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Abstract: Previous studies on soil water–plant relations have mostly focused on the soil water content
(SWC), while the effect of soil moisture stability on plant growth has received surprisingly little
attention. Potted tomato seedlings were used to examine the effect of stable soil moisture (SM)
and fluctuating soil moisture (FM) on plant growth, development, and water use efficiency (WUE)
in this study. The results showed that (i) soil moisture stability significantly affected the growth
and development, photosynthetic characteristics, morphological traits, root morphology, and water
physiological characteristics of seedling tomatoes, with SM being more conducive for most of these
indices. (ii) SM improved the leaf WUE by reducing the content of abscisic acid in plants, regulating
plant osmotic substances, maintaining a high gas exchange rate, and promoting plant morphology.
(iii) SM could avoid water stress on tomato seedlings; even if the SWC of SM was equal to or lower
than the SWC of FM, water stress would not occur under SM, whereas it would occur under FM.
Overall, compared with FM, SM promoted beneficial plant morphology, maintained a high gas
exchange rate, and did not induce water stress for tomato seedlings—ultimately improving WUE.
This effect was more effective under low-SWC conditions than under high-SWC conditions. These
findings provide a new perspective and theoretical basis for soil water–plant relations and indicate
that SM has great potential in promoting plant growth and improving WUE.

Keywords: fluctuating soil moisture; soil water–plant relations; water use efficiency; morphogenesis;
drought stress; Solanum lycopersicum L.

1. Introduction

Soil moisture is intimately associated with plant growth and development, and it
is always vital to achieving high crop yields or the production of specific agronomic
commodities [1,2]. Numerous studies have been conducted on soil water–plant relations,
with soil moisture primarily represented as soil water content (SWC) [3–5]. Recently, a
newly innovated irrigation technique, named the pressure potential difference-crop initiate
drawing water device or negative pressure irrigation (NPI), has been widely employed
in experimental investigations and partially applied in agricultural production [6–10].
Yang [11] found that NPI improved WUE and yield of Brassica chinensis L. Zhang [12]
showed that the activities of antioxidant enzymes and concentrations of osmotic adjustment
substances in maize decreased under NPI, resulting in a substantial increase in maize dry
matter accumulation and yield. A notable characteristic of NPI is its stable soil moisture
(SM). Whether or not the significant advantage of NPI comes from soil moisture stability,
several studies have demonstrated that plants benefit from SM [13,14].

The tomato (Solanum lycopersicum L., formerly Lycopersicon esculentum Mill.) is one of
the most widely cultivated vegetable species in the world [15], but its cultivation requires a
great amount of water. The tomato seedling stage is critical for stem–leaf differentiation,
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which is directly related to the yield and quality of mature tomatoes [16]. It has been
demonstrated that proper water management improves the tomato photosynthetic rate,
root morphology, and tomato quality while decreasing lipid peroxidation [17]. The decrease
in SWC showed a negative effect on the water status of tomato leaves and roots, but it
significantly improved the leaf and whole plant WUE [18]. Additionally, plants react to
stress by accumulating osmolytes, such as proteins, proline, and soluble sugars [19]. An
increase in the malondialdehyde content is a common response of stressed plants [20,21].
Furthermore, studies have shown that the endogenous abscisic acid (ABA) level plays a
crucial role in modulating the leaf gas exchange, WUE, and quality of tomato plants [22].
Plant roots can sense changes in soil moisture, which in turn induces the ABA signaling
system and the closure of stomata, thus regulating plant growth to improve WUE [22–24].
However, most previous studies were conducted under conditions of fluctuating soil
moisture (FM) due to intermittent water supply [25–27], and the soil was frequently in
a state of alternating drying and wetting. Excessive fluctuations and instability in soil
moisture cause plants to experience drought and flood stress, which could lead to plant
tissue damage and decreased root hydraulic conductivity [28] and possibly increase the
incidence of pests [20,29]. Meanwhile, the physiological mechanism by which SM affects
WUE is still unclear. Experiments performed on tomatoes reported that SM with continuous
irrigation showed greater yield and lower water consumption in tomato production [30].
Several studies on maize revealed that SM could improve crop WUE by inhibiting root
growth and alleviating water stress [8,13]. However, our understanding of the relationships
between soil moisture stability and crops is still insufficient, especially with regard to the
underlying mechanism of the effect of soil moisture stability on crop growth, development,
and water utilization.

Our goal was to identify the differences between SM and FM in terms of tomato
seedling growth, development, and water use. Compared to FM, we hypothesized the
following: 1. SM could improve the plant morphogenesis of tomato seedlings, and 2. SM
could improve tomato leaf WUE by regulating the ABA and osmotic substance contents of
plants. To evaluate these hypotheses, we conducted a three-week-long water experiment
with tomato seedlings, with FM as the control, and examined the effects of SM on the
growth, development, and physiological responses of seedlings. The anticipated outcome
of this study was to reveal the physiological mechanism underlying the influence of soil
moisture stability on tomato seedling WUE and to deepen our understanding of soil
water–tomato relationships.

2. Materials and Methods
2.1. Experimental Site and Plant Conditions

A pot experiment was conducted in a rain shelter located at the Chinese Academy
of Agricultural Sciences (39.6◦ N, 116.2◦ E) in Beijing, China from August to September
2020. The study site was maintained in a typical warm-temperate, semi-humid continental
climate, with hot and rainy summers and cold and dry winters. The annual mean tempera-
ture was 10–12 ◦C, and the annual frost-free period was 180–220 days [6]. Daily changes in
temperature, humidity, and evaporation from a standard reference water surface during
the test period are shown in Figure S1.

The soil texture was loam with a field capacity (FC) of 35% (v/v); total nitrogen
content of 0.08%; total phosphorus content of 0.06%; alkali hydrolyzed nitrogen con-
tent of 81 mg·kg−1; organic matter content of 13.33 g·kg−1; available phosphorus of
14.81 mg·kg−1; available potassium of 125.25 mg·kg−1; and pH (soil: water, 1:5) of 8.32.
Plastic pots—with a length, width, and height of 42 cm, 26 cm, and 25 cm, respectively—
were used for growing tomato plants. Each pot was filled with 26.0 kg of air-dried soil,
and the soil bulk density was 1.4 g·cm−3. The fertilizer amount per treatment was the
same (0.11 g N, 0.05 g P2O5, and 0.15 g K2O·kg−1 soil), and the fertilizer and soil were fully
mixed. After filling the pots with soil, all pots were irrigated to 100% FC.
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Tomato (Solanum lycopersicum L. Cv. Provence) seedlings were used as the test material
in the experiment. Tomato seeds of uniform size were germinated on moistened filter
paper, and then germinated seeds were sown in a growth medium consisting of vermiculite
and perlite in nursery trays and cultured in a growth chamber, where the environmental
conditions were maintained at 28/19 ± 1 ◦C day/night, 70 ± 5% relative humidity, and
12 h photoperiods (PAR 300 µmol m−2 s−1). At the four-leaf and one-heart stages, the
seedlings were transplanted into plastic pots on 2 August 2020, with two plants per pot.
Then, the seedlings were rested for 10 days while the SWC was maintained at 80–90% of FC
through uniform watering. Subsequently, a three-week water treatment was carried out.

2.2. Device Used to Maintain Stable Soil Moisture

The device used to maintain SM was designed by the Chinese Academy of Agricultural
Sciences (Patent Nos. ZL201110093923.2 and ZL201310554433.7, China) (Figure 1) and
consisted of a negative pressure controller, a water supply bucket (inner radius: 13.1 cm),
and an irrigator (porous ceramic pipe). This device can continuously and stably supply
water to plants and has been used on several species [6,8–10].
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Figure 1. The schematic diagram and physical photo of the negative pressure irrigation device.

2.3. Experimental Design

The experimental factors included soil moisture stability (stable soil moisture vs
fluctuating soil moisture, abbreviated as SM vs FM) and water content (low water content
vs high water content, abbreviated as W1 vs W2). A completely randomized pot experiment
was conducted in this study, and there were a total of four water treatments—namely SMW1,
SMW2, FMW1, and FMW2—and each treatment had four replicates. The SM, which was
set with the NPI system, had two water treatments of−10 kPa (SMW1) and−5 kPa (SMW2)
based on previous experimental results [6,9,31]. The FM was set up through watering, and
FMW1 and FMW2 had upper and lower irrigation limits of 75–55% FC and 85–65% FC,
respectively. During the experiment, at 16:00 every day, four points were evenly taken
around each pot to measure SWC (v/v) using a high-precision TRIME-PICO32 sensor
(TRIME-PICO-IPH-TDR, IMKO, Germany), and the average value was recorded. The daily
irrigation amount for SMW1 and SMW2 was calculated by multiplying the water level
difference (Figure 1) by the cross-sectional area of the water supply bucket at 16:00 every
day, and the cumulative irrigation amount was obtained by adding the daily irrigation
amounts. When the SWC approached or dropped below the lower limits of FMW1 and
FMW2, irrigation was triggered to reach the upper limits and the irrigation amount was
calculated according to the measured SWC, the set upper irrigation limits, and the soil
volume in the pot [31].
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2.4. Sampling and Measurements
2.4.1. Fluctuation Coefficient of the SWC

The fluctuation coefficient (δ) was calculated as follows [31]:

δ =
1

n− 1∑
2|θi − θi−1|

θi + θi−1
(1)

where δ is the fluctuation coefficient, θi is the observed SWC (%) at the i-th moment,
θi−1 is the observed SWC (%) at the i-th previous moment, and n is the number of SWC
observations. The magnitude of δ reflects the soil moisture stability, and the smaller the
value is, the more stable the soil moisture.

2.4.2. Sampling and Measurements of Tomato Shoots

The plants were harvested on two occasions. Four pots of tomato plants were sampled
at the onset of the water treatment to measure the initial biomass. The remaining pots of
tomato plants were harvested after three weeks of water treatment, and different organs
(stems and leaves) of one of the tomato plants in each pot were weighed to determine the
fresh weight (FW, g·plant−1). Next, the materials were placed in an oven, dried at 105 ◦C
for 30 min, and then dried at 75 ◦C, to a constant weight, for the determination of the dry
weight (DW, g·plant−1) [32]. The latest, fully expanded leaf of another tomato plant was
collected to determine the leaf relative water content (LRWC, %) and leaf relative electrical
conductivity (LREC, %) values [33]. The third fully expanded leaf was collected, wrapped
in tinfoil, placed in liquid nitrogen, brought back to the laboratory, and stored at −80 ◦C to
determine physiological indicators (see Section 2.4.6 for details).

2.4.3. Sampling and Measurements of Tomato Roots

The roots sampled from pots were carefully rinsed with water and wiped dry with
absorbent paper. After determining the FW, one of the roots was scanned (EPSON V850
Pro scanner, Suwa, Japan), and the total root length, total root surface area, total root
volume, and average root diameter were analyzed using WinRHIZO Pro software (Regent
Instruments, Quebec, Canada) [34,35]. Then, the root DW was determined using the drying
method [32]. The specific root length was calculated as the total root length divided by the
root DW [36]. Another plant root was wrapped in tinfoil, placed in liquid nitrogen, brought
back to the laboratory, and stored at −80 ◦C to determine its physiological indicators (see
Section 2.4.6 for details).

2.4.4. Morphological Indicators

The tomato plant height, stem diameter, leaf number, leaf length, leaf width, and leaf
area were measured every 7 days, beginning after treatment. The leaf length and width
were obtained for the third fully expanded tomato leaf [37], and the leaf area was calculated
as leaf length * leaf width * 0.64 [38].

2.4.5. Leaf Photosynthetic Pigments and Gas Exchange

The content of the tomato leaf photosynthetic pigments was determined using the
alcohol extraction-spectrophotometer method (UV-2550, Shimadzu, Kyoto, Japan) [39,40].

On sunny and windless days, the third fully expanded leaf of the tomato plants
was used to obtain gas exchange parameters, using a portable photosynthesis system
(Li-6400XT, LI-COR, Lincoln, NE, USA), at 8:30–11:30 am. The light intensity was set
to 1500 µmol·m−2·s−1, the flow rate was set to 500 µmol·s−1, and an open gas circuit
was used to measure the net photosynthetic rate (Photo, µmol CO2 m−2·s−1), stom-
atal conductance (Cond, mol H2O m−2·s−1), intercellular CO2 concentration (Ci, µmol
CO2 mol−1), and transpiration rate (Trmmol, mmol H2O m−2·s−1). The intrinsic WUE
of the leaves (WUEint, µmol CO2 mol−1 H2O) was calculated according to the formula:
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WUEint = Photo/Cond. The instantaneous WUE (WUEins, µmol CO2 mmol−1 H2O) value
was calculated according to the formula: WUEins = Photo/Trmmol [30].

2.4.6. Physiological Indicators

Soluble sugar content was determined using the anthrone colorimetric method [8].
First, 0.3 g of the tomato sample (root, stem, and leaf) was mixed with 10 mL of distilled
water in a dry 10 mL graduated test tube. Then, it was put into a boiling water bath for
30 min and then filtered into a 50 mL volumetric flask. Next, 0.5 mL of the sample solution,
1.5 mL of distilled water, 0.5 mL of anthrone ethyl acetate, and 5 mL of concentrated
sulfuric acid were mixed in a 20 mL graduated test tube, and thoroughly mixed through
vortexing. The solution was immediately transferred into a boiling water bath for 1 min,
and absorbance was measured at 630 nm after natural cooling. The sugar content of the
extract was calculated according to Zhang [8].

Soluble protein content was determined using the Coomassie Brilliant Blue method [8].
First, 0.5 g of the tomato sample (root, stem, and leaf) was mixed with 2 mL of distilled
water and transferred into a 50 mL volumetric flask, which was then filled up with distilled
water. After resting it for 30 min, the solution was filtered to obtain a clear liquid as the
extract. Then, 1 mL of the extract and 5 mL of Coomassie Brilliant Blue reagent were added
into a test tube and thoroughly mixed. After resting the solution for 2 min, absorbance was
measured at 595 nm.

Free proline content was measured using an enzyme-linked immunosorbent assay
(ELISA) kit (Kete Biotechnology, Suzhou, China) [17,41]. First, 0.1 g of the tomato sample
(root, stem, and leaf) was weighed, 1 mL of extracting solution was added, and it homoge-
nized under ice bath conditions. After transferring them to a 1.5 mL centrifuge tube, they
were put into a water bath for 30 min at 90 ◦C. Then, the mixed sample was centrifuged for
10 min at 12,000 rpm, the supernatant was collected, and the absorbance was measured at
520 nm.

Malondialdehyde content was measured using an ELISA kit [17,41]. First. 0.1 g of the
tomato sample (root, stem, and leaf) was weighed, 1 mL of sulfosalicylic acid extracting
solution was added, and it homogenized under ice bath conditions. After transferring
them to a 1.5 mL centrifuge tube, they were put into a water bath for 30 min at 90 ◦C. Then,
the mixed sample was centrifuged for 10 min at 12,000 rpm. After resting it for 5 min, the
collected supernatant and absorbance were measured at 532 nm and 600 nm, respectively.

ABA content was measured using an ELISA kit [17,41]. First, 0.1 g of the tomato
sample (root, stem, and leaf) was ground into a powder with liquid nitrogen, rinsed
with 0.05 mol L−1 Tris-HCl (pH 7.4) in a 5 mL centrifuge tube, and made into a 10%
homogenizing solution. Secondly, the mixed sample was centrifuged at 4 ◦C for 15 min at
3000 rpm and the supernatant was collected. The contents of ABA were assayed using an
ABA ELISA kit according to the manufacturer’s instructions.

After washing, the roots were wiped dry and stored at 4 ◦C for later use. Root activity
was measured using the triphenyltetrazolium chloride reduction method and 0.06 g of
fresh root [8]. The root samples were mixed with reagents in a centrifuge tube and kept in
the dark at 37 ◦C for 3 h. Then, the sample was centrifuged for 10 min at 10,000 rpm, the
supernatant was collected, and absorbance was measured at 460 nm.

2.5. Statistical Analysis

The data were processed using Microsoft Excel 2010 (Microsoft Crop, Redmond, WA,
USA) and analyzed using SAS 9.0 (SAS Institute, Cary, NC, USA) to conduct one-way
analysis of variance (ANOVA) tests, followed by Duncan’s multiple-range tests at p < 0.05.
All of the results were expressed as mean ± standard deviation (SD). The figures were
plotted using Origin Pro 2021 software (OriginLab Corporation, Northampton, MA, USA).
Principal component analysis (PCA) was used to determine the relations between soil water
and plant parameters. To further investigate the relationships between morphological
indicators, physiological indices, and WUE, a partial least squares path model (PLS-PM)
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was constructed using the “plspm” package in R language (4.1.1) [42]. The quality of the
PLS-PM was evaluated by examining the goodness-of-fit index, in which a value >0.7
indicates the acceptable overall prediction performance of the model [43].

3. Results
3.1. Soil Moisture Parameters

After water control, the SWC of all treatments showed an undifferentiated reduction
trend for 8 to 10 days, at which point the SWC of FMW1 and FMW2 began to fluctuate
(Figure 2). Clearly, the subsequent difference in plant performance did not result from this
period, but rather from the subsequent period of fluctuation (from the eighth day after
treatment). Therefore, soil moisture parameters for the entire test period and the fluctuation
period were calculated (Table 1). During the fluctuation period, the δ values for SMW1,
SMW2, FMW1, and FMW2 were 0.02, 0.01, 0.07, and 0.10, respectively. The mean SWC
of FMW1 was 22.8% (65% FC) and was always greater than that of SMW1, for which the
mean SWC was 19.9% (57% FC). The mean SWC of FMW2 was 26.1% (74% FC) and was
always greater than or equal to that of SMW2, for which the mean SWC was 24.1% (69%
FC). Throughout the whole test period, the mean SWC values for SMW1, SMW2, FMW1,
and FMW2 were 22.6% (65% FC), 25.5% (73% FC), 24.0% (68% FC), and 26.6% (76% FC),
respectively, and the δ values were 0.03, 0.02, 0.08, and 0.11, respectively. In summary, the
SWC of SMW1 and SMW2 changed little, and could be categorized as SM, while the SWC
of FMW1 and FMW2 changed very much, exhibiting a “sawtooth” shape, and could be
categorized as FM; the mean SWC of SMW2 and FMW1 could be considered equivalent.
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Figure 2. Changes in volumetric soil water content. Values are the mean ± SD (n = 3).

Table 1. Soil moisture parameters under different treatments.

Treatment
Test Period Fluctuation Period

The Range of SWC (%) Mean SWC (%) δ The Range of SWC (%) Mean SWC (%) δ

SMW1 18.7~29.1 22.6 (65% FC) 0.03 18.7~24.2 19.9 (57% FC) 0.02
SMW2 23.0~29.0 25.5 (73% FC) 0.02 23.0~26.0 24.1 (69% FC) 0.01
FMW1 19.0~28.8 24.0 (68% FC) 0.08 19.0~26.3 22.8 (65% FC) 0.07
FMW2 20.9~29.8 26.6 (76% FC) 0.11 20.9~29.8 26.1 (74% FC) 0.10

Note: (1) For a period of time after treatment, the soil water content (SWC) was in a downward trend without an
obvious difference, and the difference in plant performance was due to the fluctuation period (from the eighth
day after treatment), therefore, the soil moisture parameters were calculated for both the entire test period and
the fluctuation period, respectively. (2) In terms of mean SWC, the difference between SMW2 and FMW1 was
only 1.5 and 1.3% during the entire period and the fluctuation period, which was significantly less than the
difference between the two treatments and other treatments. Therefore, the mean SWC of SMW2 and FMW1 can
be considered equivalent.

3.2. Biomass and Morphological Traits

Regardless of SM or FM, the FW of the roots, leaves, and total plants all significantly
increased with increasing SWC, while the DW of various organs showed an increasing
trend with increasing SWC (Figure 3), thus indicating that a high SWC was more beneficial
for biomass accumulation. The biomass of various organs and total plants (except the DW
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of stems) was significantly higher in SMW2 than in FMW1, indicating that SM promoted
biomass accumulation, compared to FM, under similar SWC conditions. The mean SWC
of FMW1 was higher than that of SMW1, but its biomass was lower; similarly, the mean
SWC of FMW2 was higher than that of SMW2, but its biomass was lower. These results
indicated that soil moisture stability had a greater effect on tomato biomass than SWC.
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Figure 3. Effects of different treatments on the fresh weight (FW) (A) and dry weight (DW) (B)
of tomato organs on the 21st day after treatment. Values are the mean ± SD (n = 3). Duncan’s
multiple-range test was used to test for differences among treatments at the p < 0.05 level. Different
lowercase letters above the columns indicate significant differences among treatments within the
same organ.

The differences between treatments on tomato morphological traits gradually ap-
peared with the prolongation of water control (Figure 4). After three weeks of treatment,
whether under SM or FM, the tomato plant height, stem diameter, leaf number, leaf length,
leaf width, and area were significantly higher in W2 than in W1. SMW1 significantly
increased tomato plant height, stem diameter, leaf number, and length compared with
FMW1. SMW2 significantly increased tomato stem diameter compared with FMW2, but
other morphological traits showed no significant difference. Further, SMW2 significantly
increased tomato plant height, stem diameter, leaf number, leaf length, leaf width, and area
compared with FMW1.

3.3. LRWC, LREC, and Photosynthetic Pigments

The LRWC increased in both SM and FM with increasing SWC, but SM was more ad-
vantageous in maintaining a higher LRWC. SMW2 increased the LRWC by 6.98% compared
to SMW1. FMW2 increased the LRWC by 13.79% compared to FMW1. The LRWC of SMW1
was 10.94% higher than that of FMW1, and the LRWC of SMW2 was 4.29% higher than
that of FMW2. The LRWC of SMW2 was 18.68% higher than that of FMW1. Tomato plants
under low-SWC conditions exhibited a higher LREC than those under high-SWC conditions
in both the SM and FM conditions, but SM was more advantageous in maintaining a lower
LREC. The LREC in SMW1 decreased by 7.76% compared with FMW1, and the LREC in
SMW2 decreased by 17.55% compared with FMW1. However, there were no significant
differences in the LREC between SMW1 and FMW1, SMW2, and FMW2 (Table 2).
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Figure 4. Effects of different treatments on tomato plant height (A), stem diameter (B), leaf
number (C), leaf length (D), leaf width (E), and leaf area (F). Values are the mean ± SD (n = 3).
Duncan’s multiple-range test was used to test for differences among treatments at the p < 0.05 level.
Different lowercase letters above the columns indicate significant differences among treatments
within the same day.

Table 2. Relative water content (LRWC), relative electrical conductivity (LREC), chlorophyll a content,
chlorophyll b content, carotenoids content, and chlorophyll a + b content of tomato leaves under
different treatments.

Treatment LRWC (%) LREC (%) Chlorophyll a
(µg·cm−2)

Chlorophyll b
(µg·cm−2)

Carotenoids
(µg·cm−2)

Chlorophyll a + b
(µg·cm−2)

SMW1 69.42 ± 1.15 b 17.06 ± 0.53 ab 17.70 ± 1.33 b 6.10 ± 1.28 a 1.30 ± 0.15 b 23.80 ± 0.31 b
SMW2 74.27 ± 0.94 a 15.25 ± 1.22 b 20.77 ± 1.35 a 6.97 ± 1.20 a 2.39 ± 0.47 a 27.73 ± 0.67 a
FMW1 62.58 ± 2.06 c 18.50 ± 0.64 a 17.36 ± 1.73 b 5.05 ± 1.06 a 1.37 ± 0.45 b 22.41 ± 2.68 b
FMW2 71.21 ± 0.21 b 15.19 ± 1.39 b 19.18 ± 0.54 ab 4.90 ± 0.30 a 2.62 ± 0.11 a 24.08 ± 0.52 b

Note: Values are the mean ± SD (n = 3). Duncan’s multiple-range test was used to test for differences among
treatments at the p < 0.05 level. Different lowercase letters in the same column indicate significant differences
among treatments.

Tomato plants under high-SWC conditions showed higher chlorophyll a, carotenoids,
and chlorophyll a + b than those under low-SWC conditions. SM increased the plants’
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photosynthetic pigment contents compared to FM. The chlorophyll a, carotenoids, and
chlorophyll a + b in SMW2 increased by 17.34, 84.27, and 16.53%, respectively, compared
with SMW1. The chlorophyll a, carotenoids, and chlorophyll a + b in FMW2 increased by
10.47, 90.54, and 7.45%, respectively, compared with FMW1. The photosynthetic pigment
contents of SMW2 were significantly higher than those of FMW1. The chlorophyll a,
chlorophyll b, carotenoids, and chlorophyll a + b in SMW2 increased by 19.64, 37.90, 74.05,
and 23.76%, respectively, compared with FMW1 (Table 2).

3.4. Root Morphology, Root Activity, and Root/Shoot Ratio

Tomato plants under high-SWC conditions exhibited higher root length, surface area,
volume, and root activity than those under low-SWC conditions in both the SM and
FM conditions. SM increased tomato root activity compared to FM. SMW1 increased
the tomato root surface area by 53.80% compared to FMW1, and FMW1 decreased the
tomato root length, surface area, and volume by 65.20, 57.33, and 61.73%, respectively,
compared to SMW2. A significant difference in specific root length was only found between
FMW1 and FMW2, wherein FMW1 had a 52.07% reduction compared to FMW2. The
root activity of FMW2 was significantly lower than that of SMW2 but significantly higher
than that of SMW1, while the root activity of SMW1 was significantly higher than that
of FMW1. The root activity of SMW1, SMW2, and FMW2 increased by 14.88, 97.79, and
39.71%, respectively, compared with FMW1 (Table 3). However, there were no significant
differences in the average root diameter and root/shoot ratio between SMW1, SMW2,
FMW1, and FMW2.

Table 3. Root length, surface area, volume, average root diameter, specific root length, root activity,
and root/shoot ratio of tomato plants under different treatments.

Treatment Root Length
(cm)

Root Surface
Area (cm2)

Root Volume
(cm3)

Average Root
Diameter (mm)

Specific Root
Length
(m·g−1)

Root Activity
(µg·h−1·g−1)

Root/Shoot
Ratio

(g·g−1)

SMW1 442.59 ± 119.45 b 39.99 ± 8.50 b 0.56 ± 0.23 bc 0.67 ± 0.12 a 12.71 ± 7.35 ab 81.63 ± 8.07 c 0.06 ± 0.01 a
SMW2 729.79 ± 101.54 a 60.93 ± 6.19 a 0.96± 0.23 a 0.86 ± 0.18 a 15.37 ± 1.50 ab 140.53 ± 3.35 a 0.07 ± 0.00 a
FMW1 254.00 ± 59.31 b 26.00 ± 4.93 c 0.37± 0.05 c 0.65 ± 0.13 a 8.18 ± 2.21 b 71.05 ± 1.18 d 0.06 ± 0.02 a
FMW2 690.71 ± 125.55 a 55.55 ± 6.28 a 0.92± 0.19 ab 0.81 ± 0.22 a 17.07 ± 1.93 a 99.27 ± 6.76 b 0.05 ± 0.01 a

Note: Values are the mean ± SD (n = 3). Duncan’s multiple-range test was used to test for differences among
treatments at the p < 0.05 level. Different lowercase letters in the same column indicate significant differences
among treatments.

3.5. Leaf Gas Exchange and Leaf WUE

With increasing SWC in both the SM and FM conditions, the Photo, Cond, and Trmmol
of the tomato plants increased, while the WUEint and WUEins decreased (Figure 5). SM
increased the tomato Photo, Cond, Trmmol, and WUEins compared to FM. On the 7th,
14th, and 21st days after water treatment, comparing SMW1 to FMW1, the Photo increased
by 16.20, 8.08, and 26.73%, respectively (Figure 5A); the Cond improved by 70.33, 21.88,
and 26.46%, respectively (Figure 5B); the Trmmol increased by 13.79, 2.75, and 18.97%,
respectively; the WUEint decreased by 31.82, 12.07, and −0.68%, respectively (Figure 5E),
and the WUEins increased by 2.24, 5.17, and 6.56%, respectively (Figure 5F). On the 7th,
14th, and 21st days after water treatment, comparing SMW2 to FMW2, the Photo increased
by 15.74, 9.26, and 12.19%, respectively (Figure 5A); the Cond improved by 4.86, 25.37,
and 15.05%, respectively (Figure 5B); the Trmmol increased by 14.65, 2.87, and 1.97%,
respectively; the WUEint increased by 11.52, −12.85, and −2.53%, respectively (Figure 5E);
and the WUEins increased by 0.90, 6.25, and 9.89%, respectively (Figure 5F).
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Figure 5. Effects of different treatments on the net photosynthetic rate (Photo) (A), stomatal conduc-
tance (Cond) (B), intercellular CO2 concentration (Ci) (C), transpiration rate (Trmmol) (D), intrinsic
water use efficiency (WUEint) (E), and instantaneous water use efficiency (WUEins) (F) of tomato
plants. Values are the mean ± SD (n = 3). Duncan’s multiple-range test was used to test for differ-
ences among treatments at the p < 0.05 level. Different lowercase letters above the columns indicate
significant differences among treatments within the same day.

3.6. Osmotic Substances, Malondialdehyde and ABA

There were no significant differences in proline content in the tomato roots, stems,
or leaves (Figure 6A). The free proline in the roots, stems, and leaves decreased in both
the SM and FM conditions with increasing SWC, and tomato plants accumulated more
free proline under FM than under SM. The free proline in roots, stems, and leaves was
significantly higher in FMW1 than in SMW1, SMW2, and FMW2, and was significantly
higher in FMW2 than in SMW2. Compared with SMW1, FMW1 significantly increased the
free proline content in the roots, stems, and leaves of tomato plants by 6.82, 9.32, and 6.89%,
respectively. Compared with SMW2, FMW2 significantly increased the free proline content
in the roots, stems, and leaves of tomato plants by 9.54, 12.76, and 5.29%, respectively.
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Figure 6. Effects of different treatments on osmotic substances (A–C), malondialdehyde (D), and
abscisic acid (ABA) (E) contents in the tomato roots, stems, and leaves on the 21st day after treatment.
Values are the mean ± SD (n = 3). Duncan’s multiple-range test was used to test for differences
among treatments or organs at the p < 0.05 level. Different lowercase letters above the columns
indicate significant differences among treatments within the same organ, and different capital letters
on the mean value of all treatments in each organ indicate significant differences among organs.

The soluble protein content significantly varied across different organs, with the
content order of leaves > roots > stems (Figure 6B). Regardless of being in the SM or
FM condition, the soluble protein content in all organs decreased with increasing SWC.
Compared with FM, SM tended to reduce the soluble protein content in tomato plants.
The plant stems’ soluble protein content was relatively low, and there were no significant
differences among treatments, while the soluble protein content of leaves in FMW1 was
significantly higher than among those within SMW1, SMW2, and FMW2. Compared with
FMW1, SMW1 significantly decreased the soluble protein content in the leaves of tomato
plants by 19.25%. The soluble protein content of the roots was not significantly different
between FMW1 and SMW1, while it was significantly higher in FMW1 than in SMW2
and FMW2.

The soluble sugar content in roots was significantly higher than those in stems and
leaves (Figure 6C). The soluble sugar content in roots, stems, and leaves was significantly
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reduced in both the SM and FM conditions with increasing SWC, and tomato plants
accumulated more soluble sugar in their stems and leaves under FM than under SM. The
soluble sugar content in stems and leaves was significantly higher (16.51–34.68%) in FMW1
than in SMW1, and it was significantly higher (23.13–30.72%) in FMW2 than in SMW2.

There were no significant differences in the content of malondialdehyde across the
various organs, and the highest value was in FMW1 (Figure 6D). The malondialdehyde in
each organ decreased with increasing SWC in both the SM and FM conditions. Compared
with FM, SM tended to reduce the malondialdehyde content in tomato plants. The mal-
ondialdehyde in all organs was slightly lower in SMW1 than in FMW1, but the difference
was significant only in the leaves. The malondialdehyde content in all organs was slightly
lower in SMW2 than in FMW2, with no significant differences shown.

The ABA content varied across the different organs, in the order of roots > leaves > stems
(Figure 6E). The root ABA and leaf ABA content significantly increased with increasing
SWC in both the SM and FM conditions. The SM and FM conditions significantly differed,
and the ABA in the roots and leaves in the FM condition was higher than those in the
SM condition. The ABA content in roots and leaves was significantly higher in FMW1
than in SMW1, SMW2, and FMW2 and was significantly higher in FMW2 than in SMW2.
Compared with SMW1, FMW1 significantly increased the ABA content in the roots and
leaves of tomato plants by 8.71 and 6.51%, respectively. Compared with SMW2, FMW2
significantly increased the ABA content in the roots and leaves of tomato plants by 8.77
and 6.50%, respectively.

3.7. The Relations between Soil Water and Plant Parameters

The PCA, based on the measured soil–plant parameters at 21 days after treatment,
revealed that the treatment observations separated into distinct clusters (Figure 7). Six
principal components were extracted from the data (λ > 1), and the eigenvalues (λ) of
principal component 1 (PC1) and principal component 2 (PC2) were 32.72 and 4.43, respec-
tively, which explained 68.2 and 9.2% of the total variation, respectively (Table S1). The
low-SWC conditions (FMW1 and SMW1) and high-SWC conditions (FMW2 and SMW2)
were separated by PC1, where W1 treatments were generally clustered more to the left
and W2 treatments more to the right on the plot. SM (SMW1 and SMW2) and FM (FMW1
and FMW2) were separated by PC2, where FM treatments were generally clustered more
toward the upper area and SM treatments more toward the lower area on the plot. Vectors,
such as ABA, malondialdehyde, proline, soluble sugar, and soluble protein, positively
contributed to the clustering of the FMW1 treatments, whereas the SMW1 and FMW2
treatments seemed to not be influenced much by the variables. The SMW2 treatments were
mainly clustered according to LRWC, root activity, chlorophyll a + b, and chlorophyll b.

3.8. The Influence Path of Changing Soil Moisture on Water Use Efficiency

PLS-PM can aggregate multiple observed variables into a latent variable and reveal
the linear relationship between latent variables [43,44]. In our study, PLS-PM was used
to integrate soil moisture fluctuant parameters, SWC, root activity, ABA, osmoregulation,
LRWC, malondialdehyde, LREC, root morphology, photosynthetic characteristics, morpho-
logical traits, biomass, and leaf WUE (Figure 8); the goodness-of-fit index of this model
was 0.89, and this index being > 0.7 indicated that the model was acceptable [43]. Soil
moisture fluctuant parameters showed a significant, positive effect on ABA in tomato
plants, with a path coefficient of 0.95, and exhibited a significant, negative effect on root
activity, with a path coefficient of −0.91. SWC showed significant negative effects on ABA,
osmoregulation, malondialdehyde, and LREC in tomato plants, with path coefficients of
−0.80, −0.47, and −0.33, respectively, and exhibited a significant, positive effect on root
activity, with a path coefficient of 1.00. Our PLS-PM showed that soil moisture fluctuant
parameters regulated the biomass via two paths: one path followed “Soil moisture fluctuant
parameters→ ABA→ morphological traits→ biomass”, and the other path followed “Soil
moisture fluctuant parameters→ ABA→ osmoregulation→ LRWC→malondialdehyde,
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LREC (→root morphology)→ morphological traits→ biomass”. There were two paths for
regulating leaf WUE: one was “Soil moisture fluctuant parameters→ ABA→ osmoregu-
lation→ photosynthetic characteristics→ leaf WUE”, and the other was “Soil moisture
fluctuant parameters→ ABA→ osmoregulation→ LRWC→ malondialdehyde, LREC→
photosynthetic characteristics→ leaf WUE”.
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Figure 7. Biplot of the principal component analysis (PCA) of tomato indexes under different
treatments. The data used in the PCA were the data from 21 days after treatment. PCn indicated
the extracted principal component. SWC, soil water content; δ, fluctuation coefficient; SFW, stem
fresh weight; LFW, leaf fresh weight; RFW, root fresh weight; TFW, total fresh weight; SDW, stem
dry weight; LDW, leaf dry weight; RDW, root dry weight; TDW, total dry weight; H, plant height;
SD, stem diameter; LN, leaf number; LL, leaf length; LW, leaf width; LA, leaf area; RL, root length;
RSA, root surface area; RV, root volume; RAD, average root diameter; RA, root activity; LRWC, leaf
relative water content; LREC, leaf relative electrical conductivity; Chl a, chlorophyll a content; Chl b,
chlorophyll b content; Car, carotenoids content; Chl a + b, chlorophyll a and chlorophyll b contents;
Photo, net photosynthetic rate; Cond, stomatal conductance; Ci, intercellular CO2 concentration;
Trmmol, transpiration rate; WUEint, intrinsic water use efficiency; WUEins, instantaneous water
use efficiency; SProline, stem proline content; LProline, leaf proline content; RProline, root proline
content; SSP, stem soluble protein content; LSP, leaf soluble protein content; RSP, root soluble protein
content; SSS, stem soluble sugar content; LSS, leaf soluble sugar content; RSS, root soluble sugar
content; SMDA, stem malondialdehyde content; LMDA, leaf malondialdehyde content; RMDA, root
malondialdehyde content; SABA, stem abscisic acid content; LABA, leaf abscisic acid content; RABA,
root abscisic acid content.
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Figure 8. Partial least squares path model (PLS-PM). The path coefficients are represented by the
width of the arrows. The red color indicates a positive effect, the blue color indicates a negative
effect, the solid arrows indicate significant effects (*, p < 0.05; **, p < 0.01; ***, p < 0.001), and the
dashed arrows indicate nonsignificant path coefficients (p > 0.05). A goodness-of-fit (GOF) statistical
evaluation model was used, and the GOF of this model was 0.89. The data used in the PLS-PM were
the data from 21 days after treatment.

4. Discussion
4.1. Stable Soil Moisture Improves Plant Morphogenesis of Tomato Seedlings

Morphological indicators, such as plant height, stem diameter, and the number of
leaves, are important dynamic biomarkers in the process of crop growth and development,
and they are closely related to crop biomass and yield [45]. Previous studies have only
centered on the effects of SWC on plant growth, development, and water use [3–5]. Our
results, highlight the importance of soil moisture stability during plant growth. We found
that SM (versus FM) under low-SWC conditions, significantly improved tomato plant
height, stem diameter, leaf number, leaf length, root surface area, and root activity; and SM
under high-SWC conditions significantly improved tomato stem diameter and root activity
(Figure 4, Table 3). The results supported our first hypothesis that SM could improve the
plant morphogenesis of tomato seedlings, thereby laying a good foundation for the later
growth and fruit formation of tomato plants [16]. This is similar to a study on maize [31],
which found that SM encouraged the formation of crop morphological traits, and our
results further showed that the promotion of plant morphogenesis, in SM compared with
FM, was subjected to SWC.

4.2. Stable Soil Moisture Alleviates Soil Water Stress

Drought stress has been found to interfere with crop maintenance of cellular stress,
resulting in a reduction in the LRWC in maize, and the severity of its effects has increased
over time [46]. Liu [23] found that two parameters, the LRWC and leaf water potential,
significantly decreased only under severe soil water stress. We found that the tomato LRWC
was significantly lower in low-SWC conditions than in high-SWC conditions; therefore, we
infer from this result that, regardless of SM or FM, the lower SWC always caused tomato
seedlings to experience water stress. Additionally, the tomato LRWC in FM was signifi-
cantly lower than that in SM under similar SWC conditions, suggesting that regardless of

Figure 8. Partial least squares path model (PLS-PM). The path coefficients are represented by the
width of the arrows. The red color indicates a positive effect, the blue color indicates a negative
effect, the solid arrows indicate significant effects (*, p < 0.05; **, p < 0.01; ***, p < 0.001), and the
dashed arrows indicate nonsignificant path coefficients (p > 0.05). A goodness-of-fit (GOF) statistical
evaluation model was used, and the GOF of this model was 0.89. The data used in the PLS-PM were
the data from 21 days after treatment.

4. Discussion
4.1. Stable Soil Moisture Improves Plant Morphogenesis of Tomato Seedlings

Morphological indicators, such as plant height, stem diameter, and the number of
leaves, are important dynamic biomarkers in the process of crop growth and development,
and they are closely related to crop biomass and yield [45]. Previous studies have only
centered on the effects of SWC on plant growth, development, and water use [3–5]. Our
results, highlight the importance of soil moisture stability during plant growth. We found
that SM (versus FM) under low-SWC conditions, significantly improved tomato plant
height, stem diameter, leaf number, leaf length, root surface area, and root activity; and SM
under high-SWC conditions significantly improved tomato stem diameter and root activity
(Figure 4, Table 3). The results supported our first hypothesis that SM could improve the
plant morphogenesis of tomato seedlings, thereby laying a good foundation for the later
growth and fruit formation of tomato plants [16]. This is similar to a study on maize [31],
which found that SM encouraged the formation of crop morphological traits, and our
results further showed that the promotion of plant morphogenesis, in SM compared with
FM, was subjected to SWC.

4.2. Stable Soil Moisture Alleviates Soil Water Stress

Drought stress has been found to interfere with crop maintenance of cellular stress,
resulting in a reduction in the LRWC in maize, and the severity of its effects has increased
over time [46]. Liu [23] found that two parameters, the LRWC and leaf water potential,
significantly decreased only under severe soil water stress. We found that the tomato LRWC
was significantly lower in low-SWC conditions than in high-SWC conditions; therefore, we
infer from this result that, regardless of SM or FM, the lower SWC always caused tomato
seedlings to experience water stress. Additionally, the tomato LRWC in FM was signifi-
cantly lower than that in SM under similar SWC conditions, suggesting that regardless of
low or high SWC levels, FM always caused tomato seedlings to experience water stress
(Table 2).
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Osmoregulation, through the over-accumulation of free proline, soluble protein, and
soluble sugar, is a defense mechanism employed by plants to enhance their drought stress
tolerance [47–49]. Plants under water stress accumulate free proline and soluble sugars to
regulate their osmotic potential, thus improving their growth characteristics and tolerance
to water deficit [50]. Sánchez [51] showed that plants accumulated more proline and lower
water content during turgor loss. Previous studies have shown that 60–80% FC is optimal
for the growth of the majority of greenhouse crops [14]. Experiments performed on tomato
plants have reported that 72–80% FC was suitable for plant growth, whereas 54–60% FC
indicated a water shortage [17]. According to previous studies, the low water content (W1:
65–68% FC) and high water content (W2: 73–76% FC) used in the present study during the
test period would not cause water stress in tomato plants [14,17]. However, our results
showed that, compared to SM, FM caused tomato seedlings to suffer from water stress,
especially in W1 treatment (Figure 6), indicating that the fluctuation of soil water led to
water stress in tomato plants, and tomato plants seemed to be more sensitive to this change
under low-SWC conditions.

According to previous studies, the absence of water stress in maize under SM reduced
the content of free proline, soluble proteins, and soluble sugars in leaves and roots, com-
pared to the alternation of wetting and drying treatments, which promoted leaf growth
and thereby increased maize yields [8,12]. Similarly, Niu [13] found that SM decreased the
accumulation of osmotic regulating substances and membrane lipid peroxidation products
in maize compared to manual irrigation treatments. We found that tomato plants grown in
FM accumulated more proline, soluble proteins, and soluble sugars than those grown in
SM (Figure 6A–C), indicating that SM could prevent or alleviate plant water stress caused
by the instability of soil moisture, thereby reducing the accumulation of osmotic substances
and improving plant performance under similar SWC conditions.

Furthermore, data supported the idea that different organs of tomato plants showed
different osmotic responses to soil moisture. Unlike soluble protein and soluble sugar,
the proline in all organs was significantly lower in SM than in FM (Figure 6A–C), which
suggested that proline might be the most sensitive osmotic substance in tomato plants in
response to soil moisture fluctuations [52]. Additionally, the PCA plot showed that there
were positive correlations between proline, soluble protein, and soluble sugar, and these
vectors strongly contributed to the clustering of the low-SWC treatments (Figure 7), which
was similar to the findings of Hessini [48] and Ferchichi [49].

Water stress could lead to the overproduction of malondialdehyde, which causes cell
membrane damage and, ultimately, plant cell death. An increase in the malondialdehyde
content is a common response of stressed plants [20,21]. We found that malondialdehyde
levels were considerably lower in SMW2 tomato roots, stems, and leaves compared to
those in FMW1 (Figure 6D), which suggested that SM decreased malondialdehyde levels
compared to FM under similar SWC circumstances.

Previous studies [22,53,54] have shown that ABA is an important long-range signal
of plants in response to changes in soil moisture and plays a crucial role in regulating
stomata and a plant’s response to water stress. High endogenous ABA levels improved the
osmotic stress resistance of the tomato plants through osmotic and hydraulic regulation,
and the plants usually presented higher leaf gas exchange when endogenous ABA levels
were low. In our study, tomato plants grown in FM with a high ABA content (Figure 6E)
accumulated a relatively large amount of osmotic substances (Figure 6A–C), and the tomato
plants grown in SM with a low ABA content (Figure 6E) exhibited better photosynthetic
performance (Figure 5); these results suggested that FM induced more ABA and osmotic
substances than SM, which also supported our second hypothesis that SM improved the
WUE by regulating the ABA and osmotic substance contents in plants.

4.3. Stable Soil Moisture Improves WUE of Tomato

Stomatal closure and reduced biochemical photosynthetic capacity are normal plant
responses to water deficits [55]. According to Verma [56] and Ortega-Farias [57], water
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deficits significantly reduce the leaf gas exchange of plants. Similarly, we found that the
Photo, Cond, and Trmmol of tomato plants significantly decreased with decreasing SWC,
regardless of being in the SM or FM condition (Figure 5), thus indicating that tomato
plants were sensitive to the SWC level and that even a small reduction in water content
could affect tomato growth. Wang reported that stable water conditions increased the
Photo of lettuce and maize [31]. Importantly, it has been found that, under NPI, cellular
components, such as chloroplasts, plastids, and thylakoids—which are directly related to
maize photosynthesis—significantly changed, and dry matter accumulation increased with
increasing maize Photo [12]. Consistent with previous studies [12,31], our results showed
that SM could significantly increase tomato Photo compared with FM. In addition, we
found that SM, versus FM, resulted in an increase in the WUEins of tomato leaves due to
nonlinear increases in Trmmol and Photo (Figure 5), which was consistent with previous
findings on continuous irrigation and conventional irrigation [30]. Moreover, the PCA plot
showed a positive correlation between the leaf WUE and ABA, and it showed a negative
correlation between the leaf WUE and Cond (Figure 7), consistent with the results reported
by Sun [30].

According to our PLS-PM (Figure 8), soil moisture stability affected tomato photo-
synthetic characteristics by affecting ABA and osmoregulation, which in turn affected the
leaf WUE, solidifying our second hypothesis that SM improved WUE by regulating ABA
and osmotic substance contents in plants. Notably, the total impact value of soil moisture
stability on the tomato leaf WUE was 0.47. In addition, PLS-PM showed that the direct
impact path between ABA and photosynthetic characteristics was not significant. Despite
the fact that ABA was an important signal of the tomato response to soil moisture change,
ABA alone was not sufficient, in our study, to regulate photosynthetic characteristics be-
cause ABA was easily affected by the interaction of electrical signals and other factors [54].
Although we outlined different regulatory pathways of the plants’ responses to changing
soil moisture, this was only a possible interpretation, and these pathways may or may not
exist; thus, this needs to be verified by future studies.

5. Conclusions

This study showed that (i) soil moisture stability significantly influenced the growth
and development, photosynthetic characteristics, physiological response, morphological
traits, and root morphology of tomato plants, with SM being more conducive for most
of these indices. (ii) SM improved the leaf WUE by regulating the abscisic acid content
in plants, reducing plant osmotic substances, maintaining a high gas exchange rate, and
improving plant morphology. (iii) SM could alleviate water stress on tomato seedlings;
even if the SWC of SM was equal to or lower than the lower SWC of FM, water stress would
not occur under SM, whereas it would occur under FM. Overall, our study showed that
SM could offset the negative effects of insufficient soil moisture compared with FM and
help tomato plants alleviate water stress. SM has great potential in promoting plant growth
and WUE.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/horticulturae9030391/s1, Figure S1. Daily changes in temperature,
humidity, and the evaporation of the surface water during the test period. Table S1. Eigenvalues and
variances of principal component analysis.
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Nomenclature

Abbreviation Full Name
ABA Abscisic acid
Ci Intercellular CO2 concentration
Cond Stomatal conductance
DW Dry weight
FC Field capacity
FM Fluctuating soil moisture
FW Fresh weight
LREC Leaf relative electrical conductivity
LRWC Leaf relative water content
NPI Negative pressure irrigation
PCA Principal component analysis
Photo Net photosynthetic rate
PLS-PM Partial least squares path
SM Stable soil moisture
SWC Soil water content
Trmmol Transpiration rate
WUE Water use efficiency
WUEins Instantaneous water use efficiency
WUEint Intrinsic water use efficiency
δ Fluctuation coefficient
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