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Abstract: Rose (Rosa sp.) is a widely used raw material for essential oil extraction and fragrance
production. The carotenoid cleavage dioxygenases pathway is one of the main metabolic pathways for
the degradation of carotenoids, which is located downstream of the terpenoids biosynthesis pathway
and is closely related to the biosynthesis of volatile compounds. We performed a comprehensive
genome-wide analysis of the rose CCD family genes (RcCCDs) in terms of phylogeny, sequence
characterization, gene structure, gene duplication events, and transcriptome. Finally, 15 CCD family
members were identified from the rose genome, and they were classified into three clades: nine for the
CCD clade, four for the NCED clade, and two for the CCD-LIKE clade. The RcCCDs were distributed
on chromosomes 1, 4, 5, 6, and 7, and were concentrated on both ends of the chromosomes. RcCCDs
did not have paralogous genes or whole genome duplication events (WGD), eleven of them were
single-copy genes, and their repetitive sequences were mainly dispersed and tandem. Ten RcCCDs
were differentially expressed in the transcriptomes of different flowering stages. The expression
of four of them increased and then decreased, which was the same process as the accumulation of
volatile compounds, and it was speculated that these genes might be involved in the biosynthesis
of volatile compounds. A total of fifteen modules were obtained by weighted gene co-expression
network analysis of eighteen volatile compounds-related genes, of which six modules were a highly
significant positive correlation with volatile compounds, and 20 hub genes in the modules were
predicted. These hub genes all exercised their functions in the early flowering stage with strict
temporal specificity. This study provided a theoretical basis for further exploring the biological
functions of RcCCDs and hub genes regulating the synthesis and metabolism of volatile compounds
in rose.

Keywords: rose; CCD family; volatile compounds; WGCNA; hub gene

1. Introduction

As a widely used plant material for essential oil extraction and fragrance production,
the extracted volatile compounds are used as additives in perfumes, cosmetics, and edible
flavors, while the extracted essential oils are also used as antibacterial, antioxidant, and
cytotoxic activities in medical consultations [1]. The volatile compounds in rose are mainly
produced by the terpenoids biosynthesis pathway and phenylpropanoids/benzenoids
metabolic pathway and to a lesser extent by fatty acid derivatives including lipoxygenase
pathway products [2].

In rose, the terpenoids biosynthesis pathway is the main pathway for volatile com-
pounds and contains two branches: (1) the 2-C-Methyl-D-Erythritol-4-Phosphate (MEP)
pathway [3], which is mainly located in the plastids and produces monoterpenes and
diterpenes [4]. (2) The mevalonate (MVA) pathway, mainly located in the cytoplasm,
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endoplasmic reticulum, and peroxisomes [5,6], produces volatile sesquiterpenes. The
phenylpropanoids/benzenoids metabolic pathway is the second major synthetic path-
way [4], both of which are derived from L-phenylalanine (L-Phe). The Phenylpropanoids
are synthesized directly from L-phenylalanine, but most products acquire volatility only
after acylation or methylation at the C9 position. Benzenoids are based on a branch of the
phenylpropanoid pathway, and the cinnamic acid pathway, and are all volatile [7]. Only a
few fatty acid derivatives are present in rose, such as leaf alcohol, cis-3-Hexenyl Acetate,
hexyl acetate, and 4-hexen-1-ol acetate, but no related enzymes or genes have been isolated
or identified from rose so far.

In our pre-laboratory GWAS and WGCNA results, we found that the gene RcCCD1 was
associated with flower scent. Carotenoid cleavage dioxygenases (CCDs) are a widespread
family of enzymes located downstream of the MEP pathway that is capable of mediating
the cleavage of conjugated double bonds in carotenoid polyolefin chains [8], thus catalyzing
the initial steps of natural active substance formation. The end products of its metabolism
include naturally occurring active compounds such as natural flavor substances, volatile
volatile compounds, the phytohormone abscisic acid (ABA), and solanum lactone (SL).

The CCD gene family can be further divided into two clades, carotenoid cleavage
dioxygenases (CCD) and 9-cis-epoxycarotenoid dioxygenases (NCED) based on whether
their substrates are oxidized [9]. In addition to this, a new group was identified from
three species of tomato (Solanum lycopersicum) [10], strawberry (Fragaria vescv) [11], and
apple (Malus domastica) [12], named CCD-Like (CCDL). Carotenoid cleavage dioxygenases
all contain an RPE65 (retinal pigment epithelial membrane protein) domain where Fe2+
can activate the catalytic activity of the enzyme and four conserved histidines within
CCDs can regulate its binding to Fe2+ [13,14]. ZmVP14 is the first CCD family gene
identified in a plant species [15], which is associated with the synthesis of abscisic acid.
Subsequently, nine homologs of ZmVP14 were identified in Arabidopsis, namely NCED2,
NCED3, NCED5, NCED6, and NCED9 of the NCED clade (all involved in ABA synthesis)
and CCD1, CCD4, CCD7, and CCD8 of the CCD clade [9]. Several carotenoids have been
reported to be degraded to a variety of norisoprenoids, such as α-Ionone and β-Ionone,
6-methyl-5-hepten-2-one, Citral, Geranylactone, pseudoionone, 3- 3-Hydroxy-β-ionone,
5,6-Epoxy-3-hydroxy-β-ionone, Geranial, β-Cyclocitral, β-Citraurin, and Farnesyl acetone.

So far, 11, 12, 11, and 9 CCD family members have been identified in maize (Zea mays),
sorghum (Sorghum bicolor), rice (Oryza sativa) [16], and grape (Vitis vinifera) [17], respectively.
The CCD family has also been identified in several horticultural crops such as grape [18],
tomato [10], apple [12] and are closely related to the biosynthesis of volatile compounds.
However, the CCD gene family of the rose genome is still not reported, and only one gene,
RdCCD1, has been reported, whose expression was associated with the accumulation of
C13-norisoprenoids compounds in roses. Therefore, we performed a genome-wide analysis
of the CCD gene family.

WGCNA was able to identify biologically important co-expression modules and
target genes through correlation analysis between the co-expression module and tar-
get trait/phenotype [19]. In this study, the hybrid offspring of modern rose varieties
R. hybrida ‘First blush’ and R. hybrida ‘Elle’, R. hybrida ‘tianmidemeng’ with super-parental
floral fragrance, and R. hybrida ‘Chingge’ with normal floral fragrance were used as the
experimental materials.

Based on the differential expression gene data of R. hybrida ‘tianmidemeng’ at three
different flowering stages, R. hybrida ‘Elle’, R. hybrida ‘First blush’ and R. hybrida ‘Chingge’
at SF stage. With 18 volatile compounds detection amounts as the target traits, the gene
co-expression network was constructed by WGCNA to explore the hub genes regulating
volatile compound synthesis and metabolism in rose. A view to providing important
references for the study of the regulation of rose flower scent synthesis, providing new
insights and clues for further exploring the molecular mechanism of the CCD gene family in
roses, and at the same time, providing ideas and genetic resources for variety improvement
of rose flower scent by means of genetic engineering.
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2. Materials and Methods
2.1. Identification and Characteristics of the CCD Gene Family in Rose Genome

In total, 45,469 proteins of rose genome (R. ‘Old Blush’) (https://www.rosaceae.org/
species/rosa/all (accessed on 10 September 2022)) were searched for the Hidden Markov
Model of the RPE protein super-family (RPE65/PF03055) by hmmsearch to retain sequences
with E-value < 1 × 10−5, as candidates for CCD gene family members [20]. Twenty CCD
family member sequences from O. sativa [16], A. thaliana [9,13], S. lycopersicum [10], and
Z. mays VP14 [15] were used as queries to search for homologous sequences in 45,469 proteins
of rose genome using the blastp program with E-value < 1 × 10−5 [12]. All of the results
were combined to validate all candidate CCD gene sequences using MEME (https://meme-
suite.org/meme/ (accessed on 12 September 2022)) and PfamScan (https://www.ebi.ac.uk/
Tools/pfa/pfamscan/ (accessed on 12 September 2022)); sequences not containing conserved
motifs or domains were removed. TBtools [21] was used to count the detailed information of
RcCCD genes.

2.2. Chromosome Distribution and Collinearity Analysis

The rose genome annotation file (GFF3) was downloaded from the GDR website
(Genome Database for Rosaceae) [22] and then the GFF3 information and gene ID list
of RcCCDs were extracted to map the chromosome distribution using TBtools (v 1.108,
Guangzhou, China). One Step MCScanX module in TBtools was used to identify collinear
blocks; a simple Ka/Ks calculator module was used to calculate Ka/Ks values. Single-copy
sequences were found using OrthoFinder (v.2.5.2, Oxford, England) [23].

2.3. Phylogenetic and CCD Gene Family Structure Analysis

ClustalW (v 2.0, Cambridge, England) [24] was used to perform multiple alignments
of the amino acid sequences of candidate genes and 20 known CCD family genes (from
O. sativa, A. thaliana, S. lycopersicum, and ZmVP14) (National Center for Biotechnology Infor-
mation, https://www.ncbi.nlm.nih.gov/ (accessed on 10 September 2022)). Iqtree (v 1.6.12,
Vienna, Austria) [25] was used to construct the phylogenetic tree with ML method, -MFP
parameter was used to find the optimal amino acid substitution model and 1000 bootstrap
replicates. TBtools [21] was used to show phylogenetic trees, MEME motifs, pfam domain,
and gene structure.

2.4. Expression of RcCCD Genes in Floral Organs of R. hybrida at Three Flower Developmentstages

Nine sets of transcriptome data from three flower development stages of R. hy-
brida ‘tianmidemeng’ were used for differential expression analysis. (EF: early-flowering,
SF: semi-flowering, LF: late-flowering) (NCBI database, BioProject PRJNA667625, SraAcc
SRR12779319, SRR12779320, SRR12779321, SRR12779322, SRR12779323, SRR12779324,
SRR12779325, SRR12779326, and SRR12779327) [26]. Transcriptome data were first quality-
controlled using Trimmomatic (v.0.35, Düsseldorf, Germany) [27] before assembling a
reference-guided transcriptome using HISAT2 (v2.0.4, Baltimore, MD, USA) [28]. Ex-
pression levels were then calculated using StringTie2 (v2.1.5, Baltimore, MD, USA) [29],
and differential expression analysis was performed using DESeq2 (v1.20.0, Heidelberg,
Germany) in R [30].

2.5. Weighted Gene Co-Expression Network Analysis, WGCNA

We performed differential expression analysis of transcriptome data of R. hybrida
‘tianmidemeng’ at three flower development stages (EF, SF, LF), R. hybrida ‘Elle’, R. hybrida
‘First blush’, and R. hybrida ‘Chingge’ at the SF stage, available in our laboratory, and
obtained a total of 11,679 differentially expressed genes, and these differential genes were
used for gene co-expression network analysis. The GC-MS data used in this paper come
from Shi’s paper [26], which contains 18 volatile compounds. These include R. hybrida
‘tianmidemeng’ in three flower development stages (EF, SF, LF), R. hybrida ‘Elle’, R. hybrida
‘First blush’, and R. hybrida ‘Qingge’ were in the SF stage.

https://www.rosaceae.org/species/rosa/all
https://www.rosaceae.org/species/rosa/all
https://meme-suite.org/meme/
https://meme-suite.org/meme/
https://www.ebi.ac.uk/Tools/pfa/pfamscan/
https://www.ebi.ac.uk/Tools/pfa/pfamscan/
https://www.ncbi.nlm.nih.gov/
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Weighted gene co-expression network analysis was performed using the R software
WGCNA package [31], and the optimal soft threshold (β) was determined according to the
scale-free network principle. Co-expression networks were constructed using the automatic
network construction function blockwiseModules to obtain co-expression modules, limiting
the minimum number of modules to 100 genes (minModuleSize = 100), constructing the
network type as networkType = “unsigned”, and subsequently merging modules with
module Eigengenes value correlation > 0.75 (mergeCutHeight = 0.25). merged.

The module Eigengenes values of each module were obtained by calculating the
Pearson correlation between the gene co-expression modules and the 18 volatile compound
detected amount.

In this study, gene co-expression modules with correlation coefficients r ≥ 0.7 and
modules containing RcCCDs were used as candidate target modules, and KEGG functional
enrichment analysis was performed, while the top 10% of connectivity, kME > 0.8, and top
500 genes weighted within a single module were used as criteria to screen genes within
hub modules. Finally, Cytoscape software (v 3.7.1, Washington, DC, USA) was used to
visualize the gene co-expression regulatory network within the target modules [32].

3. Results
3.1. Identification and Characterization of the CCD Gene Family in Rose

We found 15 and 13 CCD genes from the rose genome by hmmsearch and blastp
programs, respectively, and obtain a total of 15 CCD family genes by verifying against
the conserved motifs and domains in the MEME and PFam databases about the CCD
family, all of which contained the RPE65 domain. Fifteen CCD family genes were named
according to the motif type, blastp results, and the number of introns and exons. At the
same time, 15 RcCCDs were classified into three clades: nine for the CCD clade (RcCCD1,
RcCCD4, RcCCD7, RcCCD8), four for the NCED clade (RcNCED3, RcNCED6) and two for
the CCD-LIKE clade (RcCCD-like). (Table S1, Figures 1–3). The number of amino acids in
the RcCCDs varied greatly, with the longest being 688 amino acids (RcNCED3_2) and the
shortest being 149 aa (RcCCD7_4), containing an average of 524.13 aa.
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diagram represent CDS, UTR, and introns, respectively. Scales (nt) were provided as a reference.
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3.2. Chromosomal Locations and Microsynteny

RcCCDs are distributed on chromosomes 1, 4, 5, 6, and 7 in rose, and their distribution
was location specific, which is concentrated at both ends of the chromosome, especially at
the bottom, except for RcNAED3_2. All CCD and CCD-like clade genes were located on
chromosomes 1 and 6 except RcCCD4. The distribution of the NCED clade was fragmented and
not concentrated on one chromosome, with distribution on chromosomes 4, 5, and 7 (Figure 1).

We further investigated the synteny of the rose genome and found that there were no
paralogous genes and no genome-wide duplication events in RcCCDs. Eleven RcCCDs were
single-copy genes, and their repeat sequences were mainly dispersed and tandem repeats
(Table S1). We subjected 15 RcCCDs to mutual blastp, analyzed the ratio of nonsynonymous
(Ka) to synonymous (Ks) nucleotide substitutions (Ka/Ks) between homologous gene
pairs of two RcCCD1 (RcCCD1_1, RcCCD1_2), three RcNCED3 (RcNCED3_1, RcNCED3_2,
RcNCED3_3), five RcCCD7 (RcCCD7_1, RcCCD7_2, RcCCD7_3, RcCCD7_4, RcCCD7_5), and
found that Ka/Ks < 1 for seven gene pairs, indicating that homologous RcCCD genes may
have undergone selective pressure for purification during evolution (Table S2).

3.3. Phylogenetic Tree and Sequence Structure Analysis of Rose CCD Genes

We used the maximum likelihood method (ML), JTT amino acid substitution model
to construct tree (Figure 2). In Arabidopsis, there are nine AtCCDs, four members of the
CCD clade (AtCCD1, AtCCD4, AtCCD7, AtCCD8), and five members of the NCED clade
(AtNCED2, AtNCED3, AtNCED5, AtNCED6, AtNCED9) [9]. There are also nine OsCCDs in
rice, six in the CCD clade (OsCCD1, OsCCD4a, OsCCD4b, OsCCD7, OsCCD8a, OsCCD8b)
and three in the NCED clade (OsNCED3, OsNCED4, OsNCED5).

Fifteen RcCCDs were named and grouped according to motif type, blastp results, and
the number of introns and exons as well as groupings with known genes. The NCED
clade all clustered together (blue part of Figure 2), they all contained six motifs (except
RcNCED3_2) and did not contain intron structures. CCD clades were also clustered together
(Figure 2 purple), while RcCCD1, RcCCD4, RcCCD7, and RcCCD8 can each be separated into
separate CCDs. RcCCD1 contained 6 motifs and 13 introns; RcCCD4 contained 6 motifs and
no intron; RcCCD7 contained motif1 and 5–6 introns (except RcCCD7_3); RcCCD8 contained
motif1, motif3, motif6 and 4–5 introns. CCD-like (green part of Figure 2) contained motif3,
motif4, motif6 (Figure 3).

3.4. Expression of RcCCD genes in Floral Organs of R. hybrida ‘Tianmidemeng’ at Three Flower
Development Stages

Carotenoid cleavage dioxygenases (CCD) genes were key enzyme genes in the carotenoid
degradation process, in which the dioxygenase cleavage pathway (CCD metabolic pathway)
mainly formed a series of volatile compounds and was also related to the coloration of fruit
and flower organs. Based on the transcriptome data available in our team for R. hybrida
‘tianmidemeng’ at three flowering stages, we performed differential expression analysis to
investigate the dynamic changes of RcCCDs during flowering (EF: early-flowering, SF: semi-
flowering, LF: late-flowering).

Ten genes (RcCCD1_1, RcCCD1_2, RcCCD4, RcCCD7_1, RcCCD7_3, RcCCD8, Rc-
NCED3_1, RcNCED3_2, RcNCED3_3, RcNCED6) were differentially expressed at three
stages. Among them, RcCCD4, RcCCD7_1, RcCCD7_3, RcNCED3_1, RcNCED3_2, Rc-
NCED3_3 were significantly up-regulated in the SF stage, and RcCCD7_1, RcCCD7_3,
RcNCED3_1, RcNCED3_2, RcNCED3_3 were significantly down-regulated in the LF stage,
which was consistent with the accumulation of volatile compounds. This indicated that
these genes may be involved in the biosynthesis of volatile compounds (Table S3, Figure 4).

The expression of RcCCD1_2 increased gradually from EF to SF and then to the LF
stage and was significantly higher in the LF stage, which was different from the expression
patterns of RcCCD4, RcCCD7, and RcNCED3. It has been reported that the expression of
CpCCD1 in summer squash (Cucurbita pepo) [33] also showed an elevated trend during
the flowering process. Among the fifteen RcCCDs, eight genes were detected at EF, SF,
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and LF stages by qRT-PCR. Among them, six genes were detected in EF, SF, and LF
simultaneously, and their expression trends were the same as the RNA-seq, which proved
that the transcriptome data were accurate and reliable (Figure 5).
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3.5. Weighted Gene Co-Expression Network Analysis, WGCNA

The optimal soft threshold (β) was determined by the pickSoftThreshold function in
the WGCNA package to make the network converge infinitely to the distribution of the
scale-free network. As shown in Figure 6A, the β = 8 when the correlation coefficient was
greater than 0.85 for the first time was chosen for subsequent further construction of the
gene co-expression network (Figure 6A).
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The phase dissimilarity coefficients of differentially expressed genes were calculated
to construct gene clustering trees, and then the modules were cut according to the mixed
dynamic tree cut method to integrate genes with similar expression patterns to the same
branch. Each branch represented a co-expression module and different modules were
indicated by different colors, and gray modules represented genes that could not be
integrated into any other modules. As shown in Figure 7, all genes were divided into
15 modules, among which the turquoise module had the largest number of genes, 4597,
and NUDX, the star gene of floral scent in rose, was in this module with five homologous
genes. Followed by the blue module with 1385 and the cyan module with the least number
with only 176 (Table S4).

The results showed that six co-expression modules were highly significantly correlation
with multiple volatile compounds (correlation coefficient r ≥ 0.7, p-value ≤ 0.05), with black
and turquoise modules being more associated with terpenoid, specifically, the black module
was highly significantly positively correlated with Neryl acetate (r = 0.73, p = 6 × 10−4); the
turquoise module was positively correlated with Citral (r = 0.73, p = 5 × 10−4) and β-Pinene
(r = 0.78, p = 1 × 10−4). While the blue, green yellow, yellow, and brown modules were more
associated with phenylpropanoids/benzenoids. Blue module was positively correlated with
Methyleugenol (r = 0.73, p = 6 × 10−4) and X4-Hexen-1-ol-acetate (r = 0.76, p = 3 × 10−4).
Green yellow module was significantly positively correlated with Phenethyl alcohol (r = 0.92,
p = 5 × 10−8), Phenethyl acetate (r = 0.84, p = 1× 10−5), and DMT (r = 0.73, p = 5× 10−4). Yellow
module was highly significantly positively correlated with DMT (r = 0.80, p = 7 × 10−5); and
the brown module was highly significantly positively correlated with X4-Hexen-1-ol-acetate
(r = 0.75, p = 3 × 10−4).
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To further identify the target gene co-expression modules and their biological functions,
KEGG functional enrichment analysis was performed on five of the highly significantly cor-
related modules (black, turquoise, blue, green yellow, brown) and two modules containing
RcCCDs (green and cyan) (p < 0.05).

The results showed that the genes in these seven modules were mainly enriched in
Plant hormone signal transduction (map04075), Terpenoid backbone biosynthesis (map00900),
Monoterpenoid biosynthesis (map00902), Phenylalanine, tyrosine, and tryptophan biosynthe-
sis (map00400), Carotenoid biosynthesis (map00906), Phenylalanine metabolism (map00360),
Sesquiterpenoid and triterpenoid biosynthesis (map00909). These KEGG pathways were
related to the metabolism of volatile compounds, suggesting that WGCNA identified bio-
logically significant gene co-expression modules (Figure 9, Table S5). GO enrichment anal-
ysis of these modules revealed that black, blue, brown, and turquoise modules were en-
riched in isoprenoid metabolic process (GO:0006720), automatic compound catabolic process
(GO:0019439), terpenoid metabolic process (GO:0006721), phenylpropanoid metabolic process
(GO:0009698), phenylpropanoid biosynthetic process (GO:0009699), and terpenoid biosyn-
thetic process (GO:0016114), all of which were terms related to the metabolic pathways of
terpenoids biosynthesis and phenylpropanoids/benzenoids metabolic pathway in rose. The iso-
prenoid metabolic process (GO:0006720) was more related to the CCD family, which degrades
carotenoids to C-13-norisoprenoids, which were important volatile compounds (Table S6).
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Within seven modules, the top 10% of genes connectivity, kME > 0.8, and the top
500 weighted values within a single module were screened as candidate hub genes, totaling
162 hub genes. Then ten RcCCDs and five NUDX genes (related to) were added to a total
of 177 genes for co-expression network map display, based on which 20 hub genes were
further screened as shown in the pink circles (Figure 10, Tables S3 and S7). The differential
expression analysis revealed that these 20 genes had the highest expression in the EF stage,
all of them were down-regulated in the SF stage, and 19 of them were not expressed in
the LF stage, indicating that these genes all exercised their functions in the early flowering
stage with strict temporal specificity (Table S3, Figure 11). These hub genes are involved in
Carbon metabolism (map01200), Biosynthesis of amino acids (map01230), Phenylpropanoid
biosynthesis (map00940), Aminoacyl-tRNA biosynthesis (map00970), and other metabolic
pathways. Twenty hub genes were enriched not only for the phenylpropanoid metabolic
process (GO:0009698), phenylpropanoid biosynthetic process (GO:0009699) but also for
many biological processes related to the carbohydrate metabolic process (GO:0005975),
and secondary metabolic process (GO:0019748). The accumulation of volatile compounds
was closely related to floral development, and we also enriched floral organ development
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(GO:0048437). These suggested that WGCNA could indeed identify co-expression modules
and genes that were highly correlated with the target traits and had biological significance.
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Figure 11. Expression patterns of the 20 hub genes at three flower development stages in R. hybrida
‘tianmidemeng’. Legend from red to blue indicated gene expression levels from high to low. EF: early-
flowering, SF: semi-flowering, LF: late-flowering.

4. Discussions

Rose is a widely used plant material for essential oil extraction and fragrance production.
Its volatile compounds are mainly produced through terpenoid, phenylpropanoids/benzenoids
metabolic pathways. The carotenoid cleavage dioxygenases pathway (CCD metabolic pathway)
is one of the main metabolic pathways for the degradation of carotenoids, which is located
downstream of the terpenoids biosynthesis pathway and is closely related to the biosynthesis of
volatile compounds.

The function of the CCD genes in the rose genome is unknown, and only one gene,
RdCCD1, has been reported, whose expression is associated with the accumulation of
C-13-norisoprenoids in R. damascena [34].

In this study, 15 CCD family member genes were identified from the rose genome,
similar to the reported numbers of 9 in Arabidopsis, 9 in rice, and 19 in tobacco.

We comprehensively analyzed the CCD family in terms of phylogeny, sequence charac-
teristics, gene structure, chromosomal location, and repeats, and found that the CCD protein
sequences in different groups of rose were highly conserved but still have some differences.

The CCD clade was rich in structural variation, with large variations in exon, intron,
and motif numbers. In contrast to the gene sequences in the CCD clade, NCED clade
genes were free of introns, and had a typical chloroplast-targeted transit peptide at the
N-terminal end of the amino acid sequence. Their C-terminal end was highly homologous
at the, and all contain four conserved histidine structures (His). There was evidence that the
highly conserved Glu/Asp active sites of His and CCD proteins were essential for enzyme
activity [10,14].

The NCED clade contained more motifs, implying that their protein structure was highly
conserved and whether these more motifs confer more function to the NCED clade proteins
would require further research to demonstrate. However, several studies have confirmed that
the CCDs protein sequences were not highly conserved [9,16,17,35,36], which was somewhat
different from the results of my study, perhaps related to inter-species variability.

Gene retention and chromosomal rearrangement after WGD events were usually the
main cause of gene family expansion, but in RcCCDs there was no WGD event. Our results
show that fragment duplication was the main driver of gene amplification in RcCCDs, which
was consistent with the results in the apple CCD family [12], but unlike in tobacco, where
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no tandem repeat events were found, gene retention and chromosomal arrangement after
WGD were responsible for the expansion of the tobacco CCD gene family [37]. Meanwhile,
11 of the RcCCDs were single-copy genes, indicating that most of the CCD family proteins
were not functionally redundant. Indeed, CCDs showed diverse expression, indicating that
modifications including mutations have occurred in function regions, regulatory regions,
and coding sequence sites, of duplicated members, affecting the expression as well as
function [38,39].

5. Conclusions

Fifteen CCD family genes were identified in the rose genome, and they belong to three
clades: CCD, NCED, and CCD-LIKE. RcCCDs without WGD events, their repetitive se-
quences were mainly dispersed and tandem, and fragment replication was the main driving
force of RcCCDs amplification. RcCCDs were differentially expressed in the transcriptomes
of different flowering stages, and the expression patterns of some genes were identical to
the accumulation process of volatile compounds. A total of 15 modules were obtained by
weighted gene co-expression network analysis of 18 volatile compounds-related genes,
of which 6 modules were highly-significant positive correlation with volatile compounds,
and 20 hub genes in the modules were predicted. These hub genes all exercised their
functions in the early flowering stage with strict temporal specificity. This study provided
a theoretical basis for further exploring the biological functions of RcCCDs and hub genes
regulating the synthesis and metabolism of volatile compounds in rose.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/horticulturae9010115/s1, Table S1: Memebers of the CCD gene
family, as predicted in R. chinensis genome sequence; Table S2: KA/KS analysis of RcCCDs in
R. chinensis; Table S3: Expression of RcCCDs and hub genes in floral organs of Rosa hybrida ‘tianmide-
meng’ at different stages; Table S4: The number distribution statistics of differentially expressed
genes in 15 co-expressed modules; Table S5: Partial KEGG enrichment results of seven target gene
modules; Table S6: Partial GO enrichment results of seven target gene modules; Table S7: Functional
annotations of hub genes in seven modules.
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