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Abstract: Flower thinning for fruit trees in time is an important operation to keep a suitable quantity
of fruits and guarantee the quality of fruits. Accurate detection of flower density is the premise of
precise flower thinning, and machine vision provides an effective approach to achieving the accurate
identification of flower density. To detect the flower density on the proximal side of Y-shaped densely
planted peach trees accurately, this study proposed a method based on an RGBD camera and a
convolutional neural network that incorporated an attention mechanism and multi-scale feature
fusion. Firstly, image acquisition and preprocessing were performed with the RGBD camera, and
the complex background and distal flowers were filtered out through depth information. Then, a
convolutional neural network for flower density detection based on an attention mechanism and
multi-scale feature fusion, named the flower counting network (FC-Net), was constructed and tested.
Results showed that the coefficient of determination (R?) between the estimated number of flowers
by the FC-Net and the real values reached 0.95, the mean absolute error (MAE) was 4.3, the root mean
square error (RMSE) was 5.65, the counting error rate (Er) was 0.02%, and the processing time of one
image was 0.12 s. The proposed FC-Net can provide visual support for intelligent mechanical flower

thinning operations.

Keywords: deep learning; flower detection; image processing; flower thinning; depth information;
RGBD camera

1. Introduction

China has a big fruit industry, among which its peach production accounts for 57.82%
of the world’s total peach production. In recent years, the traditional way of planting
fruit trees has been gradually replaced by a new and efficient model called dwarf and
close planting [1]. The dwarf and close planting mode are beneficial for trees to form
flowers and fruits. However, due to the lack of scientific and reasonable planning and
management, too many young fruits will consume too many nutrients, resulting in the
phenomenon of small and large fruiting years [2,3]. Therefore, the yield and quality of fruits
are closely related to the number of flowers remaining on the trees under the dwarf and
close planting mode [4]; farmers need to perform flower thinning operations in time to keep
a suitable quantity of flowers. Flower thinning is one of the labor-intensive operations in
orchard management. Mechanical flower thinning is a fast and efficient approach and has
been becoming popular in recent years, but existing mechanical flower thinning machines
cannot change the thinning speed in real-time according to the flower density, which may
cause uneven thinning results and further has a negative effect on the quality and quantity
of fruits.
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In recent years, with the rapid development of computer vision and image processing
technology, extensive research has been conducted on flower detection, mainly using
conventional image processing, machine learning and deep learning techniques. Flower
detection with conventional image processing techniques is mainly based on the color
information of flowers, which is easy to implement; however, it is susceptible to factors,
such as lighting conditions, occlusion, and background interference. Target detection based
on deep learning methods relies on the powerful feature extraction ability and stability
of the convolutional neural network and has achieved good detection results, providing
an efficient and promising approach for flower detection. Davis et al. [5] used a Mask
R-CNN model with ResNet-50 as the backbone network for flower detection, resulting
in a flower detection accuracy greater than 87% with an average absolute error of 0.51.
Wau et al. [6] proposed a real-time apple flower detection method based on the YOLOv4
network. Results showed that the detection precision of this model reached 89.43%, the
mean average precision reached 97.31%, and the detection speed reached 72.33 frames
per second (FPS). Xiong et al. [7] proposed a pixel-level lychee flower recognition and
segmentation model based on a deep semantic segmentation network. They added a dense
feature transfer and a convolutional block attention module (CBAM) to the ResNet_34
backbone network, so as to improve the effectiveness of lychee flower and leaf features.
Test results showed that the MIoU and pixel recognition accuracy of the litchi flower
segmentation model were 0.734 and 87%, respectively. These deep learning-based object
detection methods can realize the recognition and segmentation of flowers more intuitively,
but there may be overlapping of candidate anchor boxes when flower density is large,
increasing the processing time and affecting the real-time application of the developed
models [8].

In recent years, deep learning methods based on density maps [9] have been applied
to the problem of dense, multi-overlapping object counting. The density map-based
counting method is a new supervised learning framework, which incorporates the spatial
information of images in the counting process by learning the mapping relation between
local features of images and their corresponding density maps. Density map-based counting
methods have been validated to provide good prediction accuracy and robustness in crowd-
counting tasks in complex environments [10-13], and have been applied to agricultural
fields to estimate the number of wheat ears [14], fish [15] and flowers, etc. Tian et al. [16]
proposed an improved apple flower instance segmentation model Mask R-CNN based
on the U-Net network. The instance segmentation model showed strong ability in the
apple flower segmentation task with budding, semi-open and fully open apple flowers
in complex orchard environments, with a prediction accuracy of 96.43% and an MloU of
91.55%. The density map-based method trains the regression density map to estimate the
target density in the image and then integrates it to obtain the number of targets, which
provides more possibilities for dense flower density detection in complex environments.
However, there has been no research to detect the flower density on unilateral branches of
Y-shaped densely planted peach trees that are widely planted in China.

Therefore, the overall goal of this research was to use the RGB and depth information
captured by an RGBD camera combined with an improved deep neural network to detect
peach flower density on the proximal side of Y-shaped densely planted peach trees in
real-time. Specific objectives were to (1) use an RGBD camera to obtain peach flower
information of the Y-shaped peach trees and filter out complex background and distant
peach flowers based on depth information, (2) propose a flower density detection network
based on the attention mechanism and multi-scale feature fusion technique, and (3) test the
performance of the proposed network.

2. Materials and Methods
2.1. Owverall Workflow of the Proposed Method

As shown in Figure 1, in order to detect peach flower density on the proximal side of Y-
shaped peach trees, an RGBD camera was deployed to acquire RGB and depth information.
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The complex background and peach flowers on the distal side of the Y-shaped tree in the
images were segmented and removed based on the depth information. The number of
peach flowers on the proximal side of peach trees is then estimated by the trained peach
flower density detection model.

peach blossom density

t Output

Peach Blossom
Counting Network

Figure 1. Overall workflow of the proposed method.

2.2. Data Acquisition and Preprocessing Based on RGBD Camera

The Azure Kinect DK RGBD camera from Microsoft was deployed to acquire RGB and
depth information from peach flowers. The Azure Kinect DK is equipped with a one 1-MP
time of flight (TOF) depth sensor and a 12-MP RGB camera. According to the shooting
requirements, the mode of the Kinect depth sensor used in this study was selected as
WEFOV with 2 x 2 boxing, the resolution was selected as 512 x 512, and the frame rate was
selected as 30. Meanwhile, the resolution of the RGB camera was selected as 1920 x 1080,
the format option was MJPEG, and the frame rate was selected as 30. The acquired RGB
image and depth information by the Azure Kinect DK camera were mapped together
using the open3d [17] and Numpy library [18] by a Python script. The RGB images were
then segmented according to corresponding depth information. Namely, pixels within
the distance between the RGBD camera and the main stem of the Y-shaped peach trees
remained so that the complex environmental background and the flowers on the distal side
of the Y-shaped trees were removed. After the depth-based segmentation, the remaining
flowers in the resulting images were all on the near side of the RGBD camera, as shown in
Figure 2.

Figure 2. Image after segmentation based on depth information.
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1920 X 1080 X3

2.3. Convolutional Neural Network for Peach Flower Counting
2.3.1. Overall Architecture of the Proposed Network

The proposed peach flower counting network (FC-Net) was based on a dilated convo-
lutional neural network CSRNet for crowd counting [14] and consisted of three main parts,
a backbone network for feature extraction, a multi-scale feature fusion module to fuse the
extracted features of different scales, and an atrous convolutional network to increase the
network perceptual field (Figure 3). When performing peach flower density detection,
the stamen and pistil of the flowers are distinct from the other parts in terms of color and
texture, which may affect the counting performance of the network. In order to extract
the deep features of flowers, the first 10 layers of the VGG16 [19] network were selected
as the backbone network. The three maximum pooling layers of the VGG16 remained
and the fully connected layers were removed. A five-layer atrous convolutional network
that only used sparse kernels to alternately merge convolutional layers was added. Under
the same network volume, it had a wider range of receptive fields of view, and the reso-
lution of the feature map remained unchanged. The last layer was a convolutional layer
with a convolution kernel size of 1 x 1, which was used to output a high-quality peach
flower density map. A multi-scale feature fusion module was added to fuse multi-scale
features extracted by the backbone network to keep more contextual features. In addition,
a light-weighted channel attention module, efficient channel attention (ECA) [20], was
incorporated in the feature extraction and fusion stages, enabling cross-channel information
interaction without reducing the channel dimensionality.

Multi-scale feature fusion module

240%X135%128

960 X 540 X128
I1920X 1080 X 64

—

-

240 X135%1

240X135X512 240X 135 X 256 240X 135X 64

REEE

240X135%X512

480 X 270 X 256 .
max pooing

VGG backbone network

convolution+ReLU

Figure 3. Architecture of the proposed FC-Net.
2.3.2. Multi-Scale Feature Fusion (MSFF) Module

Peach flowers in the blossom period are diverse and different in shape and color.
During the model training process, the backbone network extracted the features of the target
through layer-by-layer convolution, and the fixed-size convolution kernel is not effective in
perceiving peach flowers of different shapes. In addition, with the deepening of the layers
of the convolutional neural network, the receptive field of the network gradually becomes
larger and the characterizing ability for semantic information becomes stronger; however,
the resolution of deeper feature maps becomes lower and the perception ability of detailed
information becomes poorer, causing information loss of small targets [21]. Therefore, it is
difficult to detect immature flower buds using deep features alone. Compared with deep
layers, the shallow layers of feature extraction networks have a relatively small receptive
field, higher resolution, and stronger perception ability of detailed information, making
shallow feature maps suitable for detecting small targets. Therefore, the fusion of multi-
scale features provides an effective way for flower target detection and segmentation. In
this work, a multi-scale feature fusion module (Figure 4) was introduced to retain more
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information about the location, edge, and texture of peach flowers so as to improve the
detection accuracy for small flower buds.

F1:960%540%64

F,:480X 270X 128
Conv 1X1

Concat

Down
Sampling

Down
Sampling

Conv1xX1 Ans_F:
240X135X1

F4:240X135X 512

max pooing
convolution+ReLU

extractfeature

Figure 4. Architecture of multi-scale feature fusion module.

As shown in Figure 4, a shallow feature map was extracted after layer-3 of the backbone
network as the first feature fusion branch F1, the intermediate feature map after layer-6
was extracted as the second feature fusion branch F2, the deep feature map after layer-10
was extracted as the third feature fusion branch F3, and the output feature map of the
backbone network was marked as the fourth feature fusion branch F4. The size of feature
maps F1, F2, F3 and F4 were 960 x 540 x 64, 480 x 270 x 128, 240 x 135 x 256 and
240 x 135 x 512, respectively. The shallow feature map F1 was downsampled by a2 x 2
average pooling layer to ensure that the fused feature map was consistent in scale with
the middle layer feature map F2. The down-sampled shallow feature map F1 was then
concatenated with the feature map F2 to obtain a fused feature map F1_2. The feature
map F1_2 was downsampled by a 2 x 2 Max pooling layer and concatenated with feature
map F3 to obtain feature map F1_2_3. The two concat operations increased the number
of channels of feature maps and the receptive field became large. Then, the number of
channels of F1_2_3 was reduced to 512 by a convolution kernel of size 1 x 1. The resulting
F1_2_3 map was then concatenated with F4, followed by a convolution with a kernel size
of 1 x 1 to reduce feature dimensionality, and the final fused feature map Ans_F was
obtained. After feature fusion, the feature map Ans_F contained multiple local features
under different receptive fields, and the semantic and location information of the extracted
features were enhanced. The formulae for the above operations were defined as follows:

F1_2 = Concat[AP(F1), F2] (1)
F1_2_3 = Concat[MP(F1_2), F3] (2)
Ans_F = Conv{Concat[Conv(F1_2_3), F4]} 3)

2.3.3. ECA Module

In the multi-scale feature fusion module, the weights of features of each scale were the
same due to the feature fusion by the direct concat operation. The semantic information
levels of different feature maps had different perception capabilities for peach flowers of
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different sizes. Moreover, the fused features of different levels also contain interference
information, such as background noise, which could negatively affect the model perfor-
mance and reduce the detection accuracy of the model as the number of network layers
increased [22]. Therefore, the light-weight channel attention module ECA (Figure 5) was
introduced on the transfer path of feature extraction and fusion, to enable the model to
selectively focus on key detail features of flowers while suppressing unimportant features,
such as leaves and branches to improve the detection accuracy of peach flowers [23].

Adaptive Selection of

Kernel Size:
k=y(C)
}
k=5 7
C
—_— (% — —
)
H H

W

® : element-wise product

Figure 5. Diagram of ECA module [20]. X denotes output of the convolution layer, H, W and C denote
the height, width and channel dimension of the convolution block, GAP denotes the global average
pooling, k is the adaptively selected convolution kernel size, and ¢ is the Sigmoid activation function.

The ECA module first adaptively determines the kernel size k of one-dimensional
convolution through nonlinear mapping of the channel dimension. After a global average
pooling operation to the input features without dimensionality reduction, the ECA captured
local cross-channel interaction by considering every channel and its k neighbors. Then,
ECA generates channel weights by performing a fast one-dimensional convolution of size k
and a Sigmoid activation function. Finally, the weights are multiplied with corresponding
elements of the original input feature map to obtain the output feature map. ECANet
effectively avoided the effect of dimensionality reduction on the learning effect of channel
attention, and appropriate cross-channel interactions significantly reduced the complexity
of the model while maintaining its performance.

2.4. Dataset Preparation
2.4.1. Data Acquisition

In order to ensure the diversity of samples, four cultivars of peach trees were selected
with flower colors involving pink, light pink and white. The peach branches with flowers
were arranged in a Y shape in a laboratory to simulate Y-shaped peach trees in an orchard.
The number of flowers in the field of view of the RGBD camera ranged from 20 to 300. As
shown in Figure 6, the Azure Kinect DK RGBD camera was fixed on a tripod with a height
of 2000 mm. The distance between the camera lens and the main stem of the Y-shaped tree
was 2500 mm. A total of 500 images with corresponding depth information were collected.
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Figure 6. Schematic diagram of data acquisition system.

2.4.2. Dataset Augmentation and Labeling

Training a deep network requires a large amount of data to learn the parameters in
the network. Sufficient training data can improve the generalization ability of the trained
model and avoid overfitting. In this work, the Python-based Imgaug library [24] was used
for data augmentation. Specifically, the mirror flip, left and right flip, Gaussian noise,
sharpen, and affine variation method was applied. After data augmentation, 500 extra
images were obtained. Therefore, the final dataset contained 1000 images.

For data labeling, point labeling method [25] was used with a key point of three
pixels in size. After point labeling, a density map generation method based on the nearest
neighbor distance [26] was used to generate the ground-truth peach flower density map
(Figure 7). Finally, the 1000 images and their corresponding ground-truth density maps
were divided into a training set, a validation set and a test set with the ratio of 7.5:1:1.5.

Figure 7. Ground-truth of peach flower density map.

2.5. Model Training

A high-performance GPU platform was used to accelerate the training of deep learning
tasks. The configuration of the training environment is shown in Table 1. Before training,
the pretrained weights of the first 10 layers of the VGG16 network on the ImageNet dataset
were loaded as initial weights, and the mean and standard deviation values of the ImageNet
dataset were used for image normalization. The initial learning rate was set as 1 x 1075,
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the momentum was set as 0.95, the number of iterations was set as 500, and the batch size
was set as 1. The mean square error between the ground-truth and the predicted flower
density map was used as a loss function (Equation (4)).

N
L(6) = 53 1 12(xi36) — 2873 @
i=1

where L is the loss function, N denotes the batch size, i denotes the image fed to the network,
Z denotes the predicted flower density map by the proposed network, and Z¢T denotes
the ground-truth of the density map. The Stochastic Gradient Descent (SGD) optimizer
was used for model training.

Table 1. Configurations of the model training environment.

Configuration Details
Operating System Microsoft Windows 10 64-bit
CPU 11th Gen Intel(R) Core(TM) i9-11900K @ 3.50 GHz
GPU NVIDIA GeForce RTX 3080Ti 12 G
CUDA 11.3
Pytorch 1.10.0
Python 3.6.8

2.6. Evaluation Metrics

The root mean square error (RMSE), mean absolute error (MAE), coefficient of deter-
mination (R?) and overall error rate (Er) were used to evaluate model performance. RMSE
could reflect the robustness of the counting method and was often used to quantify the
counting performance [27]. MAE could reflect the error between the true and predicted
values. The smaller the MAE and RMSE, the better the counting performance [28]. R? mea-
sures how well the predicted number of flowers fits the true values. The closer the R? value
to 1, the closer the predicted number of flowers is to the true values. Er represented the
error rate of the model predicting the peach blossom density detection results on the overall
test set. The smaller the Er value, the smaller the overall error. The formulas of the above
indicators were defined as follows.

1 ¢ 6T P2
RMSE = Ngq - CP| ©)
1=
1 &6t p
MAE:NZ‘CI- —cl ©6)
i=1
2
N cr _ #P)?
Z:i:l (Cz - Ci )
YL, Cf
Er=[1— == ®)
L. CFT

where N denotes the number of images in the test dataset, CiGT denotes the ground-truth

of flower density map, C/’ denotes the predicted flower density map, and CP denotes the
average number of predicted flowers.

3. Results and Discussion
3.1. Ablation Study

In order to verify the robustness and accuracy of the proposed FC-Net for detecting
the number of peach flowers, an ablation study was conducted. The number of flowers
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was calculated by integration according to corresponding density maps. The regression
relation between the predicted number of flowers and true values is shown in Figure 8.
Moreover, the performance of different models with different modules is listed in Table 2.
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Figure 8. Regression results between predicted number of peach flowers by different models
and corresponding true values. (a) CSRNet; (b) CSRNet-MSFF; (c) FC-Net (CSRNet-ECA-MSFEF,
5_Dilation = 2); (d) FC-Net (Part_Dilation = 1).
Table 2. Peach flower counting performance of different networks based on CSRNet.
Single-Image Model
2 8 8
No. Model MAE RMSE R Er Process Time/s Size/MB
0 CSRNet 5.45 7.14 0.95 2.77% 0.13 62.04
1 CSRNet-MSFF 5.08 6.38 0.94 2.25% 0.14 63.92
2 FC-Net (CSRNet-ECA-MSFF, 430 565 095  0.02% 0.12 54.92
5_Dilation rate = 2)
3 FC-Net (Part_Dilation rate = 1) 5.76 7.65 0.93 2.23% 0.10 54.92

Since the proposed FC-Net was improved based on the CSRNet, the CSRNet was
compared as the baseline network. The CSRNet was designed for crowd counting scenarios
in which nearly circular heads were recognized and counted. For the peach flower counting
task in this work, flowers are also irregularly circular objects so the CSRNet should work.
The results validated the performance of the CSRNet which yielded MAE, RMSE, R? and
Er of 5.45,7.14, 0.95 and 2.77%, respectively. Compared with CSRNet, the CSRNet-MSFF
added a multi-scale feature fusion module that could fuse features from different layers
of the feature extraction network; the results confirmed the effectiveness of the MSFF
module, with the MAE reduced to 5.08, the RMSE reduced to 6.38, and the Er reduced
to 2.25%. Based on the CSRNet-MSFF network, the proposed FC-Net (Model 2) added
several ECA modules to the extracted feature maps at different layers to enable the network
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to selectively focus on key detail features of flowers. In addition, a five-layer atrous
convolutional network with a fixed dilation rate of 2 was added as a neck to expand the
perceptual field and maintain the detection accuracy of the network. The proposed FC-Net
(Model 2) network achieved the best results among the five compared networks, yielding
MAE, RMSE, R? and Er of 4.30, 5.65, 0.95 and 0.02%, respectively. Furthermore, the average
processing time for one single image by Model 2 was 0.12 s, which can meet the requirement
of real-time flower density detection. Based on Model 2, different configurations were also
tested for the FC-Net. Model 3 (FC-Net, Part_Dilation rate = 1) reduced the dilated rate of
the last three layers from 2 to 1 in the back-end atrous convolutional layers, which could
improve processing speed while guaranteeing detection accuracy. From Table 3 it can be
seen that the time to process a single image by Model 3 was reduced by 0.02 s compared
with Model 2, while the MAE value increased to 5.76, the RMSE value increased to 7.65, the
R? decreased to 0.93 and the Er value increased to 2.23%.

Table 3. Comparison with state-of-the-art networks for peach flower counting.

Single-Image Process Model
No. Network MAE RMSE Time/s Size/MB

1 MCNN 10.52 12.21 0.24 155.52
2 CCTrans 3.73 4.62 0.28 368.78
3 FIDTM 4.36 5.30 0.21 254.00
4 DM-Count 527 6.45 0.19 82.01
5 CAN 4.39 5.67 0.22 72.07
6 FC-Net 4.30 5.65 0.12 54.92

3.2. Comparison with State-of-the-Art Networks

To further validate the performance of the proposed FC-Net, five state-of-the-art
counting networks were compared, including the Multi-column Convolutional Neural
Network (MCNN) [26], Simplifying and Improving Crowd Counting with Transformer
(CCTrans) [29], Focal Inverse Distance Transform Maps (FIDTM) [30], Distribution Match-
ing for Counting Network (DM-Count) [31] and Context-Aware Crowd Counting Network
(CAN) [32]. The training, validation and test datasets were used for model training and test.
Moreover, the MAE and RMSE were used to evaluate the performance of these models. The
comparison results are shown in Table 3. Among the networks compared, the CCTrans per-
formed the best with an MAE and RMSE of 3.73 and 4.62, followed by our proposed FC-Net
with an MAE and RMSE of 4.30 and 5.65, respectively. The FIDTM and CAN provided very
close performance, and the MCNN performed the worst. The CCTrans utilized Twins [33]
as the backbone network and more advantageously used the self-attention mechanism to
capture global features of objects in the counting scenario, allowing CCTrans to achieve top
performance on several crowd counting datasets. However, the CCTrans had the largest
model size up to 368.78 MB among the six compared networks; the average processing
time for one single image was 0.28 s, which was the longest among the compared networks.
By comparison, the model size of our proposed FC-Net was only 54.92 MB, and the average
processing time for one image was 0.12 s, making this model easy to implement on an edge
computing platform in the field.

4. Conclusions

In this work, a peach blossom density detection method based on an RGBD camera
and a deep learning network, FC-Net, was proposed and tested for Y-shaped densely
planted peach trees. Images were acquired by the RGBD camera and complex background
and distal peach flowers were filtered out through depth information, obtaining a peach
flower density detection dataset containing 500 images. The FC-Net was established
based on the CSRNet, by incorporating an MSFF module to fuse features of different
scales, an ECA module to enable the FC-Net to selectively focus on key detail features of
flowers, and an atrous convolutional network to increase the perceptual field of FC-Net.
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Results showed that the coefficient of determination (R?) between the estimated number
of flowers by the FC-Net and the real values reached 0.95, the mean absolute error (MAE)
was 4.3, the root mean square error (RMSE) was 5.65, the counting error rate (Er) was
0.02%, and the processing time of one image was 0.12 s. Overall, the proposed FC-Net
could meet the requirements of real-time flower density detection for Y-shaped densely
planted peach trees in the field and provide visual support for intelligent mechanical flower
thinning operations.
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