in plants that scavenges
reactive oxygen species (ROS) generated during exposure to biotic or abiotic stresses and
those produced during normal growth and development [1–3]. Studies have also found
that AsA regulates genes which control plant development [4,5], as well as flowering
time regulation, premature senescence, and programmed cell death [6]. Unlike plants,
humans cannot synthesize AsA independently due to the absence of a crucial enzyme
called L-gulonolactone oxidase, and insufficient dietary AsA intake can cause a deficiency
and related diseases in humans [7]. The predominant source of AsA is plant products
such as fresh fruits or vegetables [8]; therefore, genetic engineering techniques have been
extensively studied to enhance the AsA content of horticultural plant products [9].

Several pathways for AsA biosynthesis have been identified, including the D-mannose/L-
galactose pathway [10], the D-galacturonate pathway [11], the myoinositol pathway [12],
and the L-gulose pathway [13]. Among them, the L-galactose pathway has been identified
as the principal pathway for AsA biosynthesis in many higher plants, such as apple [14],
kiwifruit [15], R. roxburghii [16], blueberry [17], and tomato [18], and is the only pathway
present in Arabidopsis [19]. In this pathway, D-glucose-6-phosphate is used as a substrate,
which sequentially passes through glucose-6-phosphate isomerase (GPI), phosphomannose
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isomerase (PMI) [20], phosphomannose mutase (PMM) [21], GDP-mannose pyrophospho-
rylase (GMP) [22], GDP-mannose-3′,5′-phenotypic isomerase (GME) [13], GDP-L-galactose
phosphorylase (GGP) [19,23], L-galactose-1-phosphatase (GPP) [24,25], L-galactose dehy-
drogenase (GDH) [26], and L-galactose-1,4-lactone dehydrogenase (GLDH) [27]. As a vital
antioxidant and electron donor, AsA is metabolized to monodehydroascorbic acid (MDHA)
and dehydroascorbic acid (DHA) by the reactions of ascorbate oxidase (AO) and ascorbate
peroxidase (APX) [28], and hydrogen peroxide (H2O2) is consumed to form malonyl H2O
and O2. MDHA and DHA are catalyzed by monodehydroascorbate reductase (MDHAR)
and dehydroascorbate reductase (DHAR) [29,30], respectively.

All genes in this pathway have been cloned, with several identified as key genes
for AsA accumulation in various plants. Interestingly, studies on the same plant have
shown inconsistent findings regarding the key genes for AsA accumulation. For instance,
in kiwifruit, GGP was originally believed to be the key gene [15,31], but later, GPP was
found to play this role [32]. In apple, initial evidence suggested that GDH, GPP, and
GME expression were closely linked to AsA accumulation [14], but later studies showed
that GGP was the key gene [33]. In tomato, GME was initially believed to be the key
rate-limiting gene for AsA regulation [34,35], but recent research indicates that GGP is the
actual key gene [33,36]. These variations in conclusions could be due to varietal differences
or caused by experimental methods [33], and this controversy also exists in R. roxburghii.
One research study has suggested that RrDHAR plays a pivotal role in achieving the
high levels of AsA accumulation seen in R. roxburghii fruit [37], while another study
has indicated that RrGGP2 plays a more significant regulatory role in R. roxburghii AsA
biosynthesis [38,39]. In this study, we aim to explore the roles of RrGGP2 and RrDHAR in
AsA biosynthesis and determine which makes the greatest contribution to the accumulation
of AsA in R. roxburghii.

R. roxburghii belongs to the Rosaceae family, which is cultivated as a functional fruit
rich in a variety of nutrients and health-promoting compounds [40–42]. It is primarily
found in Southwest China and referred to as the ‘King of Vitamin C’ because of its high
vitamin C content [43,44]. Therefore, understanding the mechanism behind this exceptional
AsA accumulation and identifying the key genes responsible for its regulation would be
significant. However, due to the absence of effective genetic transformation and regener-
ation systems, RrGGP2 and RrDHAR’s functional validation is best conducted in model
organisms, such as Arabidopsis and tobacco [37,39]. Such an approach, however, has its
limitations, as they are not food crop plants and hence do not produce fruits for human
consumption. As a consequence, this study aims to shed light on the functions of RrGGP2
and RrDHAR by performing genetic transformation experiments in tomato, a food crop
plant that bears fruit, to provide more impactful and informative evidence regarding the
mechanism of high AsA accumulation in R. roxburghii.

2. Materials and Methods
2.1. Plant Materials and Growth Conditions

The donor material used was a three-year-old asexual line of R. roxburghii ‘Guinong 5’,
while tomato plants (‘Ailsa Craig’) were selected as the receiver plants. Wild and subsequently
obtained transgenic plants were grown in a greenhouse under specific conditions, includ-
ing a temperature range of 25–28 ◦C, a humidity level of 60–80%, a light intensity between
30,000–50,000 lux, and a light/dark alternation time of approximately 13/11 h. The tomato
plants were irrigated with Hoagland’s nutrient solution every five days and watered every
2–3 days, according to standard production practices. The tomatoes were managed until matu-
rity, which typically occurred after around 50 days of self-pollination. The 4th–6th leaves and
mature fruits were then harvested and snap-frozen using liquid nitrogen, before being stored in
an ultra-low temperature refrigerator at−80 ◦C for subsequent experiments.
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2.2. Total DNA and RNA Extraction, cDNA Synthesis

The Genome DNA Extraction Kit (BioTeke, Wuxi, China) was used to extract total
genomic DNA from the leaves of both ‘Guinong 5’ and ‘Ailsa Craig’. Moreover, total RNA
was extracted from the fruits of ‘Guinong 5’ and the leaves and fruits of ‘Ailsa Craig’ using
the RNAprep Pure Plant Plus Kit (TIANGEN, Beijing, China). To synthesize the first strand
of cDNA, the PrimeScript™ RT reagent Kit (Takara, Dalian, China) was used.

2.3. Cloning of Target Gene and Constructing of Overexpression Vector

The transformation vector was constructed using pcambia1301-ky (Figure 1), and the
target gene was integrated into the vector by homologous recombination. To achieve this,
homologous cloning primers were designed based on the sequences of the target gene [45]
and vector. The forward and reverse cloned primers both included the KpnI restriction
enzyme site at the 5′ end of each. Subsequently, the full-length RrGGP2 and RrDHAR were
amplified via PCR from ‘Guinong 5′ cDNA using homologous recombination clone primers
(Table 1), while the vector was digested using the KpnI enzyme. Finally, RrGGP2 and
RrDHAR were introduced into the KpnI polyclonal site located between the 35S promoter
and the nos terminator of the vector through the action of recombinase (ClonExpress II
One Step Cloning Kit, Vazyme). The resultant recombinant vector containing the RrGGP2
or RrDHAR gene sequence was then transferred into the Agrobacterium tumefaceiens strain
LBA4404 and saved for transformation into tomato plants.
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Figure 1. A map of the pcambia1301-ky overexpression vector, which is regulated by the 35S
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kanamycin (KanR) and hygromycin (HPTII) resistance genes for screening transformed plants. The
restriction enzyme site is at the red rectangle.
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Table 1. Primer names and sequences used in this experiment.

Experiment Purpose Gene Abbreviation Gene ID Primer Sequences (5′-3′)

Homologous recombination clone

RrGGP2 evm.model.Contig360.207

F:GCGGGTCGACGGTACCATGCTGAAGATC-
AAGAGGGTGCGGGTCGACGTACCATGGGT
R:TAGACATATGGGTACCTTACTGCAGAA-
CGAGGCATTCTAGATATATGGGGTATTC

RrDHAR evm.model.Contig319.146

F:GCGGGTCGACGGTACCATGGCTCTTGAGGTT-
GCTGCGCGGTCGACGTACCATGGCTGC

R:TAGACATATGGGTACCCTATTTGGGGTTGACTTT CGG-
TAGACATATGGGTACCCTATTTGGGGTTGACTTTCGG

PCR identification

RrGGP2 evm.model.Contig360.207 F:ATGCTGAAGATCAAGAGGGTTCCCAC
R:TTACTGCAGAACGAGGCATTCCTGT

RrDHAR evm.model.Contig319.146 F:ATGGCTCTTGAGGTTGCTGC
R:CTATTTGGGGTTGACTTTCGGCT

qRT-PCR

RrGGP2 evm.model.Contig360.207 F:AAGCTCCTGGCTGAGGTCTCT
R:CCATCATCGCCACCACAAGCAAT

RrDHAR evm.model.Contig319.146 F:ACAAGCCCCAATGGTTTACAGA
R:CCTCAGAATCCCAGCAAGCAC

SlGPI Solyc04g076090 F:TGCTCTTCAAAAGCGTGTCC
R:CGGCAATAAGTGCTCTGTCA

SlPMI Solyc02g086090 F:TACATTGTGGTGGAACGAGGA
R:ACCCCATTTGGCAAGAACAG

SlPMM Solyc05g048760 F:TTTACCCTCCATTACATTGCTGA
R:CTTCTTGACTACAGTTTCTCCCA

SlGMP Solyc03g096730 F:AAACCTGAAATCGTGATGTGAGA
R:TGAAGAAGAGGAGAACTGGAAAC

SlGME Solyc01g097340 F:AATCCGACTTCCGTGAGCC
R:CTGAGTTGCGACCACGGAC

SlGGP Solyc06g073320 F:GAAATCTGGTCTGTTCCTCTGTGA
R:TTCACACACCAACTCCACATTACA

SlGPP Solyc04g014800 F:AGCCGCTACAAACCCTCATCT
R:TGTCCGCTTTCCATCTCCTAT

SlGDH Solyc01g106450 F:CTTCTTACTGAGGCTGGTGGTC
R:AACCTCTTTAACAGACTTCATCCC

SlGLDH Solyc10g079470 F:ATTGAGGTTCCCAAGGACATAG
R:ATGTTATTAGATAGGATGCGGTTT

SlAO Solyc04g054690 F:AGGATGGCTCAGAGTGTT
R:ATCAGGTAAGGCGTATGG

SlAPX Solyc06g005150 F:TGGAGCCCATTAGGGAGCA
R:GCCAGGGTGAAAGGGAACAT

SlDHAR Solyc05g054760 F:CCTACCTTCGTCTCATTTCCG
R:TGAACAAACATTCTGCCCATT

SlMDHAR Solyc09g009390 F:GGTGATGTTGCCACTTTTCCTTT
R:CGACAGACTTCCCTTGCTCACT

Actin Solyc11g005330 F:GTCCTCTTCCAGCCATCCA
R:ACCACTGAGCACAATGTTACCG

Note: RrGGP2 and RrDHAR are the numbers in the R. roxburghii genome data file; Actin was used as the internal
control; F = forward, R = reverse.

2.4. Plant Transformation

The transgenic tomato was created through genetic transformation mediated by
Agrobacterium tumefaciens. Initially, tomato cotyledons were cultured under light for 7 days,
following which they were infected with Agrobacterium tumefaciens for 10 min and cocul-
tured for 2 days. A screening culture was then carried out to encourage the growth of
adventitious buds using the MS medium supplemented with 2.0 mg/L zeatin (ZT), 1 mg/L
indole-3-acetic acid (IAA), 300 mg/L timentin, and 10 mg/L hygromycin. Finally, the
adventitious buds were transferred to a 1/2 MS medium containing 150 mg/L timentin
and 10 mg/L hygromycin to induce root growth and recover the whole plant.

2.5. Transgenic Plants Identification and qRT-PCR Analysis

To identify transgenic tomato plants resulting from plant transformation, we used a
PCR with genomic DNA from leaves and a qRT-PCR with cDNA from both leaves and
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fruits. Additionally, a qRT-PCR was utilized to analyze the gene expression related to AsA
biosynthesis and metabolism in the leaves and fruits of both wild-type and transgenic
plants. The genes analyzed included GPI, PMI, PMM, GMP, GME, GGP, GPP, GDH, and
GLDH in the L-galactose pathway, AO and APX in the catabolism pathway, as well as
DHAR and MDHAR in the recycling pathway. Previous studies [46,47] were referenced for
primer design. The Acitin gene of Solanum lycopersicum (Solyc11g005330) was utilized as
an internal reference gene to normalize expression data. All the primers were synthesized
through Sangon Bioengineering Co., Ltd., (Shanghai, China) (Table 1). The qRT-PCR was
performed on an ABI ViiA 7 DX system (Applied Biosystems, Waltham, MA, USA) using
TB Green® Premix Ex Taq™ II kit (Takara). The qRT-PCR reaction system was 20 µL: SYBR
Premix Ex Taq (2×) 10 µL, 10 µmol/L forward and reverse primers 1 µL each, c-DNA
1 µL, ddH2O 7 µL. Reaction procedure was 95 ◦C 30 s; 95 ◦C 5 s, 55~60 ◦C 20 s, 40 cycles;
72 ◦C 20 s. Melting curve procedure was 95 ◦C 15 s; 55~95 ◦C 1 min in 0.3 ◦C increments;
95 ◦C 15 s. All reactions were performed in three replicates and the relative expression was
calculated using the 2−∆∆CT method.

2.6. Determination of AsA and DHA Content

The concentration of AsA and DHA were determined according to a previous method
with minor modifications [48]. An amount of 0.5 g of leaf or fruit was ground into a
homogenate in 5% metaphosphoric acid, centrifuged at 7500 rpm for 20 min at 4 ◦C, and
the supernatant was collected. A total of 100 µL of supernatant was pipetted with 2.9 mL
of 100 mmol/L potassium phosphate buffer (pH 6.8), and the change of absorbance value
at 265 nm was recorded when 1 U of AAO was added. For the determination of DHA,
100 µL of the extract was added to 1.9 mL of 100 mmol/L potassium phosphate buffer
(pH 6.8), and the absorbance at 265 nm was recorded after the addition of 2 mmol/L DTT.
At the same time, standard curves were made with known concentrations of AsA and DHA
solutions using the same method to calculate the AsA and DHA contents of the samples.
Each tomato line was measured in triplicate.

2.7. Statistical Analysis

All data were determined in three independent biological replicates for each experiment.
Data were counted and graphs were made using Excel 2019. Significant differences were tested
by Duncan’s method and correlation analysis was performed using Pearson’s method in SPSS
26.0 software. The significance levels remained p < 0.05 and p < 0.01, respectively.

3. Results
3.1. Positive Identification of Transgenic Tomato Lines

A total of four tomato lines each overexpressing RrGGP2 and RrDHAR were obtained
by genetic transformation. The genome DNA of the transgenic tomato was used as the
template, wild-type tomato DNA was utilized as a negative control, and R. roxburghii DNA
was used as a positive control, using the specific primers (Table 1) to determine the presence
of RrGGP2 and RrDHAR in the transgenic tomato lines. After agarose gel electrophoresis,
the electrophoretic bands of the four lines overexpressing RrGGP2 (Figure 2A) and the
four lines overexpressing RrDHAR (Figure 2B) were of the same intensity as the positive
control. However, in the case of the wild-type tomato, the target fragments were not
amplified (Figure 2A,B), indicating that the RrGGP2 and RrDHAR genes of R. roxburghii
have been successfully integrated into the tomato genome. The results of the qRT-PCR
further confirmed that the expression levels of RrGGP2 and RrDHAR in the leaves and fruits
were significantly higher than the control (Figure 2C,D), thus proving that the two genes
were successfully overexpressed in the tomato lines.
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RrDHAR transgenic lines are represented by D1, D2, D3, and D6. M = marker; WT = wild-type
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bp—number of bases. The relative quantification of RrGGP2 and RrDHAR expression was calcu-
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differences from WT (** p < 0.01).

3.2. Analysis of Ascorbate Levels in Transgenic Lines
3.2.1. Analysis of Ascorbate Levels in Transgenic Tomato Fruits

The determination results indicate that the overexpression of RrGGP2 and RrDHAR
genes substantially augmented the levels of AsA and DHA in tomato fruits (Figure 3A,B).
The content of AsA increased significantly from 209.7% to 384.3% in all the four tomato
lines that overexpressed RrGGP2, and there was an increase in DHA that ranged from 69.2%
to 309.0% (Figure 3A). Similarly, in the four tomato lines overexpressing RrDHAR, AsA
content was increased by 175.4% to 213.6%, and DHA content was increased from 116.8% to
261.2% (Figure 3B). On average, the overexpression of RrGGP2 in the tomato lines resulted
in an increase of 294.3% for AsA and 190.8% for DHA, compared to an increase of 179.9%
for AsA and 182.6% for DHA in the tomato lines overexpressing RrDHAR (Figure 3A,B).
Hence, it is clear that the overexpression of RrGGP2 is more effective in enhancing the AsA
content of tomato fruits than the overexpression of RrDHAR.

3.2.2. Analysis of Ascorbate Levels in Transgenic Tomato Leaves

The overexpression of RrGGP2 and RrDHAR genes also significantly increased AsA
and DHA contents of transgenic tomato leaves (Figure 3C,D). Notably, the AsA content
in the leaves of the four tomato lines overexpressing RrGGP2 was significantly increased,
ranging between 99.1% and 116.3%, while DHA content increased from 2.6% to 188.9%;
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however, only two lines (G4 and G7) of transgenic lines showed a significant increase
(Figure 3C). In contrast, the AsA content in the leaves of the four overexpressing RrDHAR
tomato lines was significantly increased between 136.6% and 243.5%, and DHA content
increased from 55.8% to 220.5% (Figure 3D). On average, the AsA and DHA levels in the
leaves of tomato lines overexpressing RrGGP2 increased by 108.5% and 75.7%, respectively.
Similarly, in the tomato plants overexpressing RrDHAR, both the AsA and DHA levels
in the leaves increased by 183.9% and 127.3%, respectively (Figure 3C,D). Therefore, it is
evident that the overexpression of RrDHAR leads to a more pronounced increase in the
AsA and DHA content in tomato leaves than RrGGP2.
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differences from WT (* p < 0.05; ** p < 0.01).

3.3. Analysis of Genes Expression in Transgenic Lines
3.3.1. Analysis of Genes Expression in Transgenic Tomato Fruits

The overexpression of RrGGP2 and RrDHAR affected the expression of a range of
genes related to the biosynthesis, catabolism, and recycling of AsA in transgenic tomato
line fruits. In four tomato lines overexpressing RrGGP2, the expression of SlPMI, SlGME,
SlGGP, SlAO, SlDHAR, and SlMDHAR were upregulated, and SlGPI, SlPMM, SlGMP,
SlGPP, SlGLDH, and SlAPX were downregulated; SlGDH was significantly upregulated in
three lines, while in line G7 it was significantly downregulated (Figure 4A). Furthermore, in
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the four tomato lines overexpressing RrDHAR, the expression of SlGMP, SlGME, SlGLDH,
SlAO, SlAPX, SlDHAR, and SlMDHAR was upregulated, while SlGPI, SlPMI, SlGGP, and
SlGPP were downregulated. The expression of SlPMM and SlGDH was not significantly
different from the control (Figure 4B).
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Figure 4. Relative expression of AsA biosynthesis, metabolism, and recycling-related genes in the
WT and transgenic lines. (A) Expression of transgenic RrGGP2 fruits; (B) expression of transgenic
RrDHAR fruits; (C) expression of transgenic RrGGP2 leaves; (D) expression of transgenic RrDAHR
leaves. The relative expression levels of each gene were obtained using the comparative Ct (2−∆∆Ct)
method; three replicate experiments were performed; error bars represent standard error, means ± SE;
the same letter above bars indicates a nonsignificant difference at the p < 0.05 probability level.

3.3.2. Analysis of Genes Expression in Transgenic Tomato Leaves

The overexpression of RrGGP2 and RrDHAR also significantly affected the expression
of genes related to AsA biosynthesis and metabolism in transgenic tomato line leaves.
In the leaves of the four tomato lines overexpressing RrGGP2, the expressions of SlGPI,
SlGMP, SlGGP, SlAPX, and SlDHAR were upregulated, and SlPMI, SlPMM, SlGME, SlGPP,
SlGDH, SlAO, and SlMDHAR were downregulated (Figure 4C). SlGLDH was upregulated
in G4 and G7 and downregulated in G3 and G5. Similarly, the expression of SlGPI, SlGMP,
SlGME, SlGGP, SlGLDH, SlAPX, and SlDHAR was upregulated, and SlPMI, SlPMM, SlGPP,
SlGDH, and SlAO were downregulated in the four tomato lines overexpressing RrDHAR. In
addition, the expression of SlMDHAR was upregulated in G5 and G7, but downregulated
in G3 and G4 (Figure 4D).

3.4. Correlation Analysis between Gene Expression and AsA Content
3.4.1. Correlation Analysis between Gene Expression and AsA Content in Transgenic
Tomato Fruits

There was a significant correlation between the expression of SlGGP and the content of
AsA in the fruits of tomato lines overexpressing RrGGP2; additionally, positive correlations
were observed with SlPMI, SlGME, and SlDHAR. The expression of SlAO was significantly
correlated with DHA (Table 2). In the RrDHAR overexpressing tomato lines, SlGME was
significantly correlated with AsA content, while SlGMP and SlDHAR expression were also
highly correlated with AsA levels. Furthermore, SIAO was observed to have a significant
correlation with DHA (Table 2).

Table 2. Correlation analysis between gene expression and AsA content in transgenic tomato fruits.

Correlation Coefficient

GPI PMI PMM GMP GME GGP GPP GDH GLDH AO APX DHAR MDHAR

RrGGP2 AsA −0.802 0.739 −0.328 −0.854 0.521 0.951 * −0.938 * 0.171 −0.574 0.270 −0.416 0.848 0.603
DHA −0.270 0.228 0.030 −0.708 0.361 0.097 −0.55 0.617 −0.500 0.953 * −0.699 0.445 0.697

RrDHAR AsA −0.789 −0.826 0.485 0.878 0.965 ** −0.664 −0.433 −0.397 0.555 0.481 0.634 0.83 0.677
DHA −0.806 −0.526 0.636 0.762 0.540 −0.447 −0.600 −0.637 0.444 0.910 * 0.819 0.874 0.819

The asterisks represent significance (* p < 0.05; ** p < 0.01).
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3.4.2. Correlation Analysis between Gene Expression and AsA Content in Transgenic
Tomato Leaves

In the leaves of tomato lines overexpressing RrGGP2, the expression of SlGGP was
significantly correlated with AsA content, and SlGPI, SlGMP, SlAPX, and SlDHAR were
also positively correlated with AsA. Notably, SlAO had very low expression but showed
a highly significant negative correlation with AsA, which matches its function of AsA
catabolism. Regarding the concentration of DHA, both SlAPX and SlDHAR showed a
significant correlation (Table 3). In the transgenic RrDHAR tomato lines, the expression of
SlGGP was significantly correlated with AsA content, and SlGPI, SlGMP, SlGME, SlGLDH,
SlAPX, and SlDHAR were also positively correlated with AsA, whilst SlAO showed a
significant negative correlation with AsA content. For DHA, SlAPX and SlDHAR were
correlated with high coefficients of correlation of 0.761 and 0.765, respectively (Table 3).

Table 3. Correlation analysis between gene expression and AsA content in transgenic tomato leaves.

Correlation Coefficient

GPI PMI PMM GMP GME GGP GPP GDH GLDH AO APX DHAR MDHAR

RrGGP2 AsA 0.844 −0.869 −0.435 0.684 −0.882 * 0.885 * −0.943 ** −0.521 0.002 −0.990 ** 0.463 0.626 −0.952 **
DHA 0.856 −0.091 −0.039 0.452 −0.007 0.455 −0.239 0.097 0.856 −0.423 0.965 ** 0.962 ** −0.623

RrDHAR AsA 0.457 −0.658 −0.501 0.468 0.663 0.956 * −0.214 −0.275 0.629 −0.906 * 0.872 0.718 −0.265
DHA 0.379 −0.180 −0.106 0.326 0.203 0.816 0.147 −0.366 0.274 −0.697 0.761 0.765 −0.066

The asterisks represent significance (* p < 0.05; ** p < 0.01).

4. Discussion
4.1. Overexpressing RrGGP2 and RrDHAR in Tomato Indicates That RrGGP2 Is the Key Control
Point of AsA Biosynthesis and Metabolism

Over the years, genes relating to AsA biosynthesis and metabolism in R. roxburghii
have been identified and cloned, and their functions have been verified by heterologous
overexpression. For instance, the overexpression of RrGDH and RrGGP2 in tobacco in-
creased the leaf AsA content by an average of 1.1-fold and 12-fold [16,39], while increasing
the leaf AsA content by 3.02-fold and 2.11-fold was achieved by overexpressing RrDHAR
and RrGME in Arabidopsis [37]. Indeed, RrGGP2 and RrDHAR are particularly good can-
didates for increasing AsA biosynthesis in R. roxburghii [49]; however, further validation
of these two genes was required in a model plant that has edible fruit, such as tomato, to
assess their effectiveness in a plant with commercial applications. Our results reveal that
overexpressing RrGGP2 increases AsA content in tomato fruits to a greater extent than
RrDHAR, which suggests that RrGGP2 may have greater potential to enhance fruit AsA
content in other fruit crops via molecular breeding.

GGP catalyzes the conversion of GDP-L-galactose into L-galactose-1-phosphate, mak-
ing it the first specific enzyme in the L-galactose pathway. Numerous previous stud-
ies on a variety of crops have demonstrated that overexpressing GGP can significantly
augment AsA content; these crops include Arabidopsis [15,50–52], tobacco [23,39,53–55],
tomato [31,36,56,57], rice [2,58,59], kiwifruit [60], strawberry, and potato [31]. Although
other genes in this pathway may also amplify AsA content, such as PMM in Acerola
and GME in alfalfa [50,61], not all genes have the same effect on recipient plants. For
instance, GMP and GME in peach [62] were found to not increase AsA content. After
summarizing experimental data from previous studies and conducting a comparative
analysis, we have determined that overexpressing native GGP has a greater impact on fruit
AsA content compared to overexpressing other genes in the AsA pathway. For instance,
overexpressing SlGGP in tomatoes resulted in a 3-fold increase in fruit AsA content [36],
which was higher than the increases observed with SlGMP (1.22 to 1.60-fold) [63], SlGME
(1.22 to 1.42-fold) [35], SlDHAR (1.4 to 1.5-fold), and SlMDHAR [64]. Furthermore, overex-
pressing Arabidopsis AsA biosynthesis-related GMP, GME, GGP, GPP, GDH, and GLDH in
Arabidopsis leaves resulted in 1.3, 1.4, 2.9, 1.5, 1.2, and 1.8-fold increases in the leaves’ AsA
content, respectively [51]. Although not all the differences were significant, it offers initial
evidence that indicates that the single transformation of GGP is more effective than other
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genes in increasing AsA content, while other genes have additive effects compared to GGP
alone. While other genes may not be as efficient as GGP, studies show that co-transforming
genes such as GME, GPP, and GLDH can significantly increase the AsA content, ultimately
leading to an increase in AsA accumulation in plants. Metabolic control analysis of known
kinetic parameters in Arabidopsis can explain why GGP is the key gene in this conclusion,
while manipulating other genes can have minimal impact on AsA content. This is due
to feedback inhibition of the GGP catalytic step that provides high flow control coeffi-
cients [52,65]. Apart from physiological and biochemical evidence, bioinformatics analysis
also identified tomato GGP as a key gene for AsA biosynthesis [33,36]. AsA accumulation
in 11 wild and cultivated tomatoes and QTL analysis for ascorbic acid content in straw-
berry fruit reveals a complex genetic architecture and association with GDP-L-galactose
phosphorylase [66,67]. As we have speculated, GGP was recently identified once again as
a key gene in two kiwifruits with distinct AsA content based on transcriptomic data [60],
further solidifying its role in AsA accumulation.

Why does GGP play such a crucial and distinctive role in the regulation of AsA biosyn-
thesis and metabolism? With the rapid advancement of genome sequencing technology, we
now have some answers from the perspective of gene evolution. GGP genes are present in
all plants, and due to their unique whole-gene replication mode, GGP is significantly ampli-
fied in angiosperms. The majority of GGP proteins have similar catalytic functions, which
can be attributed to their conserved motif arrangement and composition. This may explain
why angiosperms have a higher AsA content and can adapt more readily to environmental
changes [68]. Previous evolutionary analysis has shown that R. roxburghii and strawberries
are closely related [39], and strawberries are known for their high AsA content, which may
be due to their relatively conservative motif arrangement and composition. Furthermore,
research has revealed that the expression of GGP in various plants is significantly regulated
by light and undergoes drastic changes under stress [19,69]. Analysis of the GGP promoter
sequence has shown that it contains numerous cis-acting elements associated with light
response and stress response [70]. Additionally, the light and photosynthesis-dependent
rate-limiting enzyme GGP is activated and plays a critical role in the regulation of the
ascorbate pool size [71]. Recent studies on the mechanism of GGP translation regulation
propose a model that allows for a feedback response to regulate AsA synthesis under
adverse conditions. Under rapidly changing conditions, uORF directly regulates GGP
translation without gene transcriptional modification, and this points to a more dependable
way to regulate AsA concentration [72]. All the evidence mentioned above once again
confirms that, from the perspective of genetic structure composition, GGP plays a key role
in AsA biosynthesis.

4.2. Similarities and Differences for the Mechanism of AsA Accumulation in Tomato Fruit and Leaf

The accumulation of AsA depends on the interplay between biosynthesis, catabolism,
and cycling [73]. In this study, we comprehensively analyzed these three pathways to
investigate AsA accumulation in the fruits and leaves of transgenic tomatoes. Our findings
revealed both similarities and differences.

GMP, GME, and GGP have been identified as good candidates for promoting AsA
accumulation in tomato [63]. The overexpression of SlGMP, SlGME, or SlGGP has been
found to increase AsA content in tomato [35,36,63]. In our experiment, at least two of the
three key genes were simultaneously upregulated in the fruits and leaves of transgenic
tomatoes, which is likely why the AsA content was higher in transgenic tomatoes than
in the control. Furthermore, through comparison and summarization, we suggest that
there may be an additive model centered on GGP. From the perspective of increasing AsA
content, GMP-GME-GGP co-expression yields higher results than GGP-GMP/GGP-GME,
which is higher than GMP-GME and also higher than GMP/GME/GGP [15,56,74,75]. This
may explain why the AsA content in fruits of tomatoes overexpressing RrGGP2 is higher
than that of RrDHAR and why the AsA content in leaves of tomatoes overexpressing
RrDHAR is higher than that of RrGGP2. In transgenic RrGGP2 tomato fruits, the expression
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of SlGME and SlGGP was upregulated simultaneously, while in transgenic RrDHAR tomato
fruits, the expression of SlGMP and SlGME was upregulated and SlGGP expression was
downregulated. The expression of SlGMP, SlGME, and SlGGP was simultaneously upregu-
lated in transgenic RrDHAR tomato leaves, but only SlGMP and SlGGP were upregulated
in transgenic RrGGP2 tomato leaves, and SlGME was downregulated. Additionally, the
expression of SlGGP in transgenic RrDHAR tomato leaves was much higher than that in
RrGGP2, and the correlation results further confirmed that the upregulation of key genes
in the biosynthetic pathway, especially SlGGP, may be the main factor contributing to
the increase in AsA. Recent studies have shown that GMP, GME, and GGP proteins are
located in the cytoplasm [65] and that these enzyme complexes likely interact, demonstrat-
ing channelization [76]. This finding confirms the complex regulation of AsA pool size
in tomato.

In terms of catabolism and recycling pathways, SlAPX was found to be significantly
upregulated in the leaves of both transgenic tomatoes. It was observed that the high
expression of SlAPX could be detrimental to AsA accumulation, while almost no expression
of SlAO was very beneficial to AsA accumulation [77,78]. Although the expression levels
of the two genes were opposite, the final phenotypic results of tomatoes showed that
AsA was still elevated. The correlation analysis results confirmed the positive effect of
SlAO on AsA accumulation. However, it was not immediately clear why the significant
downregulation of SlAPX expression did not result in AsA content remaining constant or
decreasing. This may be related to the multiple functions of APX in plants; in addition
to its oxidative function in AsA metabolism, APX also acts as an important antioxidant
enzyme to scavenge ROS under various stress conditions. The overexpression of APX can
improve tolerance to various stresses in tobacco [79], tomato [80], and Arabidopsis [81,82].
Therefore, the upregulation of SlAPX expression may not only affect the catabolism of AsA
but also perform tasks related to stress resistance. Interestingly, the expression of SlAO or
SlAPX in fruits was not significantly inhibited; this may be because fruits contain more
abundant secondary metabolites and more hierarchical biological structures than leaves,
thus having a potentially higher stress resistance effect. The expression of SlDHAR was
significantly upregulated in the fruits and leaves of the two transgenic tomatoes; although
the correlation coefficient was not statistically significant, it was still at a relatively high level
with all biosynthetic and metabolic genes. We believe that the upregulation of SlDHAR
expression in the recycling pathway is also an important factor for the accumulation of AsA
in tomatoes. In addition to the function of DHA recovery, the AsA-GSH system involved
in DHAR plays an important role in managing H2O2 and indirectly participates in ROS
scavenging to protect plants from environmental stress and better accumulate AsA [83–88].
The expression of SlMDHAR has no obvious regularity in transgenic lines. Some studies
have shown that MDHAR is not a key gene regulated by AsA [64].

5. Conclusions

In summary, this is the first functional validation of RrGGP2 and RrDHAR in tomato,
a valuable agricultural crop. The results indicate that the overexpression of RrGGP2
and RrDHAR can increase AsA content in tomato leaves and fruits, with the effect of
RrGGP2 being more significant in fruits. Expression measurements of genes relating to AsA
biosynthesis and catabolism in transgenic lines revealed both similarities and differences in
the mechanisms of AsA accumulation in fruits and leaves, in which SlGGP may play a key
role. Additionally, this study provides evidence that can lead to a better understanding of
the crucial role that RrGGP2 plays in R. roxburghii AsA biosynthesis.
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