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Abstract: Somatic hybridization has emerged as a valuable tool for developing novel genetic com-
binations in citrus breeding programs, including the creation of salt-tolerant rootstocks. In this
study, the performance of a tetraploid somatic hybrid, obtained by fusing protoplasts derived from
salt-tolerant Cleopatra mandarin (Citrus reshni hort. ex Tanaka) and salt-sensitive Carrizo citrange
(Citrus sinensis L. Osbeck × Poncirus trifoliata L. Raf), was assessed under in vitro salt stress. Hybrid
plants were characterized by leaf morphology, and ploidy level by flow cytometry and molecular
markers. In vitro shoots were generated from the micropropagation of mature stem pieces of the
somatic hybrid and its parents, and these were challenged by exposure to NaCl (0, 50, or 100 mM)
supplemented to the media for three weeks to induce salt stress. The leaves of the somatic hybrid
display intermediate morphology compared to the parental Cleopatra mandarin and Carrizo citrange
rootstocks. All molecular markers successfully amplified DNA from the three cultivars; however,
only 11 of 14 unequivocally confirmed somatic hybridity. The physiological and biochemical pa-
rameters, including chlorophyll content, lipid peroxidation, total phenolic compounds, antioxidants
activity and proline content, were measured in the leaves. The somatic hybrid exhibited superior salt
stress tolerance compared to the parent varieties, as evidenced by the reduced cellular membrane
damage indicated by the lower levels of malondialdehyde and electrolyte leakage, particularly under
100 mM NaCl treatment. The somatic tetraploid hybrid also displayed higher total phenolic content
than either parent, while Cleopatra mandarin exhibited the highest proline levels under 50 mm NaCl.
These results demonstrate the enhanced salinity stress tolerance of the somatic hybrid compared to
its parent lines, highlighting its potential as a valuable candidate for developing salt-tolerant citrus
rootstocks.

Keywords: citrus rootstocks; flow cytometry; salt stress tolerance; somatic hybridization; tetraploids

1. Introduction

Citrus, a prominent fruit crop belonging to the Rutaceae family, includes a variety
of well-known fruits such as oranges, lemons, limes, grapefruits, and tangerines [1]. The
citrus genus encompasses several tropical and subtropical species that are highly sensitive
to environmental stressors, thereby restricting their distribution to specific latitudes [2]. The
detrimental effects of these stresses are further compounded by climate change and global
warming, which are predicted to result in extreme weather events such as heavy rainfall,
droughts, rising temperatures, sea-level rise, and more frequent cold and heatwaves. These
conditions pose a threat to citriculture sustainability in various regions and impair citrus
growth, reduce fruit production, and cause significant economic losses [3–7].

Salinity, among these stressors, leads to increased osmotic pressure and reduced water
availability in the root zone [8]. Moreover, elevated ion levels associated with salinity can
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lead to toxicity and nutrient imbalance in plants. The excess of ions also disrupts the electron
transport chain and impacts the functionality of mitochondria and chloroplasts [9,10]. As a
consequence, the cell experiences excitation or incomplete reduction in molecular oxygen,
leading to an excessive production of reactive oxygen species (ROS) [11,12].

Various agricultural approaches are employed to mitigate the negative impact of
environmental stresses on crop production. These strategies encompass the implementa-
tion of optimal fertilization and irrigation methods [13–15], the utilization of conventional
breeding techniques to enhance plant performance [7], and the application of genetic trans-
formation methods to create novel genotypes with specific salt tolerance attributes [16]. The
development of suitable rootstock plays a critical role in citrus production systems [17]. The
citrus breeding program at the University of Florida has successfully generated numerous
rootstocks, including both diploid and tetraploid varieties [18].

Somatic hybridization plays a crucial role in the breeding and enhancement of citrus
cultivars [19–22]. Through the protoplast-mediated fusion process, citrus autotetraploid
and allotetraploid parents can be generated by combining selected diploid varieties with
great success [23,24]. The tetraploid citrus progenies can serve directly as improved root-
stock cultivars [25,26], and they can also be utilized in the development of seedless triploid
cultivars [24]. This technique enables the generation of extensive genetic diversity in off-
spring, making it a powerful tool for creating horticulturally desirable cultivars that may
possess many of the necessary tolerance traits [24,27].

Cleopatra mandarin had significant commercial value as a rootstock in Florida due to
its commendable tolerance to tristeza, exocortis, xyloporosis, salinity, cold, calcareous soils,
and a low incidence of citrus blight [28]. However, limitations arise when using Cleopatra
mandarin as a rootstock, including its susceptibility to nematodes and Phytophthora, as
well as the reduced productivity of young trees grafted onto this rootstock [28]. Previous
studies have identified Cleopatra mandarin as a rootstock with salt tolerance capabili-
ties [29]. Previous studies have observed changes in metabolite profiles, including the
accumulation of photoprotective antioxidant secondary metabolites, in Cleopatra mandarin
under stress conditions [7]. This metabolic response was interpreted as an activation of en-
ergy metabolism and stress-mitigating pathways in Cleopatra mandarin, whereas Carrizo
citrange exhibited the enzymatic means to cope with oxidative stress, thereby preventing
the excessive accumulation of antioxidant metabolites [30].

It was hypothesized that a tetraploid somatic hybrid obtained by fusing Cleopatra
mandarin with Carrizo citrange protoplasts can inherit the tolerance traits of each parent,
respectively. This somatic hybrid may better tolerate salinity and oxidative stresses syn-
ergistically. This hypothesis was tested by assessing the physiological and biochemical
performance of this somatic hybrid to salt stress in comparison to its parent plants under
controlled laboratory conditions.

2. Materials and Methods
2.1. Plant Materials and Growth Conditions

A somatic hybrid was previously produced by fusing Cleopatra mandarin protoplasts
obtained from embryogenic cell suspension cultures with Carrizo citrange protoplasts
obtained from leaf mesophyll tissues [22] according to the protocol outlined by Grosser and
Gmitter [31,32]. Certified mature cuttings from the somatic hybrid and its parents, free of
known plant pathogens, were obtained from trees maintained by the Florida Department
of Agriculture and Consumer Services (DPI) for subsequent analyses.

2.2. Flow Cytometry and Leaf Morphology Analysis

Ploidy analysis was performed using a tabletop CyFlow® Cube 6 flow cytometer
(Sysmex America, Inc., Lincolnshire, IL, USA). A small leaf piece (approximately 0.4 cm2)
was chopped with a sharp blade in nuclei extraction buffer. This mixture was strained
through a 45 µm nylon mesh screen and stained with fluorescent dye (DAPI) as per the
instructions provided in a CyStain UV Precise P Automate kit. The position of the 2 N
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peak was determined from nuclear DNA obtained from a known diploid standard on the
machine’s histogram. Diploid and tetraploid leaves were collected from mature trees. The
leaf area was measured using ImageJ software to scanned photos at uniform A4 paper
Twenty leaves randomly selected for image capturing per cultivar were analyzed.

2.3. Somatic Fusion Confirmation Using Simple Sequence Repeat (SSR) Marker Analysis

DNA was extracted from 100 mg of fresh leaves using the GeneJET Plant Genomic
DNA Purification Mini Kit (Thermo Fisher Scientific, Waltham, MA, USA) following
the manufacturer’s protocol. The concentration of the extracted DNA was determined
using a Nanodrop spectrophotometer and adjusted to a normalized concentration of
25 ng/µL. For the study, 14 SSR primer sets synthesized by Operon Technologies were
utilized. PCR amplifications were performed using the T100™ Thermal Cycler by Bio-Rad
Laboratories, Hercules, CA, USA and fragment separation was carried out using the ABI
PRISM 3130 xl Genetic Analyzer (Applied Biosystems, Waltham, MA, USA). The forward
SSR primers in Table 1 were modified with a fluorescently labeled universal M13 primer
(5′–GTTGTAAAACGACGGCCAGT–3′). Analysis of SSR markers was performed using
the SoftGenetics GeneMarker 3.0.1 software (SoftGenetics LLC., State College, PA, USA).

Table 1. List of the primer sequences used for the SSR characterization of regenerated somatic hybrid
and the parents.

Primer Forward and Reverse Primer Sequences (5′ to 3′)

CX6F04
AGTGAACTGTCCATTGGATTTTCG
GTGTTGAATCCCGACCTTCTACC

CX6F29
TTCACCACAAACGAAGACTCAGAC
CTGTAATCCACTCGGTAATCCGAC

CX5F57
CCTCGCCAATGACCTTTGTATTTA
CAATACGTTTGGGTTCTAGTTCCG

CX0010
AACCGAAGATGGAGGGAACT
ACATTCATGGCCACATCTCA

CX0035
CCATTAACGAGAAAACCAAACA
CAAAAAGGGGTTGCAAAGAA

CX2021
AAGGTCATGTCTTTAGCACTTTGA
CAAGTTGCCAATTCAGGAGG

CX6F02
AACAGTGTAGCATCGCACTTTCAC
GATACAAGGGACTTGCCCATCTC

CX6F16
GTCTTCACCCTCTCCATCTTCATC
GGGACTATGGCAACAATAACTCCA

CX6F07
CTGTTACCGTTGAGGAAACCAAAG
CTCTTCAGCTGGTTTCTCTTCCTG

CX6F13
AAACCCAAGTCATAAACGTCAGGA
ATCTTCAATGCTTTTGGAGCAAAC

CX6F17
GATACAAATTAGCATTTGATTGAATGGA
ATCGGGACTCGCATTAGGGT

CX6F21
CTACAAGTTCCCCAGTTATCCCG
ACTTGACCCGCTCTAGGAGTGAC

CX6F18
GTCTTCAACGAAGTTGCAGGCT
TACTATTTCGAGAGAGCAGCAGCA

CX2007
AAATCGGCTAGTTGCAAACG
CCTTGACATTGTCGATGGTG

2.4. In Vitro Propagation and NaCl Treatments

Mature stem pieces were collected from the mother plants and cultured in vitro ac-
cording to Mahmoud et al. [33]. The adventitious shoots were cultured in Murashige and
Skoog (MS) medium [34] supplemented with 1 mg·L−1 BAP. The regenerated shoots were
subcultured twice in the same medium to produce adequate numbers of shoots before
salt screening experiments (Figure S1). The shoots were subsequently subcultured in MS
medium supplemented with 0, 50, 100, and 150 mM NaCl to induce salt stress. The cultures
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were incubated at 27 ◦C ± 1 ◦C and a 16 h photoperiod using Philips T8 Lamps with ALTO
II Technology (2150–2040 Lumens) as a source of light for 4 weeks. Each treatment consisted
of ten replicates. All the chemicals used for tissue culture media were obtained from Phyto
Technology Laboratories, Shawnee Mission, KS, USA.

2.5. Physiological and Biochemical Variables

The in vitro cultivated shoots were harvested from each genotype, frozen in liquid
nitrogen, and subsequently finely ground. Three biological replicates were sampled from
each plant. The ground leaves were kept at −20 ◦C for biochemical assays. A total of
100 mg fresh weight was homogenized in 1 mL of absolute methanol, centrifuged at
10,000 rpm for 15 min at 4 ◦C, and further diluted 10× with fresh methanol. The mixture
was analyzed for chlorophyll a and chlorophyll b by reading the absorbance at different
wavelengths (665 nm for chlorophyll a and 653 nm for chlorophyll b) using a visible spec-
trophotometer (Thermo Scientific™ GENESYS™ 30 spectrophotometer). Quantification
of chlorophyll a, chlorophyll b, carotenoids, and total chlorophyll content was conducted
following the methodologies outlined by Lichtenthaler and Wellburn [35].

Malondialdehyde (MDA), the final product of the lipid peroxidation process [36], was
measured following the methodology outlined by Heath and Packer [37]. Briefly, frozen
leaf samples (100 mg) were suspended in 0.5 mL of 0.1% (w/v) trichloroacetic acid (TCA)
and subsequently subjected to centrifugation at 12,000 rpm, 4 ◦C for 10 min. The resulting
supernatant (0.5 mL) was combined with 1.5 mL of 2-thiobarbituric acid (TBA) in a 20%
TCA solution, followed by an incubation at 95 ◦C for 25 min. The reaction was stopped by
placing the mixture on ice for 25 min, and the absorbance of the supernatant was monitored
at wavelengths of 532 nm and 600 nm.

The 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) free-radical scavenging activity
of leaf samples was measured using the method described by Blois [38]. A fresh solution of
DPPH in methanol was prepared at a concentration of 1 mM. Equal volumes of the DPPH
solution and leaf extracts were mixed and left to incubate in the absence of light for 30 min.
Subsequently, the absorbance was measured at 517 nm using a spectrophotometer, with
methanol used as the blank solution. As a control, a solution of DPPH in methanol was
used in place of the leaf extract. This experimental process was repeated three times for
validation. The inhibition of DPPH was quantified following this equation:

DPPH inhibition % = (A control − A sample)/A control × 100

The phenolic compound content (TPC) in the leaf samples was estimated using the
Folin–Ciocalteu method of Singleton and Rossi [39] with a few modifications. TPC extract
was centrifuged at 12,000 rpm, 4 ◦C for 15 min. Next, 100 µL of Folin reagent (1:10) was
mixed with leaf extract, vortexed, and incubated for 5 min at room temperature. Then, the
reaction was induced by adding 300 mL of 20% sodium carbonate (Na2CO3) to the extract,
and the tubes were incubated in the dark for 1 h. The absorbance of the reaction mixture
was estimated at 765 nm. A standard curve was created using standard solutions of gallic
acid (0–600 ppm).

Proline was extracted according to the method described by Bates et al. [40] in aqueous
sulfo-salicylic (3% w/v) acid. The reaction mixture (2 mL supernatant, 2 mL of glacial acetic
acid and ninhydrin reagent) was incubated for 1 h at 100 ◦C in a water bath, followed
by incubation in an ice bath to stop the reaction. The reaction mixture was vigorously
mixed with 4 mL of toluene in glass tubes. After warming at 25 ◦C, the color change was
monitored at 515 nm using a UV/Vis spectrophotometer for proline content determination.
All chemicals used for physiological and biochemical parameters were purchased from
Sigma-Aldrich, St. Louis, MO, USA.

2.6. Statistical Analysis

The physiological and biochemical traits were investigated using a factorial-based
complete randomized design with three salt levels (0, 50 and 100 mM NaCl) and three root-
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stocks (Cleopatra mandarin, Carrizo citrange and somatic hybrid of Cleopatra + Carrizo)
in ten replicates. Data were analyzed with analysis of variance using JMP Pro 16 software,
with post hoc Tukey–Kramer HSD test to compare the means of the different treatments.
Statistical significance was established at p < 0.05.

3. Results
3.1. Leaf Morphology and Ploidy Confirmation

The leaves of the somatic hybrid display intermediate morphology compared to the
parental Cleopatra mandarin and Carrizo citrange rootstocks. The somatic hybrid has larger
leaves than the middle leaf of Carrizo citrange, whereas it is similar in size to Cleopatra
mandarin (Figure 1A). Unlike the consistently trifoliate leaf morphology of Carrizo citrange,
only a few leaves on the somatic hybrid shoots were trifoliate, suggesting only the partial
dominance of this trait in the tetraploid background. When comparing the three, there
were no significant mean differences in the leaf areas (Figure 1B). The ploidy levels of all
regenerated plants were confirmed using flow cytometer analysis, based on the analysis of
nuclear fluorescence intensities, as depicted in the representative histogram (Figure 1C–E).
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Figure 1. (A) Leaf morphology of somatic hybrids and regenerated plants. The upper image displays
a shoot, and the lower image displays one leaf of each type. (B) Leaf area. The leaves were collected
from mature trees growing in a certified greenhouse. The leaf area of Carrizo citrange included the
area of the trifoliate leaves. The error bar indicates SE (n = 10). Ploidy analysis using flow cytometry.
Peaks derived from Cleopatra mandarin (C), Carrizo citrange (D) and tetraploid somatic fusion
hybrid (E). NS—Not significant.

3.2. Molecular Characterization of Donor Parents and the Somatic Hybrid Using SSR Markers

SSR markers were used to characterize the somatic hybrids and donor parents at
14 loci. All primer pairs successfully amplified DNA from the three cultivars; however, only
11 of 14 unequivocally confirmed somatic hybridity (Table 2, Figures S2 and S3). Specifically,
one allele from Cleopatra mandarin was missing in the somatic hybrid at CX6F21 and
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CX6F18 (assuming that the 166 and 167 fragments are identical), but no Cleopatra mandarin
alleles were found at CX2007.

Table 2. Molecular analysis of regenerated plants through SSR primers. Numbers are allele-specific
amplification fragment sizes.

Genotype/EST-SSR Marker CX6F04 * CX6F29

Carrizo citrange 157 162 149 156
Cleopatra mandarin 162 169 156 156
Somatic hybrid 157 162 162 169 149 156 156 156

CX5F57 CX0010
Carrizo citrange 156 166 222 229
Cleopatra mandarin 156 156 219 219
Somatic hybrid 156 156 156 166 219 219 222 229

CX0035 CX2021
Carrizo citrange 172 186 150 157
Cleopatra mandarin 172 172 150 150
Somatic hybrid 172 172 172 186 150 150 150 157

CX6F02 CX6F16
Carrizo citrange 168 175 170 175
Cleopatra mandarin 168 168 164 164
Somatic hybrid 168 168 168 175 164 164 170 175

CX6F07 CX6F13
Carrizo citrange 104 110 172 178
Cleopatra mandarin 104 104 178 178
Somatic hybrid 104 104 104 110 172 178 178 178

CX6F17 CX6F21
Carrizo citrange 133 133 155 155
Cleopatra mandarin 139 158 149 155
Somatic hybrid 133 133 139 158 155 155 155 155

CX6F18 CX2007
Carrizo citrange 161 161 172 177
Cleopatra mandarin 155 166 174 174.6
Somatic hybrid 161 167 172 177

* EST-SSR markers are written in bold.

3.3. Physiological and Biochemical Variables

Our results clearly indicate variations in growth among the different genotypes when
subjected to salt stress conditions, as illustrated in Table 3 and Figure 2. In general, the
in vitro application of NaCl caused an increase in MDA content. Carrizo citrange leaves
accumulated 0.99 and 1.19 nmol−1 MDA eq. g FW at 50 and 100 mM NaCl, respec-
tively. The somatic hybrid exhibited comparable levels (0.68 and 0.93 nmol−1 MDA eq.
g FW) to or better levels than those of the standard salt-tolerant Cleopatra mandarin
rootstock (0.81 and 1.03 nmol−1 MDA eq. g FW) at 50 and 100 mM NaCl treatments,
respectively (Figure 2).
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Table 3. Significance analysis of the physiological traits using a two-way ANOVA assay.

Variables Genotype NaCl Treatments Interaction

MDA content * 0.0077 0.0222 0.923
Chlorophyll a <0.0001 <0.0001 0.001
Chlorophyll b <0.0001 0.0008 0.0063
Carotenoids <0.0001 0.0067 NS
Total Chlorophyll <0.0001 <0.0001 0.0015
DPPH inhibition NS 0.034 NS
Total phenolic compounds <0.0001 0.0018 <0.0001
Proline content 0.0013 0.0013 NS

* All the parameters were measured in the shoots grown in vitro. NS—Not significant.
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Figure 2. Effect of different concentrations of sodium chloride (NaCl) on shoot growth of Cleopatra
mandarin and Carrizo citrange and tetraploid somatic fusion hybrid (A), MDA content (B). Means
compared using Tukey–Kramer HSD test. Means followed by the same letter were not significantly
different at (p < 0.05). The error bar indicates SE (n = 10).

A significant difference in foliar chlorophyll content (p < 0.0001) was observed when
the effect of different rootstocks was compared, as indicated in Table 3. The somatic hybrid
recorded the highest foliar chlorophyll a content under control and NaCl conditions, with
values of 13.63, 9.35 and 4.95 mg−1 g FW, following 0, 50 and 100 mM NaCl treatments,
respectively (Figure 3A). There was a slight reduction in the carotenoid response when
the two levels (50, 100 mM) of NaCl were compared in all the rootstocks. There was no
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significant difference of foliar chlorophyll content between Cleopatra mandarin and Carrizo
citrange shoots under all the tested conditions. Under 100 mM NaCl, there was an obvious
decrease in chlorophyll b in the somatic hybrid, and we recorded similar levels as Cleopatra
mandarin or Carrizo citrange shoots under 100 mM NaCl (Figure 3C). The somatic hybrid
displayed the highest foliar chlorophyll content, with values of 6.59 mg−1 g FW following
100 mM NaCl treatments, whereas there was no significant difference of foliar chlorophyll
content between Cleopatra mandarin and Carrizo citrange shoots (3.44 and 2.61 mg−1 g
FW) (Figure 3D).
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Figure 3. Effect of different concentrations of sodium chloride (NaCl) on the content of chlorophyll a
(A), chlorophyll b (B), carotenoids (C), and total chlorophyll (D) of Cleopatra mandarin and Carrizo
citrange and a tetraploid somatic fusion hybrid. Means compared using Tukey–Kramer HSD test.
Means followed by the same letter were not significantly different at (p < 0.05). The error bar indicates
SE (n = 10).

3.4. DPPH Radical Scavenging Activity, Total Phenolic Compounds, and Proline Content

The DPPH free-radical scavenging activity was slightly different among the rootstocks.
The somatic hybrid recorded the highest DPPH content (59.35%) under 100 mM NaCl
(Figure 4A). The foliar TPC content was significantly different (p < 0.0001) when the effect
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of the different rootstocks was compared (Figure 4B). The somatic hybrid exhibited the
highest TPC values (180.28 mg gallic acid g−1 FW), whereas Cleopatra mandarin recorded
115.44 mg gallic acid g−1 FW and Carrizo citrange recorded 124.66 mg gallic acid g−1 FW.
There were no significant differences in proline content when the rootstocks were compared
under 100 mM NaCl (Figure 4C); however, Carrizo citrange exhibited a significant increase
in proline content (3.36 µmol g−1 FW) under 50 mM NaCl.
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Figure 4. Effect of different concentrations of sodium chloride (NaCl) on DPPH inhibition% (A), total
phenolic compounds content (B), and proline content (C) of Cleopatra mandarin and Carrizo citrange and
a tetraploid somatic fusion hybrid. Means compared using Tukey–Kramer HSD test. Means followed by
the same letter were not significantly different at (p < 0.05). The error bar indicates SE (n = 10).

3.5. Correlation Analysis

The chlorophyll a and b and total chlorophyll contents were positively correlated
with total phenolic compounds content and DPPH inhibition%. The MDA content was
significant and positively correlated with proline content (Table 4).
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Table 4. Pearson’s correlation matrix among the studied parameters of Citrus genotypes under NaCl
stress.

Variables * Chl a Chl b Caro T Chl DPPH TPC Proline MDA

Chl a 1
Chl b 0.9512 1
Caro 0.9153 0.7867 1
T Chl 0.9953 0.9767 0.8845 1
DPPH 0.2445 0.1653 0.3311 0.2221 1
TPC 0.5295 0.4503 0.4859 0.5102 −0.0104 1
Proline −0.2261 −0.3848 −0.0665 −0.2785 0.1009 0.184 1
MDA −0.4446 −0.3946 −0.4399 −0.4336 −0.4312 −0.2828 0.0005 1

* Numbers represent average values per rootstock and treatment. Chl a—chlorophyll a content; Chl b—
Chlorophyll b content; Caro-Carotenoids; T Chl—total chlorophyll content; MDA—malondialdehyde; TPC—total
phenolic compounds.

4. Discussion

Salt stress significantly affects plant metabolism, disrupting the photosynthetic ma-
chinery and inducing osmotic stress [41]. It triggers the excessive production of free oxygen
radicals, which have the potential to disrupt the cell membrane and induce lipid peroxi-
dation within the membrane [7,17]. Several studies have indicated that tetraploid citrus
plants exhibit greater resistance to salt stress compared to their corresponding diploid rela-
tives [42,43]. Consequently, there is an increasing appreciation of the adaptive advantages
provided by tetraploid plants [44,45]. In the present study, we investigated the potential of
a tetraploid somatic hybrid to alleviate salt stress in comparison with its diploid parents.
We confirmed the ploidy of the somatic hybrid through flow cytometry and SSR markers.
Despite specific primers not showing amplification, some other primers provide sufficient
evidence to conclusively support allotetraploidy in the regenerated hybrid. This discrep-
ancy could be attributed to somaclonal variation or mutation induction in the Cleopatra
mandarin cell line suspension used during protoplast fusion, as well as genetic variation
between the Cleopatra mandarin cell line and the plant source used in the SSR analysis.

The somatic tetraploid hybrid has been observed to exhibit higher chlorophyll content
compared to the corresponding diploid parents. Tetraploid plants can often exhibit a darker
coloration compared to their diploid counterparts [46]. This darkening in color can be
attributed to a range of factors stemming from changes in gene expression, alterations
in pigment production, and modifications in cell structure resulting from the increased
chromosome count. The phenomenon can arise due to the accumulation of pigments such
as chlorophyll, anthocyanins, and carotenoids, which play crucial roles in plant coloration.
Moreover, the larger cell sizes and modified cell shapes found in tetraploid plants can
impact how light is absorbed and reflected, potentially influencing color perception. The
genetic changes induced by polyploidy can affect genes related to pigment biosynthesis,
cell wall composition, and other color-associated processes.

The amount of chlorophyll present in a plant is intricately linked to its photosyn-
thetic rate, and the ratio of chlorophyll a to chlorophyll b serves as an indicator of the
plant’s proficiency in utilizing light [47,48]. Consequently, the enhanced photosynthetic
performance observed in somatic tetraploid leaves in comparison to their diploid parents
can be elucidated by their possession of a greater photosynthetic surface area, owing to
larger leaf dimensions, and elevated levels of photosynthetic pigments like chlorophyll
and carotenoids. These findings were observed when the autotetraploid of apple ‘Hanfu’
leaves was compared with their diploid counterparts [49].

Tetraploid plants employ complex physiological and biochemical mechanisms to cope
with salt stress, including photosynthetic rate, the regulation of protein, lipid, and carbo-
hydrate metabolism, metal ion binding and transportation, and cell wall synthesis [50]. It
also influences phenology, antioxidant response, and morphology [51]. Recent studies have
highlighted the significance of ROS detoxification through the induction of antioxidant
pathways in controlling salt stress. In our current study, we observed an elevation in the
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DPPH free-radical scavenging capacity, suggesting their ability to mitigate the adverse
effects of ROS compared to other rootstocks. Furthermore, we recorded decreased mal-
ondialdehyde (MDA) content and cellular damage in the somatic hybrid compared with
the diploid parents. Phenolic compounds are important antioxidants that play essential
roles as antimicrobial agents in response to abiotic stress [7,36,46]. An increase in TPC
content was observed in the somatic hybrid, which is regulated by the polymerization
of phenols. This process can reduce the levels of free phenols in plant tissues. Proline,
acting as an osmolyte, plays a role in alleviating oxidative stress in plants subjected to salt
stress [52]. Compared to control treatments, a decrease in proline content was recorded
with NaCl supplementation at 100 mM, while an increase was observed in response to
50 mM NaCl, with the highest concentration recorded in Cleopatra mandarin. The somatic
hybrid exhibited an increase in total phenolic content, regulated by phenol polymerization,
which can reduce free phenol levels in plant tissues. Proline, functioning as an osmolyte,
assists in mitigating oxidative stress in plants subjected to salt stress. Proline levels de-
creased with 100 mM NaCl supplementation compared to control treatments, while an
increase was observed in response to 50 mM NaCl, with Cleopatra mandarin showing the
highest concentration.

Previous studies have also indicated the advantages of tetraploid plants over their
diploid counterparts. Carrizo citrange tetraploid seedlings showed superior salt tolerance,
attributable to a combination of factors including reduced chloride uptake, modified root
morphology, enhanced root histology, sustained photosynthetic capacity, and efficient
water management [53]. Similarly, a tetraploid rootstock (4x Citrumelo 4475) exhibited
enhanced tolerance to nutrient deficiency, as indicated by improved photosynthetic pa-
rameters, reduced organelle degradation, and a more efficient antioxidant system [54]. A
transcriptomic investigation into the salt stress tolerance in tetraploid Paulownia fortunei
(Seem.) Hemsl., compared to its diploid counterpart, provided valuable insights into the
underlying molecular mechanisms and led to the identification of several differentially
expressed genes associated with photosynthesis, plant growth, development, and osmolyte
regulation of the tetraploid trees under saline conditions [55]. Similarly, autotetraploid
Ziziphus jujuba Mill. had enhanced salt tolerance when compared to the diploid form [56].

5. Conclusions

The current study examined the response of a tetraploid somatic fusion plant obtained
from the protoplast fusion of Cleopatra mandarin and Carrizo citrange and compared
with its parental plants, to salt stress. The tetraploid hybrid exhibited reduced sensitivity
to NaCl stress compared to diploid plants. Physiological and biochemical changes, such
as increased chlorophyll content, decreased MDA, and total phenolic compounds, were
observed in the tetraploid hybrid, contributing to its enhanced salt stress tolerance. Our
findings highlight the potential of tetraploid hybrids in developing more resilient citrus
varieties that can be a new source of salinity tolerance for salt-affected lands.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/horticulturae9111215/s1, Figure S1: In vitro propagation of Cleopatra
mandarin, Carrizo citrange and the tetraploid somatic hybrid in Murashige and Skoog (MS) medium
supplemented with 1 mg·L−1 BAP; Figure S2: A chromatogram of EST-SSR markers generated from
ABI trace files by GeneMarker®software (SoftGenetics); Figure S3: A chromatogram of EST-SSR
markers generated from ABI trace files by GeneMarker®software (SoftGenetics).
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