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Abstract: Anthocyanin is a characteristic nutrient of purple cabbage, and phenylalanine ammonia-
lyase (PAL) is the rate-limiting enzyme for the synthesis of anthocyanin by the phenylpropane
pathway, which is an important part of plant secondary metabolism. In this research, 7 BrPAL,
8 BoPAL, and 15 BnPAL genes from genomes of Brassica rapa, Brassica oleracea, and Brassica napus,
divided into four subgroups, evolved from 4 PAL genes in Arabidopsis. The amplification and evolution
of the BrPAL gene are due to segmental duplication and purifying selection. BrPAL genes clustered
in the same clade have similar intron/exon structures and motifs. The cis-regulatory elements are
divided into four categories: light, growth and development, stress and hormones. The qRT-PCR
assays showed that most BrPAL genes were upregulated by UVA, low temperature and MeJA and
downregulated by FR, high temperature, salt, PEG, IAA, ABA and GA, and there was a positive
correlation between anthocyanin content and gene expression. This study can be used as a source
for the function of the cabbage PAL gene and its molecular mechanism of regulating anthocyanin
synthesis and provides a theoretical basis for the molecular breeding of cabbage.

Keywords: phenylalanine ammonia-lyase (PAL); purple cabbage; anthocyanin; qRT-PCR

1. Introduction

Phenylalanine ammonia-lyase (PAL) affects the accumulation of secondary metabolites,
such as lignin, flavonoids and hydroxycinnamic acid amide (HCAA) in plants by regulating
the rate of phenylalanine entering the phenylpropanoid metabolic pathway [1]. It is a key
enzyme and rate-limiting enzyme that connects primary metabolism and phenylpropanoid
metabolism and catalyzes the first step of phenylpropanoid metabolism [2]. PAL gene was
first reported in barley in 1961 [3], usually in the form of the gene family in plants, from
several members of many species, such as four members in willow [4], five members in
poplar [5], three members in lotus [6], and seven members in cucumber [7] to more than
a dozen members in potato [8] and tomato [9]. The PAL gene contains the characteristics
of the Lyase aromatic conserved domain [10]. This domain can change the chromatin
structure and regulate the expression of genes in different developmental tissues of plants
to participate in the regulation of phenylpropanoid metabolic pathways throughout the
growth cycle [11]. It plays an important regulatory role in plant growth and development,
pest resistance and stress resistance [12].

Four members of the Arabidopsis PAL family were identified [13], and it was shown that
AtPAL1 and AtPAL2 are functionally specific in abiotic environments triggering flavonoid
synthesis [14], AtPAL1 and AtPAL2 double-knockout mutants exhibit enhanced drought
tolerance, greater sensitivity to UV-B light and impaired production of flavonoids, such as
anthocyanins [15]. CsPAL is involved in anthocyanin synthesis through the regulation of
the transcription factors CsMYB and CsbHLHv, where the expression of CsPAL4 in shoots
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showed a highly significant positive correlation with anthocyanin content in purple-leaved
tea plants [11]. VvPAL1 and VvPAL5 were found to be involved in anthocyanin biosynthesis
in white and red grapes [16]. TaPAL32 and TaPAL42 gene-silenced plants showed a higher
disease severity than control plants 14 days after wheat stripe rust [17]. In potatoes,
most StPALs are involved in response to high temperatures and drought [10]. CiPALs are
differentially expressed during pecan seed, female flower, and graft-binding development
and during drought stress [18]. These data suggest that members of the PAL gene family
are functionally specialized in the synthesis of flavonoids, such as anthocyanins and can
respond to a variety of environmental stresses; therefore, it is important to understand how
different family members are regulated to confer their functions.

Chinese cabbage (Brassica rapa L. ssp. Chinensis), native to China, is a genus of Brassica
in the cruciferous family. In recent years, there have been many purple subspecies or
varieties of cabbage, such as purple Tsai-tai, purple pakchoi, and purple turnips. The
pigments that appear purple in cabbage have been identified as anthocyanosides, a class
of secondary metabolites in plants that belong to the flavonoid class of phenolic com-
pounds [19]. Due to its bright color and richness in phytochemicals, such as thioglucosides,
phenolic acids, carotenoids, and flavonoids [20], it exhibits antioxidant and anticancer
effects with high nutritional value and is one of the most important sources of dietary
intake of flavonoid [21,22].

Since anthocyanin production in plants is usually expressed in a tissue-specific manner
and induced by adversity, the analysis of the specific evolutionary regulatory mechanisms
of PAL family genes in purple cabbage would provide a basis for the mechanism of an-
thocyanin synthesis in cabbage. However, the regulation of the PAL genes in anthocyanin
biosynthesis in cabbage lacks in-depth and systematic studies. Therefore, the identification
and evolutionary analysis of the BrPAL family members and their characteristics using
bioinformatics methods to explore their expression patterns in response to light abiotic
stress, phytohormonal aspects, and the relationship with anthocyanin synthesis provide
significant theoretical support for the investigation of the function of the BrPAL gene and
offer a fresh perspective on the breeding direction for high yield and quality in cabbage.

2. Materials and Methods
2.1. Identification of the PAL Gene Family in Chinese Cabbage

The Chinese cabbage genome data (Brassica rapa annotated genome V3.5) [23], Brassica
oleracea genome database, Brassica napus genome database from the Brassica database
(http://brassicadb.cn, accessed on 5 July 2022), and Arabidopsis database (https://www.
arabidopsis.org/, accessed on 5 July 2022) were downloaded. Using BLASTP, the protein
sequences of four AtPAL proteins identified in Arabidopsis were compared with those of
Chinese cabbage to screen candidate genes. At the same time, the hidden Markov model
(HMM) of the PAL gene-specific lyase aromatic domain (PF00221) came from the Pfam
database and downloaded (http://pfam.sanger.ac.uk/ accessed on 5 July 2022) [24] using
HMMER3.0 [25] software to screen BrPAL family members from the Chinese cabbage
genome database, and the screening criterion was an E-value ≤ 1 × 10−5. The redundant
sequences between HMMsearch and BLASTP were removed, and candidate members were
submitted to the online site SMART (http://smart.embl-heidelberg.de/, accessed on 6 July
2022) and the NCBI Conserved Domain Database CDD (https://www.ncbi.nlm.nih.gov/
Structure/cdd, accessed on 6 July 2022) [26] to verify the integrity of the conserved domain
of the candidate gene protein and finally obtain the BrPAL family members.

2.2. Physicochemical Analysis and Subcellular Localization Prediction of PAL Gene Family
Member Proteins in Chinese Cabbage

The physical and chemical properties of BrPAL, including the number of amino acids
(aa), isoelectric point (pI), molecular weight (MW), and hydrophilicity and hydrophobicity
(GRAVY), were analyzed using the ExPASy online program (https://web.expasy.org/
protparam/, accessed on 10 July 2022). The Plant-mPLoc online tool (http://www.csbio.
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sjtu.edu.cn/cgi-bin/PlantmPLoc.cgi, accessed on 12 July 2022) was used to predict the
subcellular localization information of the BrPAL protein.

2.3. Phylogenetic Analysis of the Cabbage PAL Gene

Using MEGA 7.0 to retrieve protein sequences from Arabidopsis, Brassica oleracea and
Brassica napus PAL to construct a phylogenetic tree, the sequences were multiply aligned,
and the phylogenetic tree was constructed using the neighbor-joining (NJ) and maximum
likelihood (ML) methods. The parameters were set as Poisson correction, pairwise deletion
and bootstrap test (1000 repetitions), and the ITOL online website (http://itol.embl.de,
accessed on 23 July 2022) was used to beautify and adjust the phylogenetic tree according
to the phylogenetic relationship classification of the PAL gene family.

2.4. Chromosomal Mapping and Synteny Analysis of PAL Gene Family Members in Chinese Cabbage

The GFF3 file of the Chinese cabbage genome was utilized to extract the chromosome
number, length, and PAL gene family member start and stop positions on chromosomes,
and the MapGene2Chromosome online website (V.2.0; http://mg2c.iask.in/mg2c_v2.0/,
accessed on 3 June 2022) was used to map the distribution of PAL gene family members on
chromosomes.

MCScanX [27] software was used to perform a BLAST comparative analysis of the
tandem and segmental duplication events in the Chinese cabbage genome, and TBtools [28]
with homology visualization was used to compare Chinese cabbage with Arabidopsis,
Brassica napus, and cabbage to visualize the collinear relationship. In addition, TBtools with
a simple Ka/Ks(S2) calculator were applied to calculate Ka/Ks values between gene pairs.

2.5. Conserved Motifs and Gene Structure Prediction of the PAL Gene Family in Chinese Cabbage

The gff3 annotation file of Chinese cabbage was downloaded from the Brassica database
(BRAD, http://brassicadb.cn, accessed on 5 July 2022), and the GSDS (http://gsds.gao-
lab.org/, accessed on 8 July 2022) [29] online tool was used to analyze the members of the
Chinese cabbage PAL gene family. The gene structure was visualized and analyzed, and a
conserved domain analysis was performed using MEME (http://meme-suite.org/tools/
meme, accessed on 7 July 2022) online software. The maximum number of motifs was set
to 18, and the other parameters were the default parameters.

2.6. Analysis of Cis-Acting Elements in the Promoter of the PAL Gene Family in Chinese Cabbage

To discover the important cis-elements inside the BrPAL gene promoter, the 2000 bp se-
quence upstream of the translation start site of the BrPAL gene was extracted using TBtools
through PlantCare (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/, ac-
cessed on 5 June 2022) to predict the cis-acting promoter elements, and TBtools was used to
construct the heatmaps and visualize them after the statistical screening.

2.7. Growth and Treatment of Cabbage Seedlings

To analyze the relationship between the PAL gene family of Chinese cabbage and its
response to abiotic stress and phytohormones, “Jingyan” purple fast cabbage was hydro-
ponically cultured till the three-leaf stage under normal conditions (25/18 ◦C, 75% relative
humidity, and 12/12 days/nights). The light treatments were as follows: a light quality treat-
ment with white LED light as the control (CK), with white light plus 10 µmol m−2 s−1 UV-A
(UV-A); white light plus 60 µmol m−2 s−1 FR (FR); and white light plus UV-A and FR (FU).
The total photon flux density (PPFD) of the different light treatments was 250 µmol·m−2·s−1

for 10 days. For abiotic stress, a low-temperature/high-temperature treatment (4 ◦C/38 ◦C),
drought treatment (10% PEG 6000) and NaCl treatment (200 mmol L−1) was used; for the
hormone treatment, auxin (100 µmol L−1 IAA), abscisic acid (100 µmol L−1 ABA), methyl
jasmonate (100 µmol L−1 MeJA) and gibberellin (100 µmol L−1 GA3) were used. The
samples were collected after 10 days of light quality treatment and after 3, 6, 12 and 24 h of
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stress and hormone treatment. The collected samples were immediately placed in liquid
nitrogen and stored at −80◦C. Three biological replicates were performed for each sample.

2.8. Quantitative Real-Time Fluorescent Quantitative PCR and Anthocyanin Content
Determination and Data Analysis

The total RNA of all samples was extracted using the Vazyme FastPure® Plant Total
RNA Isolation Kit (Polysaccharides & Polyphenolics-rich), and the integrity and concen-
tration of RNA were detected by 1% agarose gel electrophoresis and NanoDrop ND1000
(Nanodrop, USA). The RT-qPCR cDNA was synthesized using the TIANGEN FastKing
One-Step Genomic cDNA First-Strand Synthesis Premix Kit and stored at −20 ◦C after ten-
fold dilution. RT-qPCR primers (Supplementary Materials Table S1) were designed using
Premier 5.0 and submitted to NCBI (https://www.ncbi.nlm.nih.gov/tools/primer-blast/,
accessed on 3 August 2022) for a specificity check. The RT-qPCR was performed accord-
ing to the SYBR® Premixm Ex Taq™ (Takara Biomedical Technology Beijing) reagent
instructions and detected on a LightCycler® 96 Real-Time PCR instrument (Roche, Basel,
Switzerland). Each sample had three biological replicates and three technical replicates
according to the Ct value using the 2−∆∆CT method [30]. The pH differential method was
used to determine the anthocyanin concentration. SPSS (IBM® SPSS® Statistics version 24,
Armonk, NY, USA) and GraphPad Prism 8 (GraphPad Software, San Diego, CA, USA) were
used for the data processing and graphing.

3. Results
3.1. Analysis of Chromosomal Location and Protein Physicochemical Properties of PAL Gene
Family Members in Chinese Cabbage

A total of seven members of the PAL gene family were identified in the cabbage
genome, and they were unevenly distributed on 4 of the ten chromosomes of Chinese
cabbage (as shown in Figure 1). There were three genes on the A04 chromosome and two
genes on the A05 chromosome. Chromosomes A07 and A09 each had one gene, which was
distributed at both ends of the chromosome, except BrPAL2, and were renamed BrPAL1-7
according to their position on the chromosome.
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Figure 1. Chromosomal locations of seven BrPALs in the cabbage genome.

An analysis of the physicochemical properties of the seven identified PAL gene family
members in Chinese cabbage (Table 1) showed that the number of amino acids in BrPAL
ranged from 587 to 724 aa, the relative molecular weight was 64.304 to 78.524 kD, the
isoelectric points were between 5.9 and 6.23, they were acidic proteins, and the hydrophilic-
ity of all BrPAL proteins was negative, indicating that the proteins in this family are all
hydrophilic proteins. The analysis of the subcellular localization of the proteins shows that
the BrPAL proteins are all located in the cytoplasm.

https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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Table 1. Sequence characteristics of BrPAL.

Gene
Name Gene ID

Number of
Amino Acids

(aa)

Molecular
Weight

(MW/kD)
pI GRAVY Subcellular

Location

BrPAL1 BraA04g006770.3.5C.1 724 78.52 6.03 −0.177 Cytoplasm

BrPAL2 BraA04g016310.3.5C.1 698 76.91 6.23 −0.168 Cytoplasm

BrPAL3 BraA04g027460.3.5C.1 722 78.30 5.9 −0.163 Cytoplasm

BrPAL4 BraA05g008230.3.5C.1 719 78.10 5.9 −0.136 Cytoplasm

BrPAL5 BraA05g037490.3.5C.1 706 76.88 5.69 −0.139 Cytoplasm

BrPAL6 BraA07g021930.3.5C.1 587 64.30 5.93 −0.164 Cytoplasm

BrPAL7 BraA09g046240.3.5C.1 723 78.52 5.97 −0.167 Cytoplasm

3.2. Phylogenetic Analysis of PAL Gene in Chinese Cabbage

To gain a deeper comprehension of the evolutionary link between PAL genes in Chinese
cabbage, Arabidopsis, Brassica napus, and Brassica oleracea, based on the multiple sequence
alignments of 7 Chinese cabbage, 4 Arabidopsis, 15 Brassica napus, and 8 Brassica oleracea
PAL genes, a phylogenetic tree of the conserved domains of PAL was constructed using
the neighbor-joining (NJ) method (Figure 2). The tree shows that the 34 PAL genes can be
divided into four subgroups (I, II, III, and IV). Group IV is the largest group, containing
15 members, among which three belong to Chinese cabbage, seven belong to Brassica napus,
four belong to Brassica oleracea, and one belongs to Arabidopsis. Each subgroup contains
one of the four Arabidopsis PAL genes, indicating that BrPAL3, BrPAL4, and AT2G37040.1;
BrPAL2 and AT5G04230.2; BrPAL5 and AT3G10340.1; and BrPAL1, BrPAL6, BrPAL7, and
AT3G53260.1 have a close evolutionary relationship, suggesting that the Brassica PAL gene
may have evolved from the Arabidopsis PAL gene. We can better understand the probable
biological activities of the BrPAL family by considering how often members of the same
subfamily may perform comparable tasks.
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3.3. Collinearity Analysis of PAL Genes in Chinese Cabbage

Tandem and segmental duplications of genes are ubiquitous in plant genomes. As
shown in Figure 3, no tandem duplication events occurred in the seven genes identified in
this study, but four collinear gene pairs had segmental duplication events in the remaining
five genes except BrPAL2 and BrPAL5, indicating that segment duplication events are the
main driving force of PAL gene diversity in Chinese cabbage. To explore the evolutionary
restriction of PAL genes in Chinese cabbage, the ratio of the nonsynonymous mutation rate
to the synonymous mutation rate (Ka/Ks) was calculated for each gene pair, and the results
showed that the Ka/Ks of all collinear gene pairs was <1; this implies that the cabbage PAL
gene family may have undergone strong purifying selection pressure during evolution.
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To further infer the phylogenetic mechanism of the cabbage PAL family, the collinear
relationship between Brassica rapa and Arabidopsis and Brassica crops (Brassica napus and
Brassica oleracea) was explored. The results showed strong collinear regions between
Brassica rapa and Arabidopsis (Figure 4a), Brassica napus, and Brassica oleracea (Figure 4b).
Brassica napus (3262) had the most collinear regions with Brassica rapa, followed by Brassica
napus (1728) and Arabidopsis (867), which is related to the genetic background of Brassica
napus hybridization and chromosome doubling from Brassica rapa and Brassica oleracea. In
addition, a homologous comparison analysis of the PAL gene pairs between Brassica rapa,
Arabidopsis thaliana, Brassica napus, and Brassica oleracea was conducted, and the homologous
gene pairs among the three were 10(At), 22(Bn), 26(Bo). Among them, BrPAL1, BrPAL3,
BrPAL4, and BrPAL7 had 2–5 homologous genes among all three species, BrPAL2 and
BrPAL6 were not found homologous in Brassica rapa and Arabidopsis, and BrPAL6 was not
found homologous among all three species, probably due to the fact that BrPAL6 originated
after the divergence of these species. In addition to whole genome duplication events, these
results show that independent duplication events occurred during the evolution of these
species.

3.4. Structure and Conserved Motif Analysis of the Cabbage PAL Gene

Gene structure diversity is an important part of gene family evolution. To better
understand the relationship between the phylogenetic evolution of BrPAL family members,
gene structure, and conserved motifs, the exons/introns of conserved motifs were analyzed
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for the structure and distribution and phylogenetic tree of the BrPAL family. The results are
shown in Figure 5a,b, that BrPAL members with similar exon/intron numbers and positions
clustered in the same branch of the phylogenetic tree. The BrPAL2 gene has no UTR, the
BrPAL6 gene has no intron, the BrPAL2 and BrPAL5 genes contain one intron each, and the
BrPAL1, BrPAL3, BrPAL4, and BrPAL7 genes contain one intron each.
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Figure 4. (a) Collinearity analysis between Brassica rapa and Arabidopsis, the gray line in the back-
ground indicates the collinear block in the genomes of Brassica rapa and Arabidopsis, and the red line
highlight the homologous PAL gene pair; (b) Brassica rapa, Brassica napu, Brassica oleracea Collinearity
analysis of rapeseed, the gray line in the background indicates the collinearity blocks in the genomes
of Brassica rapa, Brassica napus and Brassica oleracea, and the red line highlights the homologous PAL
gene pairs.
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Figure 5. Evolutionary relationship, conserved protein motifs and gene structure of BrPAL gene.
(a) The phylogenetic tree of the PAL gene in Chinese cabbage. The phylogenetic tree was constructed
using the neighbor-joining (NJ) method in MEGA 7.0, and the bootstrap was repeated 1000 times;
(b) The exon-intron structure of the PAL gene in Chinese cabbage. Red represents UTRs, pink
represents CDS, and thin black lines represent introns. (c) The motifs in the BrPAL protein were
identified by the MEME program, and numbers 1–18 composed of motifs are displayed in boxes of
different colors.

Proteins with highly consistent amino acid sequences, especially in the functional
domains, often have similar biological functions. Using MEME online software to analyze
the conserved motifs of cabbage PAL proteins (Figure 5c), the results show that each BrPAL
contains 14 to 18 motifs in the length range of 11 to 50 amino acids, and the distribution is
very similar. The three members’ makeups differ in several ways. The process is responsible
for different functions.

3.5. Analysis of Cis-Acting Elements in Promoters of the PAL Gene Family in Chinese Cabbage

The cis-acting elements in the promoter region are specific motifs that can combine
with transcription factors to further participate in the expression and regulation of genes.
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To understand the functions of potential cis-acting elements in the members of the BrPAL
gene family, the promoter region of each member ATG upstream of a 2000bp sequence
was extracted and used PlantCARE software was used to predict the cis-acting element
(CRE) in the promoter region, and the common TATA box, CAAT box, and undefined
cis-elements were used to select some CREs with more enrichment. Figure 6a,b show the
enrichment and location of the cis-acting elements of the BrPAL gene family promoter,
respectively. The results show that the BrPAL gene contains a large number of cis-acting
elements, which can be mainly divided into responses to abiotic stress (104), light (103),
growth and development (51), and plant hormones (102). Each BrPAL gene contains more
than three elements related to abiotic stress, six of which are more abundant, including
MYB, MYC, low-temperature response element (LTR), and stress response element (STRE);
nine elements are related to light response, including G-box, box-4, and I-box; most BrPALs
contain these light-responsive elements, indicating that the expression of BrPAL genes may
be induced or inhibited by light; five elements are related to growth and development,
including ARE, MSA-like, O2-site, GCN4-motif, and CCAAT-box; there are nine types
including ABA response element (ABRE), salicylic acid response element (TCA-element),
gibberellin response (P-box), MeJA response element (TGACGmotif and CGTCAmotif),
auxin response elements (AuxRR-core and TGA-element) and other components associ-
ated with plant hormone response. The above results indicate that the accumulation of
anthocyanins in purple cabbage may be related to various transcriptional regulation mech-
anisms of BrPAL family genes through abiotic stress, light, and different hormone-related
cis-elements during plant growth.
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3.6. Expression Patterns of Cabbage PAL Genes under Different Light Quality, Abiotic Stress and
Hormone Induction

To further explore the potential role of cabbage PAL genes under different light quality,
abiotic stresses and hormone treatments, we analyzed their expression levels using qRT-
PCR. As shown in Figure 7, all members were down-regulated under FR and FU treatment,
and all genes were up-regulated under UVA treatment except for BrPAL2 and BrPAL5. As
shown in Figure 8, only BrPAL2 and BrPAL5 expressions were up-regulated under heat
stress reaching peaks at 6 h and 3 h, respectively, while the rest of the genes remained at
low expression levels; except for the downregulation of BrPAL5, the expression levels of
other members were relatively high under treatment at low temperatures. The expression
levels of BrPAL1, BrPAL2, and BrPAL3 at 0–12 h and BrPAL4 and BrPAL6 at 0–24 h gradually
increased with time, and the expression of BrPAL6 increased in all members at 12 h of
cold stress. Interestingly, the expression pattern of BrPAL2 was consistent under high-
temperature and low-temperature treatment; the expression of BrPAL gene family members
was downregulated under PEG and NaCl treatment, but there was a tendency to recover
at 12 h and 24 h. As shown in Figure 9, the expression of the BrPAL gene family showed
a trend of significant downregulation under IAA treatment. The expression of BrPAL1,
BrPAL3, BrPAL4, BrPAL6, and BrPAL7 was the lowest at 3 h, and the expression of BrPAL2
and BrPAL5 reached the lowest at 12 h and gradually recovered at 24 h. Under ABA
treatment, the expression levels of BrPAL1, BrPAL3, and BrPAL4 decreased within 3–12 h;
BrPAL5, BrPAL6, and BrPAL7 gradually decreased within 3–6 h; and the expression level of
BrPAL2 reached the lowest level. The expression levels of all BrPAL genes were restored
after 24 h of ABA treatment; under the treatment of MeJA, the expression levels of most
genes in the BrPAL family were significantly upregulated, and the highest expression levels
appeared at 3, 6, 12, and 24 h. The highest expression level of BrPAL6 was 1.99 times higher
than that at 0 h at 12 h, and only the expression levels of BrPAL2 and BrPAL3 decreased;
under GA treatment, the expression of BrPAL2 reached the lowest value at 12 h, and the
expression levels of the rest of the family genes gradually decreased within 3–6 h and
recovered from 12 to 24 h.
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Figure 7. The relative expression level and anthocyanin content of BrPAL gene under light quality
treatment. (a–g) Histogram of relative expression of PAL gene in purple cabbage under light quality
treatment; (h) Histogram of anthocyanin content in purple cabbage under light quality treatment.
Data represent the mean of triplicate with three biological replicates. * indicates significance (p < 0.05);
** indicates extremely significant difference (p < 0.01).

At the same time, the anthocyanin content of purple cabbage was measured under
light-quality treatments, abiotic stress treatments, and hormone treatments. The results
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(Figures 7h, 8h and 9h) showed that the anthocyanin content decreased under FR and FU
treatment, and the anthocyanin content increased under UVA treatment; however, the
amount of anthocyanin in the FU treatment was slightly higher than that of FR and close
to that of CK. Under cold stress and MeJA treatment, the anthocyanin content gradually
increased over 0–24 h; under the high temperature, drought, salt stress, IAA, ABA, and GA
treatments, the cyanin content gradually decreased during over 0–24 h, and the anthocyanin
content began to rise after 24 h under the IAA, ABA, and GA treatments.
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Figure 8. Relative expression level and anthocyanin content of BrPAL gene at 0, 3, 6, 12, 24 h under
abiotic stress. (a–g) Histogram of relative expression of PAL gene in purple cabbage under high
temperature, low temperature, drought, and salt stress; (h) line graph of anthocyanin content in
purple cabbage under abiotic stress; Data represent the mean of triplicate with three biological repli-
cates. * indicates significant difference (p value < 0.05); ** indicates extremely significant difference
(p value < 0.01).
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Figure 9. Relative expression level and anthocyanin content of BrPAL gene at 0, 3, 6, 12, 24 h under
hormone treatment. (a–g) Histogram of relative expression of PAL gene in purple cabbage under
IAA, ABA, MeJA, and GA; (h) line graph of anthocyanin content in purple cabbage under hormone
treatment; Data represent the mean of triplicate with three biological replicates. * indicates significant
difference (p value < 0.05); ** indicates extremely significant difference (p value < 0.01).

4. Discussion

Due to the key role of PAL in secondary phenylpropanoid metabolism [31], such as
mechanical support (lignin), protection against biotic and abiotic stresses (antioxidants),
pigments, such as anthocyanins, and flavonoid nodule factors [32], signal transduction has
been extensively studied. At present, the function of the PAL gene has been discovered
in many species. Amplification of GmPAL1.1 in Arabidopsis promoted seed viability at
physiological adulthood under high temperature and high humidity (HTH) stress [33],
poplar leaf injury stimulated the upregulation of PtPAL1 expression [34], the TaPAL family
was important in the defense against wheat stripe rot [17], pepper plants silenced by CaPAL1



Horticulturae 2023, 9, 469 12 of 15

expressed Xcv susceptibility [34], AtPAL1/AtPAL2/AtPAL3/AtPAL4 quadruple mutants
showed dysplasia, and the accumulated salicylic acid level was also greatly reduced [14];
Nonetheless, the role of the PAL gene family in Chinese cabbage has not been identified
and studied systematically.

In this research, based on the cabbage genome, we identified seven BrPAL genes with
the same PAL gene family members in the tea tree [11], hickory nut [5], and cucumber [7].
With similar gene structures and conserved motifs, the BrPAL family in the same lineage
has an extremely conserved gene structure and motif set, and these conserved motifs
may be the basic elements that determine the common molecular functions of the PAL
family in different plant species [34]. Phylogenetic analysis of Chinese cabbage, Brassicaceae,
Arabidopsis, and Brassica crops showed that the same subgroup contained the PAL genes
of Chinese cabbage and Arabidopsis. BrPAL exhibits a close relationship with two other
Brassica crops (Brassica napus and Brassica oleracea) and Arabidopsis. Four BrPAL genes
were homologous to Arabidopsis and Brassica crops, but the number of BrPAL, BnPAL, and
BoPAL genes were significantly increased compared with Arabidopsis PAL genes, probably
because they have undergone genome-wide triploidization events in Brassica since they
diverged from the Arabidopsis lineage, indicating a high genetic diversity of TaPAL [35,36].
In Chinese cabbage, BrPAL family members are not distributed on all chromosomes but
rather are distributed unevenly on four chromosomes, which is similar to the situation in
which PAL genes are only distributed on a few chromosomes in many species [34]. During
plant evolution, Whetten and Sederoff discovered that the reproduction and change in
ancestors have the ability to generate several family members, which may be aggregated on
a single chromosome or spread across multiple chromosomes [17,29], demonstrating that
genome and chromosomal duplication are driving the expansion of the BrPAL family, While
variations in the size of gene families could account for the wide range of appearances
among Brassica species [37]. In addition, functional redundancy among closely related
family members can be estimated and can stimulate more effective strategies for identifying
defective phenotypes in loss-of-function studies in cabbage breeding.

The PAL gene’s promoter activity also controls the gene’s growth and induction of
expression, and the promoter region usually contains a variety of cis-regulatory elements [9].
The results of the prediction and analysis of the BrPAL promoter’s cis-acting elements
indicate that BrPAL may respond to light, abiotic stress, and different hormones. Based
on the UVA, FR, high-temperature, low-temperature, drought, salt stress, IAA, ABA,
and MeJA treatments of PAL family genes, qRT-PCR expression analysis of purple leaf
cabbage seedlings showed that under light quality treatment, most members have the
same expression pattern. Under UVA treatment, FR is upregulated, and FU treatment
is downregulated. Only BrPAL2 and BrPAL5 were downregulated, and the G-box in the
promoters of BrPAL2 and BrPAL5 was more abundant than that in other members. This
may be the reason for the different expression patterns of BrPAL2 and BrPAL5 from those
of other members. Under low-temperature conditions, the expression of all members,
except BrPAL5, was up-regulated, and under high-temperature conditions, the expression
of most members was down-regulated, with the exception of BrPAL5 and BrPAL2. This
suggests that the differential regulation of BrPAL expression may be due to the different
cis-elements present in each member. Compared with other members, BrPAL5 has a less
obvious response to abiotic stress, which may be related to the presence of fewer abiotic
stress response elements in the promoter sequence; the jasmonate response element in
BrPAL6 is the most abundant, and its expression is upregulated. This most notably shows
that the expression of the BrPAL gene is in good agreement with its promoter prediction.

Studies on other species also found similar results to this study. The expression levels
of turnip PAL [38] and tomato SlPAL5 [39] were upregulated under UVA irradiation. Under
UVA irradiation, the expression levels of the majority of BrPAL were likewise increased in
this investigation. The expression levels of the CsPAL genes were all upregulated under
cold stress [7], which is consistent with the upregulation of the expression levels of the
six BrPALs at low temperatures in this study. The AtPAL1/AtPAL2 double mutants in
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Arabidopsis showed a higher drought tolerance [14], which is consistent with the decreased
expression of BrPAL under drought stress in this study, indicating that BrPAL has a negative
regulatory effect on drought stress. The expression of CsPAL2 and SlPAL5 decreased after
the exogenous ABA treatment [40]. The expression of BrPAL was also downregulated under
ABA treatment; six of the potato PAL genes were significantly upregulated, while four
were significantly downregulated under MeJA treatment [10]. In this study, five PAL genes
of cabbage were significantly upregulated, while two were significantly downregulated
under MeJA treatment. In summary, purple cabbage can regulate the expression of most
PAL genes under light quality, various abiotic stresses, and phytohormone treatments,
with different expression patterns under different light qualities. Differences in the timing
with stress and phytohormone treatment can differentially induce the expression of BrPAL
gene family members, and such differences in gene expression are also advantageous and
may allow plants to have different levels of stress resistance, as well as an important role
in hormone signaling. In the meanwhile, the changes in anthocyanin content in purple
cabbage under light quality, abiotic stress, and hormone treatments were mostly positively
correlated with the changes in the expression level of the BrPAL gene, demonstrating
a strong correlation between the BrPAL gene’s level of expression and the anthocyanin
content of purple cabbage.

5. Conclusions

In this study, we identified seven members of BrPAL located on four chromosomes that
play key roles in the anthocyanin biosynthetic metabolic pathway. We systematically and
comprehensively analyzed the BrPAL family, including phylogenetic analysis, conserved
structural domains, chromosomal location, gene structure and gene expression. Expression
of BrPAL genes under light quality, stress and hormone treatment showed a highly signifi-
cant correlation with their promoter cis-elements and anthocyanin content in purple-leaf
cabbage. Taken together, the results of this study provide new clues for the functional study
of BrPALs and further construction of the anthocyanin regulatory network in cabbage.
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