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Abstract: In this work, we have proposed a novel methodology for greenhouse tomato yield predic-
tion, which is based on a hybrid of an explanatory biophysical model—the Tomgro model, and a ma-
chine learning model called CNN-RNN. The Tomgro and CNN-RNN models are calibrated/trained
for predicting tomato yields while different fusion approaches (linear, Bayesian, neural network,
random forest and gradient boosting) are exploited for fusing the prediction result of individual
models for obtaining the final prediction results. The experimental results have shown that the model
fusion approach achieves more accurate prediction results than the explanatory biophysical model or
the machine learning model. Moreover, out of different model fusion approaches, the neural network
one produced the most accurate tomato prediction results, with means and standard deviations
of root mean square error (RMSE), r2-coefficient, Nash-Sutcliffe efficiency (NSE) and percent bias
(PBIAS) being 17.69 ± 3.47 g/m2, 0.9995 ± 0.0002, 0.9989 ± 0.0004 and 0.1791 ± 0.6837, respectively.

Keywords: biophysical model; deep neural network; recurrent neural network; convolutional neural
network; model fusion; crop yield prediction

1. Introduction

Crop yield prediction is important for managing greenhouse crop growth. The green-
house crop yield prediction results can be exploited by cultivators and farmers to make
more appropriate greenhouse management plans and financial decisions. Moreover, crop
yield prediction is also an important component integrated into a greenhouse control
system, which facilitates finding the optimal control parameter settings to guarantee the
maximum greenhouse crop yield [1]. However, crop yield prediction is an extremely
challenging task. As shown in [2,3], crop yield prediction is dependent on a variety of
factors (e.g., temperature, carbon dioxide concentrations, radiation, etc.), and it is not
straightforward to construct an explicit model to reflect the relationship between these
factors and crop yield.

Although there are many research works related to crop yield prediction for open
farming field scenarios, a relatively small amount of work focuses on greenhouse crop yield
prediction, which can be divided into two main categories: the explanatory biophysical
model-based approach and the data-driven/machine learning model-based approach.

The biophysical model-based approach predicts the crop yield using a series of or-
dinary differential equations (ODEs) describing the relationship between environmental
factors and crop growth. For example, the reduced Tomgro model proposed by Jones et al.
modeled the tomato growth and fruit yield based on environmental information, such as
temperature, solar radiation and CO2 concentration, inside a greenhouse [4]. In [5], differ-
ent optimization algorithms have been compared for the calibration of the reduced Tomgro
model. The results have shown that the particle swarm optimization (PSO) algorithm can
achieve the best model calibration performance. Compared with the simplified, reduced
Tomgro model, a more complex Tomsim biophysical model was proposed in [6], which
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contained multiple sub-modules modeling different aspects related to tomato growth, in-
cluding photosynthesis, dry matter production, truss appearance rate, fruit growth period
and dry matter partitioning. A biophysical model that describes the effects of greenhouse
climate parameters on crop yield was proposed in [2]. The results demonstrated that the
tomato yield could be successfully simulated at different geographical locations under
different temperatures, light and CO2 conditions. In [7], an integrated yield prediction
model was proposed to integrate both the Tomgro model [3] and the Vanthoor model [2] for
predicting the greenhouse crop yield based on controllable greenhouse climate parameters.
A variety of biophysical models (e.g., the Vanthoor model [2], the Tomsim model [6] and the
Greenhouse Technology applications (GTA) model [8]) and their combined versions were
compared in [9]. Experimental studies showed that the combined version can outperform
the original models for yield prediction with smaller root mean square errors (RMSEs).

The biophysical model is bio-physically meaningful and explainable by reflecting the
actual growth process of crops. However, the biophysical model is described by ODEs,
which cannot fully reflect the complex biophysical process during crop growth. Moreover,
there are many associated intrinsic model parameters, and the crop prediction accuracy
is highly sensitive to such model parameters [10]. The parameters setting suitable for
predicting greenhouse crop yields in one region may not be workable for other regions [10].
These limitations adversely affect the biophysical model performance for yield prediction.

The machine learning model-based approach models the crop yield output as a com-
plex/nonlinear function of the greenhouse climate and historical growth information. For
example, linear and polynomial regression models were used in [11] for strawberry growth
and fruit yield based on environmental factors (e.g., average daily air temperature (ADAT),
relative humidity (RH) and soil moisture content (SMC)). However, a linear or polynomial
relationship is not always valid. In [12], ANN was exploited for the pepper fruit yield
prediction based on fruit water content, days to flowering initiation and other relevant
factors. Variants of classical ANN have also been applied for yield prediction. An Evolving
Fuzzy Neural Network (EFuNN) was proposed in [13] for tomato yield prediction based
on different greenhouse environmental variables (e.g., temperature, CO2, vapor pressure
deficit (VPD), historical yield, etc.). A dynamic artificial neural network (DANN) [14] was
developed for tomato yield prediction based on different factors (e.g., CO2, transpiration,
radiation, historical yield, etc.). Recently, deep learning technology has also begun to be
applied for greenhouse crop yield prediction. In [15,16], researchers adopted a recurrent
neural network (RNN) model for predicting tomato and ficus yields. The evaluation results
showed that deep learning-based approaches outperformed traditional machine learning
algorithms with lower root mean square errors (RMSEs). A hybrid of the temporal con-
volutional network (TCN) and recurrent neural network (RNN) models for the crop yield
prediction was employed in [17], which showed that this hybrid model-based approach
can achieve higher prediction accuracy over both the classical machine learning-based
approaches and exploiting the TCN or LSTM model solely.

As the machine learning-based approaches are data-driven ones, the performance
of the machine learning-based approaches for yield prediction heavily depends on the
amount/quality of the data used for training the machine learning model. The trained
model would be less accurate if the training data are scarce or of poor quality. Moreover, the
machine learning-based approaches can suffer from the ‘overfitting’ problem [18], leading
to poor yield prediction performance for new scenarios.

Considering the limitations existing in both explanatory and machine learning mod-
els, it is challenging to always predict crop growth accurately by relying solely on an
explanatory model or a machine learning one. In this work, we have developed model
fusion approaches to combine crop yield outputs from two different types of models to
generate the final yield prediction outcome. In this way, the limitations of each model will
be compensated for achieving a more accurate yield prediction result. Specifically, we have
exploited both a biophysical model, called the reduced Tomgro model, and a CNN-RNN
machine learning model for tomato yield prediction. The tomato yield prediction results



Horticulturae 2023, 9, 5 3 of 13

based on the two models are further fused by another ‘fusion model’ to generate the final
yield prediction outcome. From the experimental studies, it has been shown that the per-
formance of the model fusion approach achieves higher performance than solely using the
biophysical model or machine learning model for yield prediction.

2. Methodology

In this work, we propose a fusion-based model of crop yield prediction for predicting
the tomato yield in a greenhouse, which is illustrated in Figure 1. The proposed approach
is a fusion of a biophysical model called a reduced Tomgro model in [4] and a CNN-RNN
machine learning model. The prediction results from both models are fused together in a
fusion module to generate the final prediction output. Different parts of the diagram will
be elaborated on in the next sub-sections.

Figure 1. The sketch diagram of the model fusion approach for yield prediction.

2.1. Biophysical Model

The biophysical model used in this work is a reduced state-variable tomato model [4],
which is used for modeling the dynamics of the total dry matter production and distribution
in fruit and mature, dry weight based on greenhouse climate parameters, including the
photosynthetically active radiation (PAR) in (mmol/m2/s), air temperature (°C) and CO2
concentration (ppm), depending on photosynthesis and respiration processes. This model
includes the number of mainstem nodes (N), leaf area index (LAI), total plant weight(W),
fruit weight(WF) and mature fruit dry weight (WM) as the state variables, whose evolutions
with respect to time are modeled by ODEs. Compared with the more complex model as
the TomSim model in [6], the reduced Tomgro model simulates the same photosynthe-
sis, respiration and development process but with new leaf area and dry matter growth
relationships being developed.

In specific, the main ODEs for modeling the evolutions of state variables in the reduced
state-variable Tomgro model are shown below as in [4]:

dN
dt

= Nm · fN(T) (1)

d(LAI)
dt

= ρtδ · λ(Td)
exp(β · (N − Nb))

1 + exp(β · (N − b))
· dN

dt
(2)

dW
dt

=
dWF

dt
+ (Vmax − p1) · ρ · dN

dt
(3)

dWF
dt

= GRnet · αF · f (Td) · (1 − exp(−v(N − NFF))) · g(Tdaytime) (4)

dWM
dt

= DF(Td) · (WF − WM) (5)

where dN
dt represents the node development rate modeled as the multiplication of (Nm)

representing the maximum daily rate of node appearance rate and a function fN(T) de-
pending on the non-optimal temperature. The update rate of the LAI in (2) is dependent
on both the node number N and the daily temperature Td. W in (3) represents the total
above-ground dry weight, which is calculated as a weighted sum of the fruit growth rate
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dWF
dt and node growth rate dN

dt . The fruit growth starts when the node number reaches
NFF and increases asymptotically to a maximum value, as indicated in (4), while the fruit
growth rate is dependent on the temperature Td, Tdaytime and GRnet functions, as in [4]. dWF

dt
in (5) represents the mature fruit dry matter development rate, which indicates the rate that
fruit grow to mature stages. It depends on the daily average temperature Td, fruit weight
WF and mature fruit weight WM. More details on parameter descriptions in the reduced
Tomgro model can be found in [4].

The parameters of the reduced Tomrgo model can be calibrated by different algorithms
(e.g., genetic algorithm (GA), differential evolutionary (DE) or particle swarm optimization,
as in [5]). The calibrated Tomgro model can then be applied for the tomato yield prediction
by using the related OEDs to calculate W, WF and WM values.

Compared with models in [2,6,7], the reduced Tomgro model is light-weight and has
much fewer model parameters to tune, making it more convenient to be calibrated for
real-site tomato growth modeling, which has been successfully applied to real-site tomato
yield predictions as reported in multiple research works [10,14,19].

2.2. ML Model

A CNN-RNN-based machine learning approach is applied for tomato yield prediction,
which is a combination of a convolutional neural network (CNN) and a recurrent neural
network (RNN). The structure of the CNN-RNN is shown in Figure 2. The CNN part
(composed of multiple blocks of 1D convolutional layers (indicated as ∗N in Figure 2),
weight norm layers and ReLU/Drop operations) extracts the most representative spatial
features from the original normalized input temporal sequence, while the extracted features
are fed into an RNN containing multiple LSTM units to effectively capture the temporal
dependencies for the final yield prediction. By exploiting the CNN-RNN, both spatial
and temporal information from the original input sequence is fully exploited to achieve
accurate yield prediction results.

Figure 2. The diagram of the CNN-RNN model for crop yield prediction.
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2.2.1. Data Normalization

A temporal sequence denoted as x1, . . . , xN is taken as the network input, where xt
represents a vector containing different factors recorded at the time instance t, including
historical yield information (g/m2), greenhouse CO2 concentration (ppm), greenhouse
temperature (◦C), humidity deficit (g/kg), relative humidity (percentage) and radiation
(W/m2).

Normalization is first applied to the data to normalize each factor to a range of [0, 1]
by the following equation:

x̂i
t =

xi
t − xi

min
xi

max − xi
min

(6)

where xi
t represents the i-th factor at the time step t while xi

min and xi
max represent the

corresponding maximum and minimum values for the related factor.

2.2.2. CNN Part

The normalized input temporal sequence is then fed into a CNN part for representative
feature extraction. As in Figure 2, the CNN part contains multiple blocks, while each block
contains a series of 1D convolutional operations, weight norm operations, ReLU/Drop
operations and an optional 1D convolutional operation. The 1D convolution is the main
operation in the CNN part. As in [20], the 1D convolution performed on a temporal
sequence, It is calculated as:

Ok
t = f (∑

i,j
wi,j

k I j
t+i + b) (7)

where Ok
t represents the k-th output at time instance t. I j

t represents the j-th element of It.
wi,j

k and b represent the convolutional kernel weight and bias, respectively. f (·) represents
an activation function where ReLU is used in this work. As in [21], the weight normalization
re-parameterizes the 1D convolution weights into the vector and scalar parameters for
accelerating the network training. A certain percentage of weights during the network
training will be dropped to improve the generalization performance.

High-level features are extracted from the original normalized input sequence based
on a series of 1D convolutions in the CNN part. Moreover, as in Figure 2, a residual link con-
taining one optional 1D convolution operation is applied to extract low-level features, which
are added up to high-level features to obtain the final feature set (denoted as f1, . . . , fN in
the figure), integrating the comprehensive high and low-level feature information.

2.3. RNN Part

The extracted feature sequence from the CNN is then fed into an RNN model contain-
ing multiple LSM units. The RNN is exploited to model/capture the temporal dependencies
between the extracted feature sequence used for yield prediction. However, the traditional
RNN problems exist of both gradient vanishing and gradient explosion [22]. Currently, the
most popular way to overcome the limitations of the traditional RNN is to adopt a new ar-
chitecture incorporating long short-term memory (LSTM) units, known as LSTM-RNN [23],
which is used in our work. In each LSTM unit, there is a series of arithmetic operations
defined in [23] as below:
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it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (8)

ft = σ(Wx f xt + Wh f ht−1 + Wc f ct−1 + b f )

ct = ftct−1 + ittanh(Wxcxt + Whcht−1 + bc)

ot = σ(Wxoxt + Whoht−1 + Wcoct−1 + bo)

ht = ottanh(ct)

where xt, ht and ot represent the LSTM input, LSTM state and LSTM output at time instance
t. ct is the LSTM cell value representing encoded historical information obtained from
previous data samples before t. σ(·) and tanh(·) represent sigmoid and tanh functions. The
other parameters represent weights and biases associated with an LSTM unit.

The LSTM-RNN model encodes the whole input sequence into a single feature vector
(obtained from the last LSTM unit’s outputs, as shown in Figure 2), which contains the
information of the whole sequence incorporating the temporal dependency information
between consecutive time instances. Finally, the extracted feature vector is then fed into a
simple forward neural network model for yield prediction.

2.4. Fusion Model

The outputs from the biophysical model and machine learning model are fed into a
fusion module for generating the final crop yield prediction output, as represented in the
following equation

out f usion = F(outbio, outml) (9)

where F(·) represents a fusion model. outbio and outml represent the outputs from the
reduced Tomgro model and machine learning model, respectively, while out f usion represents
the final yield prediction output generated from the fusion model. In this work, we have
explored different F(·) models for fusing, including the linear model, Bayesian model,
neural network model, random forest model and gradient-boosting model. Comparisons
of the different fusion models are shown in the experimental section.

3. Experimental Studies

The proposed model fusion-based greenhouse tomato yield prediction approach is
evaluated on two years of tomato growth datasets collected from a real tomato grower
in the UK, including both the tomato yield and greenhouse environmental parameters
(e.g., CO2 concentration (ppm), greenhouse temperature (◦C), humidity deficit (g/kg),
relative humidity (percentage) and radiation (W/mw)) from a period of two years. The
data corresponding to the first year are used for training the biophysical model, machine
learning model and the combined model, while the data for the second year are used
for testing. Figure 3 visualizes different greenhouse environmental parameters for both
datasets, while their statistics are shown in Table 1.
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Figure 3. CO2 concentration (mmp), temperature (◦C), humidity deficit (g/kg), relative humid-
ity (percentage) and radiation(W/m2) for the training dataset (left column) and testing dataset
(right column).
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Table 1. Statistics of greenhouse environmental parameters for different datasets.

Training Dataset Testing Dataset

CO2 (mmp)

Min 370.94 478.05

Max 967.40 1691.43

Median 629.97 769.79

Mean 624.19 770.37

Standard deviation 129.58 175.61

Temperature (◦C)

Min 3.68 4.72

Max 23.89 23.69

Median 18.46 18.31

Mean 17.01 17.18

Standard deviation 4.25 3.94

Humidity deficit (g/kg)

Min 0.13 0

Max 7.27 6.08

Median 2.78 2.58

Mean 2.91 2.65

Standard deviation 1.29 1.33

Relative humidity (%)

Min 65.31 65.09

Max 98.50 100

Median 83.22 84.73

Mean 82.19 83.99

Standard deviation 5.88 6.72

Radiation (W/m2)

Min 0.58 0.59

Max 83.02 82.91

Median 43.41 42.81

Mean 42.19 42.17

Standard deviation 18.92 19.37

3.1. Biophysical Model Results

The reduced Tomgro model, as mentioned in Section 2.1, is calibrated to be applied
for the tomato yield prediction. Specifically, Table 2 shows some of the key parameters of
the reduced Tomgro model that need to be calibrated. We have exploited/compared three
evolutionary algorithms, including GA, DE and PSO, for model calibration. The root mean
square error (RMSE) between the recorded yields in the training dataset and predicted ones
by the model is taken as the fitness function for all three algorithms.



Horticulturae 2023, 9, 5 9 of 13

Table 2. Key parameters for the reduced Tomgro model.

Parameter Description Range of Estimate Unit

Nm Maximum node development rate [0.35, 0.4] node d−1

Nb Parameter in expolinear equation [14, 16] node
δ Maximum leaf area expansion [0.05, 0.08] m2 node−1

β Parameter in expolinear equation [0.45, 0.55] node−1

Vmax Maximum increase in vegetative tissue d.w. growth per node [8, 10] g[d.w.] node˘1

τ CO2 coefficiency [0.08, 0.12] µmol m2 s−1

Tcrit Critic temperature [19, 21] ◦C
v Transition from vegetative development to fruit development [0.8, 1] node−1

K Development time from first fruit to ripe one [0.8, 1] node
m Light transmission coefficient [0.01, 0.015] dimensionless

NFF Nodes per plant [16, 18] node
αF Maximum new growth to fruit partitioning [0.8, 1] [fraction] d−1

E Growth efficiency [0.9, 1.2] g[d.w.] g−1 [CH2O]
D CO2 to CH2O conversion coefficient [4, 6] gm−2h−1

The evolutions of the RMSE fitness function values with respect to evolutionary
algorithm iteration numbers are shown in Figure 4a. We can see that the obtained minimum
fitness values all decrease and converge after a few iterations, indicating that good solutions
to the model parameters are successfully obtained. The calibrated reduced Tomgro model is
then applied to predict the tomato yield. As shown in Figure 4b, we can see that intuitively
the predicted tomato yield is close to the ground truth ones.

Figure 4. Reduced Tomgro model calibration by three optimization algorithms. (a) The fitness values
of solution candidates (red dot) and minimum fitness value (blue line) for GA (left), DE (middle)
and PSO (right). (b) The illustration of yield prediction by the reduced Tomgro model calibrated by
GA (left), DE (middle) and PSO (right).
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Quantitative analysis is performed to compare the performance of different evolution-
ary algorithms for calibrating the reduced Tomgro models for yield prediction. Multiple
trials of evaluations are made and the obtained mean and standard deviation (std) of
different metrics ( RMSEs, r2-coefficient, Nash-Sutcliffe efficiency (NSE) and percent bias
(PBIAS)) calculated based on the testing dataset are summarized in Table 3. We can observe
that the reduced Tomgro model calibrated by the PSO algorithm can achieve the minimum
mean RMSE and absolute PBIAS and the maximum mean R2 and NSE, which indicates the
most accurate yield prediction.

Table 3. Statistics of different metrics obtained by the reduced Tomgro model calibrated by
different algorithms.

GA DE PSO

Mean and std of RMSE (g/m2) 45.16 ± 13.11 55.36 ± 18.07 36.17 ± 7.64

Mean and std of R2 0.9969 ± 0.0017 0.9953 ± 0.0030 0.9980 ± 0.0001

Mean and std of NSE (g/m2) 0.9938 ± 0.0033 0.9907 ± 0.0060 0.9961 ± 0.0016

Mean and std of PBIAS (g/m2) −2.0359 ± 1.8813 −3.6000 ± 1.8670 −1.1713 ± 1.4105

3.2. Machine Learning Model Results

The CNN part of our CNN-RNN model contains two blocks (the value of N shown in
Figure 3 is 2). Each 1D convolutional operation contains 100 filters, with a kernel size of
3 and a padding of 1. While the number of LSTM units in the RNN is 200. We train our
CNN-RNN model by exploiting Adam’s method in [21] to minimize the mean square error
(MSE) loss based on the training dataset. The evolution of the loss values to the training
epoch of the CNN-RNN model is shown in Figure 5 (left), from which we can see that
the loss value quickly converges to the minimum after several training epochs by Adam’s
method. The trained CNN-RNN model can then be used for yield prediction. As shown in
Figure 5 (right), the predicted yield values by the trained CNN-RNN model are close to the
ground truth ones.

Figure 5. The evolution of the loss function with respect to the training epoch (left). The prediction
results based on the trained CNN-RNN (right).

The CNN-RNN model is trained based on the training dataset, and we calculate
different metrics between the ground truth tomato yields and the CNN-RNN model
predicted ones based on the testing dataset. While the calculated mean and std of multiple
RMSEs, r2 coefficients, NSEs and Pbiase values are shown in Table 4. Moreover, we
also provide the performance of other classical machine learning models (multiple layer
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perceptron (MLP), support vector regressor (SVR), random forest regressor (RFR) and
gradient boosting regressor (GBR) as in [15]) and deep learning counterparts (LSTM-RNN
in [23] and CNN), from which we can find that the CNN-RNN-based approach can achieve
the best performance with the smallest mean RMSE and PBIAS absolute values and the
largest R2 and NSE values.

Table 4. Statistical metrics (mean and standard deviation) of different metrics for tomato fruit yield
prediction by different methods on the testing dataset.

RMSEs R2s NSEs PBIASE

MLP 66.63 ± 17.01 0.9863 ± 0.0064 0.9863 ± 0.0066 0.7465 ± 1.9304

SVR 116.78 ± 0 0.9318 ± 0 0.9330 ± 0 6.1768 ± 0

RFR 26.73 ± 0.33 0.9979 ± 0.0001 0.9979 ± 0.0001 0.5817 ± 0.0380

GBR 26.70 ± 0.57 0.9980 ± 0.0001 0.9980 ± 0.0001 0.5227 ± 0.0589

LSTM-RNN 29.95 ± 2.27 0.9973 ± 0.0005 0.9973 ± 0.0005 0.0824 ± 0.2260

CNN 31.26 ± 4.99 0.9961 ± 0.0019 0.9961 ± 0.0019 −0.1345 ± 0.1810

CNN-RNN 21.69 ± 3.10 0.9986 ± 0.0004 0.9987 ± 0.0004 −0.0363 ± 0.5918

3.3. Model Fusion Results

We have evaluated different combination approaches to fuse the outputs of the re-
duced Tomgro model and machine learning model to generate the final prediction output,
which includes linear combination, Bayesian combination, neural network (NN)-based
combination, random forest regressor (RFR)-based combination and gradient boosting
regressor (GBR)-based combination. The performance of different approaches is presented
in Table 5. From the results, we can see that: (i). most of the model fusion-based approach
achieves more accurate performance than using the biophysical model or machine learning
model solely with smaller mean RMSE and larger R2/NSE values (ii). Among different
model fusion approaches, the neural network-based one achieves the best performance
with the best RMSE, R2 and NSE metrics being obtained.

Table 5. Statistical metrics (mean and standard deviation) of different metrics for tomato fruit yield
prediction by different methods on the testing dataset.

RMSEs R2s NSEs PBIASE

Biophysical model 36.17 ± 7.64 0.9980 ± 0.0001 0.9961 ± 0.0016 −1.1713 ± 1.4105

CNN−RNN 21.69 ± 3.10 0.9986 ± 0.0004 0.9987 ± 0.0004 −0.0363 ± 0.5918

Linear combination 20.85 ± 3.19 0.9992 ± 0.0002 0.9985 ± 0.0005 −0.1669 ± 0.4103

Bayesian combination 21.51 ± 3.79 0.9991 ± 0.0003 0.9982 ± 0.0006 0.4259 ± 0.8575

NN combination 17.69 ± 3.47 0.9995 ± 0.0002 0.9989 ± 0.0004 0.1791 ± 0.6837

RFR combination 18.68 ± 2.94 0.9994 ± 0.0002 0.9988 ± 0.0003 −0.1465 ± 0.6758

GBR combination 20.67 ± 3.10 0.9992 ± 0.0002 0.9985 ± 0.0005 −0.0715 ± 0.7245

4. Conclusions

In this work, we have developed a model fusion approach for fusing the outputs of
both the biophysical model and machine learning model for predicting the tomato yield
inside a greenhouse. The experimental results have shown that the model combination
approach achieves better yield prediction results than solely using a biophysical or ma-
chine learning model. While the neural network-based model fusion approach achieves
the best yield prediction results among all the methodologies, with the mean and stan-
dard deviations of RMSEs, R2s and Nash–Sutcliffe efficiency (NSE) being 17.69 ± 3.47,
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0.9995 ± 0.0002 and 0.9989 ± 0.0004 respectively. The developed model can be applied
to the greenhouse condition for the greenhouse crop yield prediction purpose, which can
predict the future crop yield based on both greenhouse climate information and historical
crop yield information.

In future work, we will evaluate the effectiveness of the developed technique for yield
prediction for different crops (e.g., potato, strawberry, etc.) not only limited to tomato at
different growing sites. Moreover, more advanced machine learning (e.g., transformer)
or biophysical models will be investigated to be incorporated into the proposed model
fusion framework targeting, achieving more accurate crop yield prediction. We will also
try to incorporate the more accurate yield prediction algorithm into the greenhouse control
system to achieve more precise greenhouse control to guarantee the maximum crop yield.
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