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Abstract: The most common bud sport trait in grapevines is the change in color of grape berry skin,
and the color of grapes is mainly developed by the composition and accumulation of anthocyanins.
Many studies have shown that MYBA is a key gene regulates the initiation of bud sport color and
anthocyanin synthesis in grape peels. In the current study, we used berry skins of ‘Italia’, ‘Benitaka’,
‘Muscat of Alexandria’, ‘Flame Muscat’, ‘Rosario Bianco’, ‘Rosario Rosso’, and ‘Red Rosario’ at the
véraison stage (10 weeks post-flowering and 11 weeks post-flowering) as research materials. The
relative expressions of genes related to grape berry bud sport skin color were evaluated utilizing
RNA-Seq technology. The results revealed that the expressions of the VvMYBA1/A2 gene in the
three red grape varieties at the véraison stage were higher than in the three white grape varieties.
The VvMYBA1/A2 gene is known to be associated with UFGT in the anthocyanin synthesis pathway.
According to the results, VvMYBA1/A2 gene expression could also be associated with the expression
of LDOX. In addition, a single gene (gene ID: Vitvi19g01871) displayed the highest expressions in all
the samples at the véraison stage for the six varieties. The expression of this gene was much higher in
the three green varieties compared to the three red ones. GO molecular function annotation identified
it as a putative metallothionein-like protein with the ability to regulate the binding of copper ions to
zinc ions and the role of maintaining the internal stable state of copper ions at the cellular level. High
expression levels of this screened gene may play an important role in bud sport color of grape berry
skin at the véraison stage.

Keywords: grape; bud sport; RNA-Seq; MYB

1. Introduction
1.1. Bud Sport

Many of the fruits we eat every day are extremely heterozygous in nature [1]. The
genomes of fruit trees or vines are highly heterozygous, and in order to adapt to the natural
environment, some fruit trees gradually develop inbred incompatibility; as a result, some
of the excellent characteristics of fruit trees are lost. Most varieties of fruit trees, such as
peach, grape, and citrus, are self-compatible. Most varieties of apple, pear, sweet cherry,
and other fruit trees are self-incompatible, while male sterility sometimes occurs in grapes.
The VviINP1 gene was identified as related to male sterility in grapes [2]. In order to
maintain the excellent properties of fruit during production, asexual propagation (cuttings,
strips, and grafting) is used to maintain the exceptional characteristics of fruit [3]. Among
cultivation processes, some different mutative traits are observed in similar plants [4], and
some mutations are stable to inherit and are called bud sport [5].

Plant bud sport is related to somatic cell mutation that occurs in the cells of the
meristem of plant buds, usually expressed on branches, leaves, flowers, and fruits. The
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phenotype displayed by the bud sport is significantly different from that of the rest of
the plant [6]. In general, bud sport is produced by cell division in the apical meristem of
plants, which is triggered by mutations in the stable somatic cells of the first single cell
and then fills the cell layer and forms a stable chimera [7,8]. Mutation in this cell gradually
fill some or all of the meristem tissue during later stages of growth, and the mutation
can be transferred to offspring and can enable mutants to reproduce asexually [9]. Bud
sport brings certain types of new traits in the plant itself, while the original qualities of
the plant parents are retained, which shape a new mechanism of genetic mutation [10].
Different quantitative genetic studies have located the SDI 119 quantitative trait locus
(QTL) on linkage group (LG) 18, explaining up to 70% of phenotypic variance in the
120 seed content parameters. Looking into the potentials of grape varieties for table
purposes, mutation-breeding programs have started for other characteristics using chemical
and physical mutagens. This is very important for plants because not only the quality of
plants can be improved but also more economic value can be generated [11–13].

At present, researchers and growers have selected bud sport varieties that are related
to the early ripening, peel color, fruit size, and disease resistance of fruit trees according
to different needs [14]. For example, through natural selection, radiation, or colchicine
treatment, bud sports varieties related to early fruit ripening and peel color have been found
in apples and grapevines [15,16]. Bud sport varieties with enhanced disease resistance have
been found in peaches, plums, strawberries, and citrus [17–20], and varieties with enlarged
fruit and doubled chromosomes have been found in bananas and kiwifruit [21,22].

1.2. Fruit Color

In fruit trees or vines, especially in apples and grapevines, peel color acts as one of
the criteria for judging the ripeness of fruit, which is an important indicator and quality
parameter of fruits. Numerous examples of fruit berry skin and flesh types of bud sports
were reported [23]; the most common type of bud sport changes the color of the flesh or
berry skin. The color change in fruit is mainly related to the change in anthocyanin content.
Anthocyanins are secondary metabolites of flavonoids. In plants, flavonoids are believed
to have a variety of functions, including defense against light coercion. Anthocyanin com-
pounds play an important reproductive role as attractants in plant–animal interactions [24].
Changes in the contents of anthocyanins and synthetic pathways have been fully studied
through many plant experiments [25,26].

According to multifaceted verification, some key regulatory genes in the anthocyanin
synthesis pathway were analyzed [27]. In the early stages of the flavonoid biosynthesis
process, CHS generates chalcone from the 4-coumarinyl-CoA and malonyl-CoA substrates.
Chalcone isomerase catalyzes the formation of naringenin, which is the main metabolite
of other synthetic branches of this pathway. Downstream of the flavonoid biosynthetic
pathway, anthocyanins and leucine are common key substrates for the synthesis of antho-
cyanins and proanthocyanidins (PAs). Leucoanthocyanidin dioxygenase/anthocyanidin
synthase (LDOX/ANS) can convert leucoanthocyanins to anthocyanidins, and antho-
cyanidins can be further glycosylated by uridine diphosphate (UDP)-glucose to forming
flavonoid-O-glycosyltransferase (UFGT). O-methyltransferases (OMTs) catalyze the forma-
tion of O-methylated anthocyanins, such as petunidin, peonidin, and malvidin [28,29].

Most of the fruit and skin colors of different fruits, especially grape berries, are
associated with the MYB gene regulation of anthocyanins [30–32]. The biosynthesis
of fruit anthocyanins is controlled by a unique branching of R2R3 MYB transcription
factors. Normally, the MYB gene interacts with the bHLH transcription factor and the
WD40 complex protein to regulate the synthesis pathway of anthocyanins [33]. Studies
related to grapes and apples have shown that the change in fruit color is due to the insertion
of a reverse transcriptional transposon in the promoter region of MYB or is a deletion of the
MYB gene and its upstream alleles that causes the fruit peel or flesh color change. When
the MYB gene does not show expression or its related sequence alleles are missing, fruit
color cannot change to red, blue, or purple [34].
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1.3. Grape Bud Sport

Grapes (Vitis vinifera L.) are one of the most popular fruits in the world and are usually
consumed fresh, as well as in the form of several value-added products. The varieties of
grape are diverse, including color, fruit size, fruit type, aroma, and other characteristics
that show difference in quality. Among them, color is one of the most important quality
attributes for consumers. From the beginning, people have used fresh grapes and wine as a
source of transmission to spread grapes all over the world. However, with the development
of breeding technology, grape breeding started, and many somatic mutations associated
with the quality of grapes have been discovered. Many new grape varieties have been
developed through bud sport selection.

In the following figure, the color of line under a variety represents grape peel color:
green represents green varieties, red represents red varieties, and black represents black
and purple varieties.

The white grape ‘Italia’ could sport into red grapes of the ‘Ruby Okuyama’ and
‘Benitaka’ varieties. The red grape ‘Okuyama Ruby’ and the white grape ‘Rosario Bianco’
were crossed to produce the red grape ‘Rosario Rosso’. The white grape ‘Muscat of
Alexandria’ and the black-purple grape ‘Schiava Grossa’ were crossed to produce the
black-purple grape ‘Muscat Hamburg’. The hybridization of ‘Bicane’ white grapes and
‘Muscat Hamburg’ black-purple grapes produced the white grape ‘Italia’ (Figure 1).
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Figure 1. ‘Italia’ is associated with several grape bud sports and related relationship maps.

After thousands of years of natural hybridization and human selection, the color
of the berry skins of grapes has become very diverse [35]. According to the presence or
absence of anthocyanins in grape berry skin, which is divided into red and black or white
varieties, this phenotype is controlled by a single gene locus [29]. There are four MYBs
at this chromosome with two locations; at least two of these MYBs are mutated in white
grapes. Either VvMYBA1 or VvMYBA2 (or both) can regulate berry peel color. For white
grape, two mutations in the coding region of the VvMYBA2 allele cause its inactivation,
while it is not transcribed in white grapes due to the presence of retrotransposons in the
promoter region of VvMYBA1 [36,37]. This results in no accumulation of anthocyanins
or very minute accumulation, and the berry skins and flesh color change from dark to



Horticulturae 2023, 9, 260 4 of 16

light eventually. However, in some grape bud sport varieties, the deletion of the Gret1
retransposon restores the function of VvMYBA1, and this deletion makes the color of
grape berry skins and flesh white to black or purple [38]. However, some studies have
shown that, in yellow-green or white bud sports of ‘Cabernet Sauvignon’ [39], with the
exception of VvMYBA1, its homologous genes of VvMYBA2r, VlMYBA1-1, VlMYBA1-2,
and VlMYBA2 also regulate the synthesis of anthocyanins. In addition, there are functional
and nonfunctional genes among these homologous genes and alleles [26]. Researchers
found that, in white grapes, the allele of VvMYBA1 is homozygous, while the alleles of
VvMYBA1 in red or black grapes are heterozygous [40]. It can be seen in many MYB-related
genes in berries that play an important role in anthocyanin biosynthesis that the content of
anthocyanins and the color of berry flesh and peels might be regulated by these genes.

1.4. Transcriptome Sequencing

Bud sport has been studied in many fruits; however, the mechanism of bud sport
in grapes remains unclear. In order to understand the mechanism of berry peel color
in relation bud sport, we utilize RNA-Seq technology to compare the ‘Italia’, ‘Benitaka’,
‘Muscat of Alexandria’, ‘Flame Muscat’, ‘Rosario Bianco’, and ‘Rosario Rosso’ varieties by
selecting samples at 10 wpf (weeks post-flowering) and 11 wpf (12 samples in total). We
conclude that, in addition to UFGT, the expression of the LDOX gene may also correlate
with the expression of VvMYBA1/A2, and a new gene (gene ID: Vitvi19g01871) that exhibits
the highest expression of all the detected genes in white varieties might play an important
role at the véraison stage in ‘green-red’ bud sport berries.

2. Materials and Methods
2.1. Plant Materials

The research material (berries) used in this study was collected from the vineyard
at the Zhengzhou fruit research institute (China) during 2020. The varieties used in the
present research were ‘Italia’, ‘Benitaka’, ‘Muscat of Alexandria’, ‘Flame Muscat’, ‘Rosario
Bianco’, and ‘Rosario Rosso’. The vines were 10 years old with ‘Y’-shaped tree forms. The
berries of each cultivar were in the véraison stage, from 10 wpf (weeks post flowering)
to 11 wpf. The red varieties showed notable change in berry color at 11 wpf (Figure 2).
Three berries from the upper, middle, and lower parts of each cluster were selected from
six uniform clusters. The berry skins were peeled off quickly and frozen in liquid nitrogen
immediately. All frozen samples were stored at −80 ◦C for further analysis.

All the samples were allotted numbers as follows: It10 (‘Italia’ 10 wpf berries), It11
(‘Italia’ 11 wpf berries), Be10 (‘Benitaka’ 10 wpf berries), Be11 (‘Benitaka’ 11 wpf berries),
Ma10 (‘Muscat of Alexandria’ 10 wpf berries), Ma11 (‘Muscat of Alexandria’ 11 wpf berries),
Fm10 (‘Flame Muscat’ 10 wpf berries), Fm11 (‘Flame Muscat’ 11 wpf berries), Rb10 (‘Rosario
Bianco’ 10 wpf berries), Rb11 (‘Rosario Bianco’ 11 wpf berries), Rb11 (‘Rosario Rosso’
10 wpf berries), and Rr11 (‘Rosario Rosso’ 11 wpf berries) (as shown in Figure 2, respectively).

2.2. RNA Extraction and RNA-Seq

RNA was extracted from grape berry skins of different varieties using an RNA ex-
tract kit (Solebao Biotechnology Co., Ltd., Shanghai, China). The integrity of sample
RNA was detected with agarose gel, the purity and concentration of RNA were de-
tected with a NanoDrop-2000 instrument (Thermo Scientific, Waltham, MA, USA), and
the RQN value was tested with Agilent5300 software. Follow-up experiments could be
carried out when the RNA was not contaminated by impurities, such as pigment, pro-
tein, sugar, etc. The RQN ≥ 7, the brightness of 28/23S was greater than 18/16S, the
RNA concentration ≥ 100 ng/uL, the OD260/280 = 1.8~2.2, the OD260/230 ≥ 2, and the
total yield of RNA (>1 µg) met the requirements of two RNA libraries.

A Takara RT reagent kit (Takara, Shanghai, China) was used for cDNA and double-
strand cDNA synthesis. RNA-Seq libraries were constructed using a TruSeq RNA sample
prep kit v2 (Illumina, San Diego, CA, USA). The sequencing process was performed
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with an Illumina HiSeq 4000 SBS kit (300 cycles) system (Shanghai Majorbio Bio-pharm
Biotechnology Co, Shanghai, China).
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2.3. Transcriptome Sequencing and Analysis

SeqPrep (https://github.com/jstjohn/SeqPrep, accessed on 12 February 2022) and
Sickle (https://github.com/najoshi/sickle, accessed on 12 February 2022) were used
for trimming the adaptors of raw reads and quality control of the raw reads to ob-
tain high-quality reads. The clean reads were aligned to a reference genome (refer-
ence genome version: 12X.v2, website source: https://urgi.versailles.inra.fr/Species/
Vitis/Data-Sequences/Genome-sequences, accessed on 14 February 2022) with HISAT2
(http://ccb.jhu.edu/software/hisat2/index.shtml, accessed on 14 February 2022) software,
and the mapped reads of each sample were assembled with StringTie (https://ccb.jhu.edu/
software/stringtie/index.shtml?t=example, accessed on 15 February 2022). To identify
DEGs (differential expression genes) between two different samples, the expression level
of each transcript was calculated according to the transcripts per million reads (TPM)
method. RSEM (http://deweylab.biostat.wisc.edu/rsem/) was used to quantify gene
abundances. The DEG analysis was performed using DESeq2/DEGseq/EdgeR with Q
values (adjusted p-value ≤ 0.05, DEGs with |log2FC| > 1 and Q value ≤ 0.05 (DESeq2
or EdgeR)/Q value ≤ 0.001 (DEGseq) that were considered to be significantly different ex-
pressed genes. The output of normalized TPM values and the DEG analysis were performed
using the Majorbio cloud platform (Shanghai Majorbio Bio-Pharm Technology Co., Ltd.).

https://github.com/jstjohn/SeqPrep
https://github.com/najoshi/sickle
https://urgi.versailles.inra.fr/Species/Vitis/Data-Sequences/Genome-sequences
https://urgi.versailles.inra.fr/Species/Vitis/Data-Sequences/Genome-sequences
http://ccb.jhu.edu/software/hisat2/index.shtml
https://ccb.jhu.edu/software/stringtie/index.shtml?t=example
https://ccb.jhu.edu/software/stringtie/index.shtml?t=example
http://deweylab.biostat.wisc.edu/rsem/
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2.4. Statistical Analysis

A correlation analysis was performed among VvMYBA1, VvMYBA2, VvMYB5a,
VvMYB5b, VvMYBPA1, and grape pericarp anthocyanin synthesis genes using the tran-
scription group TPM value at the level of |r| > 0.7 and p < 0.05. Expression level was
significantly related to the genes. Pearson’s correlation coefficient was used to measure the
correlation between two random variables. The closer the Pearson value to 1, the higher
the similarity of gene expression between samples, and the better the correlation between
the samples.

SPSS v26.0 (Chicago, IL, USA) was used for the significance and correlation analysis of
MYB-related regulatory genes related to anthocyanin synthesis structural genes data and
correlation between anthocyanin synthesis structural genes and VvMYBA1 and VvMYBPA1
regulatory genes in two bud sport groups data.

3. Results
3.1. Quality Control Data Statistics

The total number of raw sequencings reads of each sample ranged from 41,748,704 to
48,476,130 among all the samples. After removing the low-quality reads, the average error
rate of the sequencing bases of the clean reads after quality control was less than 0.026%.
The percentage of the samples reaching Q20 quality reads was more than 97.74%, and the
Q30 percentage was more than 93.32% among all the sequence data. The G and C base
ratios were 45.96% and 47.01% of the total bases, respectively. The sequence alignment rates
of clean reads matched with the reference genome ranged from 78.27% to 93.11% (Table 1).

Table 1. RNA-Seq data quality of all 12 varieties.

Sample Name Raw Reads Clean Reads Error Rate (%) Q20 (%) Q30 (%) GC Content (%) Total Mapped

Be10 42,647,782 42,347,510 0.0245 98.26 94.66 46.27 34,536,653 (81.56%)

Be11 45,278,732 44,781,572 0.0254 97.85 93.73 47.01 35,050,465 (78.27%)

Fm10 45,595,408 45,132,012 0.0252 97.96 93.93 46.53 41,466,312 (91.88%)

Fm11 42,127,462 41,834,580 0.0248 98.11 94.32 46.74 38,000,195 (90.83%)

It10 41,804,432 41,371,026 0.0247 98.14 94.45 46.51 38,519,065 (93.11%)

It11 48,476,130 48,148,376 0.025 98.06 94.16 45.96 44,559,329 (92.55%)

Ma10 46,362,636 46,058,214 0.0248 98.1 94.28 46.4 41,828,638 (90.82%)

Ma11 47,352,198 46,978,274 0.0251 97.98 94 46.36 42,739,595 (90.98%)

Rb10 41,748,704 41,378,660 0.0252 97.95 93.95 46.35 37,569,526 (90.79%)

Rb11 43,902,394 43,576,488 0.0249 98.06 94.18 46.04 40,136,365 (92.11%)

Rr10 43,522,364 43,177,256 0.0249 98.06 94.22 46.48 39,821,925 (92.23%)

Rr11 42,739,842 42,458,930 0.0246 98.19 94.51 46.57 38,767,709 (91.31%)

(1) Raw reads: the total number of the raw sequencing data; (3) clean reads: the total number of clean sequencing
data after quality filtering; (4) error rate (%): the average error rate of the sequencing base corresponding to the
quality-filtered data, usually below 0.1%; (5) Q20 (%) and Q30 (%): base or read quality assessment parameters,
Q20 and Q30 refer to the percentage of total bases with sequencing qualities of 99% and 99.9% above, respectively.
Q20 is usually above 85% and Q30 is above 80%; (6) GC content (%): the percentage of G and C bases corresponding
to the quality control data as a percentage of the total bases; (7) total mapped: the number of clean reads that can
be matched on the genome.

3.2. Differentially Expressed Gene (DEG) Analysis

Through the differential expression analysis of the RNA-Seq data, 3124 DEGs were
selected between It11 wpf (‘Italia’ grape skin samples at 11 weeks post-flowering) and
It10 wpf. Compared to Be10 wpf, a total of 2707 DEGs were selected in Be11 wpf. In
addition, 1766 DEGs were found between Ma11 wpf and Ma10 wpf, with 1716 DEGs
between Fm11 wpf and Fm10 wpf. Rb11 wpf showed a total of 1640 DEG compared with
Rb10 wpf, and Rr11 wpf showed 1579 DEGs compared with Rr10 wpf. The number of
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upregulated DEGs at the véraison stage (10 wpf to 11 wpf) was greater than the number
of downregulated DEGs among the three white varieties of ‘Italia’, ‘Muscat of Alexan-
dria’, and ‘Rosario Bianco’, while in red-colored varieties, ‘Benitaka’ and ‘Flame Muscat’
both showed lower upregulated DEG numbers at the véraison stage. Be10 wpf showed
1731 DEGs compared to It10 wpf, Fm10 wpf displayed 2790 DEGs compared to Ma10 wpf,
and Rr10 wpf had 2962 DEGs compared to Rb10 wpf. For bud sport varieties in ‘Benitaka’,
‘Italia’, ‘Flame Muscat’, and ‘Muscat of Alexandria’, more upregulated DEG numbers were
found at 10 wpf. Be11 wpf had a total of 2074 DEGs compared to It11 wpf, while 2000 DEGs
were screened between Fm11 wpf and Ma11 wpf. Rr11 wpf had 3282 DEGs compared to
Rb11 wpf. Among three comparisons of ‘Benitaka’ versus ‘Italia’, ‘Flame Muscat’ versus
‘Muscat of Alexandria’, and ‘Rosario Rosso’ versus ‘Rosario Bianco’, more downregulated
DEG numbers were found at 11 wpf (Table 2).

Table 2. The numbers of DEGs among difference comparison groups.

Difference Comparison
Group

Total DEG
Number

Upregulated DEG
Number

Downregulated
DEG Number

It10_vs_It11 3124 1941 1183
Be10_vs_Be11 2707 1114 1593
It10_vs_Be10 1731 1095 636
It11_vs_Be11 2074 925 1149

Ma10_vs_Ma11 1766 1090 676
Fm10_vs_Fm11 1716 505 1211
Ma10_vs_Fm10 2790 1531 1259
Ma11_vs_Fm11 2000 551 1449
Rb10_vs_Rb11 1640 1152 488
Rr10_vs_Rr11 1579 865 714
Rb10_vs_Rr10 2962 931 2031
Rb11_vs_Rr11 3282 936 2346

3.3. Correlation Analysis among Each Sample

The Pearson correlation coefficient between It10 wpf and It11 wpf was close to 1,
and It10 showed a positive correlation with It11. The Pearson correlation coefficients
between It11 and Ma11 and between It11 and Rb11 wpf were also close to 1. The three
white varieties of ‘Italia’, ‘Muscat of Alexandria’, and ‘Rosario Bianco’ showed good
correlation (>0.8) at 11 wpf as well. The correlation coefficients between Ma10 wpf
and Ma11 wpf and between Rb10 wpf and Rb11 wpf were close to 1, with ‘Muscat of
Alexandria’ and ‘Rosario Bianco’ closely correlated. The correlation between the three
red varieties of ‘Benitaka’, ‘Flame Muscat’, and ‘Rosario Rosso’ was low between 10 wpf
to 11 wpf (Figure 3).

3.4. Gene Expression Level of VvMYBA1 in Berry Skins

The log2FC value was used to compare the expression levels of VvMYBA1 in the
comparisons of the GC10_vs_RC10 group and the GC11_vs_RC11 group. The results
showed that log2FC >7, which means that the expression levels of the VvMYBA1 gene
in the three red varieties were much higher than those in three green varieties. In the
comparison of the GC10_vs_GC11 group, the log2FC value was only 1.26, and VvMYBA1
just reached the differential expression level (if the screening parameter was log2FC > 1.5,
then it was not significant). In the comparison of the RC10_vs_RC11 group, the log2FC
value was 1.95, and the expression of the VvMYBA1 gene was significantly different
(Figure 4).
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Figure 4. Differences in VvMYBA1 expressions in red and white grape berry skins. ‘GC’ represents
three green cultivars; ‘RC’ represents three red cultivars. a, b represent the significant level between
the data (p < 0.05).

3.5. Anthocyanin-Synthesis-Related Gene Expression Analysis

Charenone synthase (CHS) is the first key enzyme of the flavonoid pathway. The gene
expression in ‘Benitaka’ was higher at 10 wpf than at 11 wpf, and the gene expression level
of Rr was lower at 10 wpf than 11 wpf. The expression level of the CHS-encoding gene
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VvCHS was significantly different at the véraison stage for ‘Benitaka’ and ‘Rosario Rosso’
compared with other varieties. The TPM values of VvCHS in berry skins at the véraison
stage during the transition period of ‘Benitaka’ were higher than those of ‘Italia’ (Figure 5A).
Chalcone isomerase (CHI) catalyzed the isomerization of chalcone rings to form colorless
flavonoids, and there was no significant difference in the expression of the coding gene
VvCHI between 10 wpf and 11 wpf for each cultivar (Figure 5B). Flavanone 3-hydroxylase
(F3H) is one of the key enzymes in the biosynthetic pathway of anthocyanins, while F3H,
F3’H, and F3′,5′H participate in the regulation of two branches of anthocyanin biosynthesis
and the F3′H-controlled pathway for the synthesis of red anthocyanins. F3′,5′H, on the
other hand, regulates the synthesis of blue-violet delphinidin. The expression level of
the F3′H-encoding gene VvF3′H was low in each sample, and there was no significant
difference between 10 wpf and 11 wpf (Figure 5C). The F3′,5′H-encoding genes of VvF3′

and 5′H were not expressed in It 10 wpf and Rr10 wpf, and the expressions of VvF3′, 5′H in
the grape berry skins of the two mutated red varieties, ‘Benitaka’ and ‘Flame Muscat’, were
higher than in ‘Italia’ and ‘Rosario Bianco’ (Figure 5D). In addition, the expression level of
VvF3H in ‘Benitaka’ was obviously higher than that in ‘Italia’, and the expression of the F3H-
encoded gene VvF3H at 10 wpf and 11 wpf for each sample was very low and displayed
no difference in each cultivar (Figure 5E). The expression level of the FLS-encoding gene
VvFLS showed greater variation in the skin of the ‘Benitaka’ during véraison.
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Figure 5. Anthocyanin synthesis structure gene and regulatory gene expression analysis of six vari-
eties. (A) CHS, chalcone synthase; (B) CHI, chalcone isomerase; (C) F3′H, flavonoid 30-hydroxylase;
(D) F3′5′H, flavanone3′,5′-hydroxylase; (E) F3H, flavanone 3-hydroxylase; (F) FLS, flavonol synthase;
(G) DFR, dihydroflavonol 4-reductase; (H) LDOX, leucoanthocyanidin dioxygenase; (I) LAR, leucoan-
thocyanidin reductase; (J) UFGT, anthocyanidin 3-O-glucosyltransferase; (K–O) MYBA1, MYBA2,
MYB5a, MYB5b, MYBPA1, transcription factor encode genes, belonging to the R2R3 Myb family,
which controls the last steps in the anthocyanins biosynthesis pathway.

Leucoanthocyanidin dioxygenase (LDOX) and UFGT successively catalyzed the oxi-
dation of colorless proanthocyanidins to form colored delphinidin or anthocyanins and the
glycosylation of catalytically unstable anthocyanins to form various stable anthocyanins.
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The expression levels of the LDOX-encoding gene VvLDOX, the UFGT-encoding gene
VvUFGT, and the regulatory genes VvMYBA1 and VvMYBA2 in the pericarps of the three
red varieties were higher than those of the white varieties. Both the VvUFGT and VvMYBA
genes were hardly expressed in the three white varieties during the véraison period
(Figure 5H,J–L). The expressions of regulatory genes VvMYBA5a and VvMYBPA1 in the
10 wpf grape berry skins of each cultivar were higher than at 11 wpf (Figure 5M,O).

3.6. Correlation Analysis between Anthocyanin-Synthesis-Related Structural Genes and
VvMYBA1 and VvMYBPA1 Regulatory Genes among Bud Sport Varieties

In the ‘Italia’ vs. ‘Benitaka’ bud sport group, VvMYBA1 and VvUFGT showed a sig-
nificant positive correlation, and VvMYBA1 may directly regulate VvUFGT expression to
regulate anthocyanin synthesis. VvMYBA1 was positively correlated with VvCHS, VvCHI,
VvF3H, and VvLDOX in the ‘Muscat of Alexandria’ vs. ‘Flame Muscat’ bud sport group,
while VvMYBA1 was not significantly correlated with VvUFGT (Figure 6A,B). The mecha-
nism of VvMYBA1 regulation of the anthocyanin synthesis pathway in the pericarp was
different between the ‘Italia’ vs. ‘Benitaka’ bud sport group and the ‘Muscat of Alexandria’
vs. ‘Flame Muscat’ bud sport group. The gene expressions of VvMYBPA1 and VvFLS in
the ‘Italia’ vs. ‘Benitaka’ bud sport group were positively correlated, and VvMYBPA1 may
directly regulate the expression of VvFLS. There was no significant correlation between
VvMYBPA1 and anthocyanin synthesis structural genes in the bud sport group of ‘Muscat
of Alexandria’ vs. ‘Flame Muscat’, which may not be directly involved in the regulation of
anthocyanin synthesis (Figure 6C,D).
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Figure 6. Correlation between anthocyanin synthesis structural genes and VvMYBA1 and VvMYBPA1
regulatory genes in two bud sport groups. (A) Correlation between anthocyanin synthesis structural
genes and VvMYBA1 regulatory gene in ‘Italia’ vs. ‘Benitaka’ bud sport group; (B) ‘Muscat of Alexan-
dria’ vs. ‘Flame Muscat’ bud sport group anthocyanin synthesis structural genes and VvMYBA1
regulatory gene correlation; (C) correlation between anthocyanin synthesis structural genes and
VvMYBPA1 regulatory gene in ‘Italia’ vs. ‘Benitaka’ bud sport group; (D) ‘Muscat of Alexandria’ vs.
‘Flame Muscat’ bud sport group anthocyanin synthesis structural genes associated with VvMYBPA1
regulatory gene. ‘*,**’ represents the two groups of data reached a significant level, ‘*’ represents
p < 0.05, ‘**’ represents p < 0.01.
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3.7. Correlation Analysis of MYB-Related Regulatory Genes and Anthocyanin Synthesis Structure

VvMYB5a and VvMYB5b were not significantly associated with structural genes in
the anthocyanin synthesis pathway, which may not be directly involved in regulating
the synthesis of anthocyanins. VvMYBPA1 showed significant correlations with VvCHS,
VvF3′H, VvF3H, VvFLS, and VvLAR, which may directly regulate the flavonoid pathway,
anthocyanin synthesis, flavonol synthesis, and catechol synthesis in the anthocyanin synthe-
sis pathway. VvMYBA1 was positively correlated with VvF3′5′H, VvLDOX, and VvUFGT,
which may be directly involved in regulating the synthesis of anthocyanins and regulating
the UFGT catalytic formation of stable anthocyanin pathways. VvMYBA2 was not signif-
icantly associated with structural genes in the anthocyanin synthesis pathway (Table 3,
Figure 7). Among these, the regulation of VvMYBA2 and VvMYB5a was not clear, while
synthetic genes regulated by VvMYBPA1 and VvMYBA1 were clearly known.

Table 3. MYB-related regulatory genes related to anthocyanin synthesis structural genes. ** represents
p < 0.01.

Gene VvMYB5a VvMYB5b VvMYBPA1 VvMYBA1 VvMYBA2

VvCHS 0.194 0.154 0.731 ** 0.384 0.231
VvCHI −0.109 0.075 0.665 0.544 0.306
VvF3’H 0.459 0.487 0.839 ** 0.431 0.22

VvF3’5’H −0.09 0.33 0.349 0.747 ** 0.481
VvF3H 0.24 0.184 0.709 ** 0.585 0.222
VvFLS 0.468 0.263 0.873 ** 0.121 −0.059
VvDFR 0.231 -0.09 0.663 0.374 0.007

VvLDOX 0.029 0.187 0.548 0.756 ** 0.459
VvUFGT −0.152 0.007 0.304 0.831 ** 0.468
VvLAR 0.5 0.078 0.752 ** −0.246 −0.295
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Figure 7. The relationships between the expression color scale of anthocyanin synthesis structural
genes and regulatory genes in grape peels and the regulation of the MYBA gene. The blue dotted
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tory gene; the ‘?’ indicates that the regulatory mechanism of the regulatory gene is not yet clear; the
green-to-red color scale means the TPM values showed an increasing trend.
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3.8. Screening of Genes Involved in the Regulation of Metal Ion Binding

When screening by sorting all gene expression levels (TPM values) in the three white
grape varieties, a gene located on chromosome 19 (gene ID: Vitvi19g01871) was found to
show the highest expression level. Its expression level was much higher than those of other
genes, and the gene was highly expressed (almost the maximum) in the three red varieties.
Interestingly, the expression levels of this gene in the pericarps of the three white the three
red varieties during the same period were also different (Figure 8). From the comparison
of 10 wpf and 11 wpf, this gene was upregulated at 11 wpf compared with 10 wpf in the
white cultivar ‘Italia’, while the opposite was found in ‘Muscat of Alexandria’ and ‘Rosario
Bianco’ (Figure 8). In the red varieties of ‘Benitaka’ and ‘Rosario Rosso’, the expression
levels at 11 wpf were downregulated compared with 10 wpf, while the expression in ‘Flame
Muscat’ was higher (Figure 8). According to the functional annotation, it was inferred that
this gene encodes a metallothionein-like protein, which regulates the binding of copper
ions and zinc ions. Copper ions are related to the synthesis of chlorophyll, which may have
a certain impact on the change in peel color at the véraison stage.
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Figure 8. (A) ‘Italia’ ‘Benitaka’ TPM value almost top 10 of gene expression 10 wpf; (B) ‘Italia’
‘Benitaka’ TPM value almost top 10 of gene expression 11 wpf; (C) ‘Muscat of Alexandria’ ‘Flame
Muscat’ TPM value almost top 10 of gene expression 10 wpf; (D) ‘Muscat of Alexandria’ ‘Flame
Muscat’ TPM value almost top 10 of gene expression 11 wpf; (E) ‘Rosario Bianco’ ‘Rosario Rosso’
TPM value almost top 10 of gene expression 10 wpf; (F) ‘Rosario Bianco’ ‘Rosario Rosso’ Top TPM
value almost top 10 of gene expression 11 wpf. The green line represents the TPM values of white
cultivars; the black line represents the TPM values of red and black cultivar.
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4. Discussion

In recent years, it has been observed that many important fruit varieties are selected
by bud sport [41,42]. According to statistics, there have been thousands of bud sport types
on fruit trees, and some fruit trees can form a variety of bud sports. Due to the particularity
of each bud sport, it brings certain characteristics in germplasm resources during fruit
production and breeding. Therefore, this is an important approach used in the breeding of
fruit crops.

The present study revealed that VvMYBA1 showed elevated expression levels in the
three red sport varieties at 10 wpf compared to three white varieties. In addition, after
11 wpf there were significantly higher VvMYBA1 gene expression levels compared with the
white cultivar grapes (Figure 4B). The VvMYBA1 gene was proved to be a key transcription
factor regulating color change in grape berry skins [43]. The VvMYBA1 gene was expressed
only in red berries, while it was hardly expressed in white berries (Figure 5K).

According to a correlation analysis, the majority of genes or enzymes related to the an-
thocyanin synthesis pathway were significantly correlated with VvMYBPA1 and VvMYBA1
(Table 3). Among them, five genes showed significant correlations with various genes, such
as VvMYBPA1, VvCHS, VvF3′H, VvF3H, VvFLS, and VvLAR. Significant correlations of
VvF3′5′H, VvLDOX, and VvUFGT with VvMYBA1 were observed in our study.

The expression of the flavonoid 3-O-glucosyltransferase (UFGT) gene is essential for
anthocyanin biosynthesis in grapes [44]. The VvMYBA1 gene normally regulates the expres-
sion of VvUFGT, a key upstream gene of anthocyanin synthesis [45] considered to be the
last step for catalyzing anthocyanin synthesis in the anthocyanin biosynthesis pathway [46],
and both are very important in the formation of grape skin color. The RNA-Seq results
indicated that the expression trends of VvUFGT in the three red varieties were consistent;
among them, the expression level in ‘Benitaka’ was significantly higher than in the other
two varieties and was not expressed in white grape varieties (Figure 5J). The above results
are consistent with the results of a previous study conducted on ‘Italia’, ‘Benitaka’ and
‘Flame Muscat’ [5]. The Pearson’s correlation analysis showed that VvMYBA1 and VvUFGT
were highly correlated with the same expression trend (Figure 5J,K). The results also indi-
cated that VvMYBA1 positively regulated the VvUFGT gene and played an important role
in the biosynthesis of anthocyanins.

According to previous reports on anthocyanin synthesis in apples and bilberries, it was
found that MYBPA1 could also regulate the expression of UFGT [47]. In this experiment,
the correlation between these two genes was not high. This may explain why, among the
three groups of varieties (the ‘Italia’ vs. ‘Benitaka’ group, the ‘Muscat of Alexandria’ vs.
‘Flame Muscat’ group, and the ‘Rosario Bianco’ vs. ‘Rosario Rosso’ group), MYBPA1 was
not a key transcription factor regulating UFGT and the anthocyanin biosynthesis pathway.
Its specific regulatory mechanism still needs further study.

MYBPA1 plays an important role in the anthocyanin biosynthesis pathway, and the
expression of MYBPA1 is positively correlated with anthocyanin accumulation [48]. In blue
bilberries, the MYBPA1 and MYBA transcription factors can activate the expression of DFR
and ANS genes in the anthocyanin biosynthesis pathway, which are considered key genes
for anthocyanin biosynthesis [49]. In this study, the expression levels of the VvMYBPA1 gene
in the two groups of bud sport varieties of ‘Italia’ vs. ‘Benitaka’ and ‘Muscat of Alexandria’
vs. ‘Flame Muscat’ were higher at 10 wpf compared with 11 wpf, while this gene was not
expressed in the ‘Rosario Bianco’ vs. ‘Rosario Rosso’ group (Figure 5O). The expression
trends of five structural genes (VvCHS, VvF3’H, VvF3H, VvFLS, and VvLAR, Table 3) related
to VvMYBPA1 were different in the three groups of tested varieties (Figure 5A–E,I). The
phylogenetic analysis depicted that the flavonoid-related R2R3 MYBs of VmMYBPA1 and
VvMYBPA1 belonged to the same group. VmMYBPA1 could regulate the expression of CHS
and significantly regulated the expression of the F3′5′H gene, while VmMYBPA1 expression
was significantly decreased in white mutant berries compared with blueberries [50], which
indicates that it was related to anthocyanin biosynthesis. The expression level of MYBPA1 is
associated with the accumulation of proanthocyanidins (PA) during the early development
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of grape berries. The expression level of MYBPA1 was lower before the véraison stage
and peaked at two weeks following the véraison stage, later showing a low expression
level. MYBPA1 activates the promoters of LAR and ANR in grapes [51]. The expression of
VvMYBPA1 was opposite to that of VmMYBPA1, as expressed in ‘Italia’. This is in contrast
to previous studies showing no expression observed in white grape varieties. A previous
study also found that VvMYBPA1 could also be expressed in seeds [52]. The above results
might indicate that the pathway or regulation mechanism of the MYB gene in anthocyanin
synthesis is different in diverse species.

The gene expression analysis showed that the expression of VvLDOX was consistent
with the expression trends of VvMYBA1 and VvUFGT in other test materials, except for
in ‘Italia’ (Figure 5H,J–K). LDOX has a unique expression pattern in the biosynthesis of
anthocyanin in grape peels, and its expression levels were very high in red or black peels,
which was related to the content of anthocyanin. UFGT is present in many tissues of grape,
as well as in the skins of white and red grape varieties, while the expression of LDOX is
not as absolute as UFGT [53]. VvMYBPA1 was found to activate VvLDOX expression in
grapes [49], and this result suggested that the expression of VvLDOX in ‘Italia’ may be
related to the regulation of VvMYBPA1, while there was no significant correlation between
VvMYBPA1 and VvLDOX.

In addition to the above results, an interesting point found in this study was the
gene located on chromosome number 19 (Gene ID: Vitvi19g01871). The gene expression
levels (TPM values) of green varieties at 10 weeks and 11 weeks post-flowering were
between 64,711–168,489 and 78,173–127,381, respectively. The expression levels of red
grape varieties at 10 weeks and 11 weeks post-flowering were between 39,130–59,249 and
28,319–67,849, respectively. The expression levels of this gene in green varieties were much
higher than those in red varieties, as well as much higher than all the other differentially
expressed genes (Figure 8). The gene was annotated by GO molecular gene function as a
metallothionein-like protein that regulates the binding of copper ions to zinc ions. Copper
ions play an important role in the redox of plant respiration and are related to chlorophyll
synthesis, which is important for photosynthesis. Increased photosynthesis and chlorophyll
lead to excessive chlorophyll accumulation in grape peel cells. However, its mechanism of
action in the process of bud sport peel color and anthocyanin synthesis is still unclear, and
the function of this gene needs to be further verified at molecular or cellular levels.

5. Conclusions

In this study, it was found that MYBA1/2 and MYBPA1, the key genes involved
in anthocyanin synthesis in grapes, were highly expressed in red grape varieties, and
their expression levels in white grapes were significantly lower than in red grapes. The
expressions of UFGT and LDOX genes were positively correlated with the key peel-color-
related gene of MYBA. A newly discovered gene (gene ID: Vitvi19g01871) in this study
may play a key regulatory role in grape skin coloration.
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