
����������
�������

Citation: Chen, W.-S.; Tsai, W.-T.; Lin,

Y.-Q.; Tsai, C.-H.; Chang, Y.-T.

Production of Highly Porous Biochar

Materials from Spent Mushroom

Composts. Horticulturae 2022, 8, 46.

https://doi.org/10.3390/

horticulturae8010046

Academic Editor: Agnieszka Jasińska
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Abstract: The edible mushroom industry has grown significantly in recent years due to the dietary
change and the demand for heathy food. However, the spent mushroom compost (SMC) will be
produced in large quantities after the harvest, thus forming an agricultural waste requiring proper
management other than dumping or burning. In this work, two types of SMCs with the cultivation
of shiitake fungus (SF) and black fungus (BF) were converted into porous biochar products (a series
of SMC-SF-BC and SMC-BF-BC) at higher pyrolysis temperatures (i.e., 400, 600 and 800 ◦C) based
on their thermochemical characteristics, using thermogravimetric analysis (TGA). The pore and
chemical properties of the resulting products, including surface area, pore volume, average pore
size, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and Fourier
Transform infrared spectroscopy (FTIR), were studied to correlate them with the most important
process parameter. The results showed that the pore properties of the biochar products indicated a
significant increase with the increase in the pyrolysis temperature from 400 to 600 ◦C. The data on the
maximal Brunauer-Emmett-Teller (BET) surface area for the biochar products produced at 800 ◦C
(i.e., SMC-SF-BC-800 and SMC-BF-BC-800) were found to be 312.5 and 280.9 m2/g, respectively.
Based on the EDS and FTIR, plenty of oxygen-containing functional groups were found on the surface
of the resulting biochar products.

Keywords: spent mushroom compost; thermogravimetric analysis; biochar; pore property; chemi-
cal composition

1. Introduction

The global production of edible mushrooms has grown more and more significant in
recent years as a result of the product being recognized as a healthy and organic food [1].
Most of the mushroom cultivation used compost as a substrate, which is comprised of ligno-
cellulosic components like rice straw, corncob, saw dust and wood chips [2]. However, most
of these substrates will become spent mushroom compost (SMC) after harvesting. Accord-
ing to the report [3], approximately 5 kg of SMC will be generated during the production
of 1 kg edible mushroom. In Taiwan, annual SMC generation amounted 105–225 thousand
metric tons since 2010, as shown in Figure 1 [4]. Although these agricultural residues
can be mostly transformed into compost materials [4], some were dumped or stacked to
the fields in Taiwan, thus causing environmental sanitation (odor) and plastic bag dis-
posal problems [5]. In order to reach zero waste management, the approaches of SMC
valorization were recently reviewed to utilize it as a valuable bioresource for producing
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value-added products/by-products and applications, for example, as a biochar adsorbent
or soil amendment [2,6,7].
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Biochar is a carbon-rich material which is often produced from lignocellulosic biomass
(e.g., crop or wood residues) at the proper pyrolysis conditions in an oxygen-limited atmo-
sphere [8]. Due to its porous and chemical properties, biochar can be used to improve the
environmental quality and agricultural soils in several aspects [9]. Furthermore, biochar
may be carbon-negative, thus sequestrating the release of carbon dioxide into the atmo-
sphere and also removing it from the atmosphere. In order to reuse SMC as an available
precursor for producing biochar [10] and other derived products [11], this lignocellulosic
residue has been recently studied to produce porous carbon materials for adsorbing a
variety of pollutants in aqueous solutions, including inorganic compounds (e.g., heavy
metals) [3,12–17], organic compounds [18,19] and other pollutants [20–22]. Biochar can
also conserve nutrients in soils [23], mitigate the emissions of greenhouse gases [24,25],
and can be produced to biomass fuels [26]. It was reported that the pore properties of
biomass-based biochar products were highly dependent on the pyrolysis temperature
because the turbostratic structure can be formed at higher temperatures [27].

In view of the published literature describe above, there are few studies on the pro-
duction of SMC-based biochar at higher temperature (e.g., 800 ◦C). Therefore, this work
focused on investigating the two SMCs (i.e., shiitake fungus (SF) and black fungus (BF)) for
converting them into porous biochar products (a series of SMC-SF-BC and SMC-BF-BC)
at different pyrolysis temperatures (i.e., 400, 600 and 800 ◦C) for specified residence time
(i.e., 20 min). The pore and chemical properties of the resulting SMC-BC products, including
surface area, pore volume, average pore size, scanning electron microscopy (SEM), energy
dispersive X-ray spectroscopy (EDS) and Fourier Transform infrared spectroscopy (FTIR),
were obtained to correlate them with the most important process parameter (i.e., pyrolysis
temperature).

2. Materials and Methods
2.1. Material

The SMC feedstocks, including SF and BF, were provided by an agricultural research
station (Pingtung County, Taiwan). The as-received SMC mainly contains wood chips,
plastic bags and residual cultivation soil. It was first disassembled to remove external
plastic coating and internal non-lignocellulosic component (i.e., cultivation soil). Wood
chips are often made from broadleaf tree like Taiwan Acacia and Formosan sweet gum. The
lignocellulosic component was shredded and then sieved to a target sample in the range of
mesh sieve no. 20 (0.841 mm) to mesh sieve no. 40 (0.420 mm). Prior to the analyses and
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pyrolysis experiments, the sieved SMC sample was placed into a circulation oven at about
105 ◦C.

2.2. Thermochemical Analysis of Spent Mushroom Compost

In order to give the operation conditions in the pyrolysis experiments, the analyzer
(TGA-51; Shimadzu Co., Tokyo, Japan) was performed to collect the variations on the
thermogravimetric analysis (TGA) of the dried SMC samples. Around 0.2 g of the SMC
sample was externally heated up to 1000 ◦C at various heating rates (i.e., 5, 10, 15 and
20 ◦C/min) under the nitrogen (N2) atmosphere by flowing 50 cm3/min. During the
TGA measurements, the curves of TGA and its derivative thermogravimetry (DTG) were
plotted by using the normalize weight of SMC sample. On the other hand, the proximate
properties (i.e., mass fractions of volatile matter, ash and fixed carbon) of the dried SMC
samples were determined by using the Standard Test Method of the American Society for
Testing and Materials (ASTM) (i.e., D-3172). Furthermore, ultimate analysis (i.e., the mass
percentages of C, H, N, S and S) and elements in ash (i.e., Al, As, Ba, Ca, Cd, Co, Cr, Cu,
Fe, K, Mg, Mn, Na, Ni, P, Pb, Si, Sr, Ti and Zn) of the SMC samples were measured by the
elemental analyzer (EA) and inductively coupled plasma-optical emission spectrometer
(ICP-OES), respectively [28]. The contents of ultimate analysis are highly correlated with
their calorific values, which were determined by an isoperibol oxygen bomb calorimeter
(CALORIMETER ASSY 6200; Parr Instrument Co., Moline, IL, USA).

2.3. Prolysis Experiments

In this work, the pyrolysis experiments were operated at above 400 ◦C due to the fea-
tures of lignocellulosic feedstocks. The pyrolysis experiments were performed at higher py-
rolysis temperatures (i.e., 400, 600 and 800 ◦C) under a specified residence time (i.e., 20 min).
During the pyrolysis experiment, about 3 g of the SMC sample was fed into a vertical
pyrolysis furnace, and then heated at a ramp rate of around 10 ◦C/min under the purge gas
(500 cm3/min by nitrogen) [28,29]. The yield of the resulting biochar by weight percentage
(wt%) was calculated from the ratio of biochar mass to SMC mass by using the following
equation:

Yield (wt%) = (biochar mass/SMC mass) × 100%

To facilitate the data comparison, the SMC-based biochar products were coded by a
series of SMC-SF-BC-temperature and SMC-BF-BC-temperature.

2.4. Physicochemical Properties of Resulting Biochar

In order to study the relationship between the physical properties of resulting biochar
products and the pyrolysis temperature, the surface area and porosity analyzer (ASAP
2020; Micromeritics Co., Norcross, GA, USA) was performed to obtain their pore properties,
including surface area, pore volume and pore size distribution [30]. In this work, the
calculations of specific surface area were based on different principles or models, including
single-point, Brunauer-Emmett-Teller (BET), Langmuir and t-plot methods. Among the
surface area data, the BET surface area may be the most important one, which was obtained
from the relative pressure range (0.05–0.30). Regarding the pore volume, the total pore
volume could be often adopted to act as the adsorption capacity potential. In this work, it
was obtained by calculating the nitrogen liquid adsorption volume saturated at a relative
pressure of ca. 0.995 [30]. Based on the t-plot method, the values of micropore area
and micropore volume can be calculated from the Halsey equation [30]. Based on the
classification by the International Union of Pure and Applied Chemistry (IUPAC) [30],
micropores and mesopore were defined as pore diameter (or pore width) of less than 2 nm
and 2–50 nm, respectively. In addition, the pore size distributions of the biochar products
were further plotted by using the Barrett–Joyner–Halenda (BJH) method [30], which was
adopted to calculate them in the main range of mesopores.

In order to observe their textural morphologies, the typical SMC-BC products must
be first coated by a conductive gold layer in an ion sputter (E1010; Hitachi Co., Tokyo,
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Japan) prior to the SEM (S-3000N; Hitachi Co., Tokyo, Japan) observations. By applying an
accelerating potential of 15.0 kV (electron beam) in a vacuum chamber, it was performed
to the specimen surface during the SEM analysis. In addition, the EDS system (7021-H;
HORIBA Co., Kyoto, Japan) was also used to quantify the elemental compositions during
the SEM analysis. Furthermore, the surfaces of the SMC-BC products were scanned by
the FTIR instrument (FT/IR-4600; JASCO Co., Tokyo, Japan) to determine the functional
groups. During the FTIR analysis, the ground SMC-BC sample was premixed with powered
potassium bromide (KBr, IR grade) in an agate mortar, forming around 1 wt% biochar. To
make a disc-shaped sample for the FTIR analysis, the finely uniform mixture was pressed
by using a hydraulic machine. The transmission spectra were y scanned with a resolution
of 4 cm−1 in the range of 4000–400 cm−1.

3. Results
3.1. Thermochemical Characterization of Spemt Mushroom Compost (SMC)

The thermochemical characteristics of biomass greatly influence the performance of
a pyrolysis system for producing biochar with different pore structures [8]. Table 1 listed
the data on the proximate properties, organic elements and calorific values for the dried
SMC samples (i.e., SF and BF). It showed that the measured data were close to those of
other biomass residues [31]. Based on the data in Table 1, these SMC samples had relatively
high calorific values (>20 MJ/kg, dry basis) and combustible values (76–77 wt%), and also
indicated no significant difference between them, reflecting their carbon contents (45.3 wt%)
and low ash contents (3.5 wt%). On the other hand, the contents of nitrogen (N) and sulfur
(S) for the SMC samples indicated relatively high values as compared to those for biomass
fuels [31]. This difference could be attributed to residual sulfate/nitrate fertilizers in the
SMC. Therefore, sulfur oxides and nitrogen oxides may be emitted from the combustion of
SMC without control system installed. Based on the analytical results by the ICP-OES, it
further indicated that the contents of dominant elements in the SMC’s ash were calcium
(Ca), potassium (K), silica (Si), magnesium (Mg), iron (Fe), aluminum (Al) and sodium
(Na), which could be present in the forms of oxides and/or carbonates [31].

Table 1. Thermochemical properties of spent mushroom composts (SMC).

Properties a Value

SMC-SF SMC-BF

Proximate analysis b

Ash (wt%) 3.53 ± 0.78 3.51 ± 0.60
Combustibles (wt%) 77.01 ± 0.60 76.36 ± 16.64
Fixed carbon c (wt%) 19.46 ± 0.65 20.13 ± 16.82

Ultimate analysis d

Carbon (wt%) 45.43 ± 0.11 45.29 ± 0.01
Hydrogen (wt%) 6.25 ± 0.07 6.43 ± 0.06
Oxygen (wt%) 46.58 ± 0.35 47.02 ± 0.01
Nitrogen (wt%) 0.64 ± 0.04 0.57 ± 0.16
Sulfur (wt%) 0.51 ± 0.01 0.57 ± 0.03

Calorific value (MJ kg−1) b 22.10 ± 1.60 20.53 ± 0.09
a On a dry basis. b In triplicate. c By difference. d In duplicate.

In general, the weight loss of lignocellulosic biomass, identified from the TGA/DTG
curves, includes the following three regions [32]: loss of moisture (from room temperature
to around 200 ◦C), loss of organic carbon (200–500 ◦C) and loss of small amounts of cel-
lulose/lignin and carbonates/other inorganics (e.g., chlorides) in a range of 500–1000 ◦C.
Figure 2 shows the TGA/DTG curves for the SMC samples (i.e., SF and BF) at various
heating rates. It can be seen that the significant mass loss occurred in a range of 250–450 ◦C,
indicating the thermal degradation of lignocellulosic constituents. Furthermore, the shoul-
der in the left side of the most significant peak at a temperature of about 300–330 ◦C should
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refer to as the degradation of hemicellulose and less parts of cellulose/lignin because the for-
mer may be the most labile components among the organic constituents (i.e., hemicellulose,
cellulose and lignin) [8,32]. It should be noted that the complex reactions (e.g., dehydration,
cracking, decarboxylation, condensation) involve depolymerization and scission during the
most rigorous stage of pyrolysis. The formed products often include non-condensable gases
(e.g., CO, CO2, CH4, H2), condensable gases or tar (e.g., H2O, formic acid, acetic acid, phe-
nols and other organics) and char. In the final pyrolysis stage at above 400 ◦C, it should be
attributable to the thermal decomposition of inorganic components (or minerals) with low
melting/calcination points, and fewer parts of cellulose/lignin with rigid structures. Based
on the results from the TGA/DTG curves (Figure 2), the pyrolysis conditions were designed
in the range of 400–800 ◦C for producing porous biochar products from the SMC, where
more cellulose/lignin components will be carbonized to form the carbon-rich products.
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Figure 2. TGA/ DTG curves of (a) SMC- shiitake fungus (SMC-SF) and (b) SMC-black fungus
(SMC-BF) at various heating rates (5, 10, 15 and 20 ◦C/min).

3.2. Pore Properties of Resulting Biochar

Before discussing the pore properties of the resulting biochar products from SMC-SF
and SMC-BF, the biochar yields expectedly indicated a decreasing trend as the pyrolysis
temperature increased from 400 to 800 ◦C. In the cases of SMC-SF/SMC-BF, their biochar
yields were 34.3/34.3 wt%, 27.0/27.6 wt%, and 21.8/22.0 wt% at 400, 600 and 800 ◦C,
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respectively. These results were consistent with their similar thermochemical characteristics,
as listed in Table 1.

In the present study, the pore properties of the biochar products (i.e., SMC-SF-BC
and SMC-BF-BC) were based on the standard method by nitrogen adsorption-desorption
isotherms at −196 ◦C. Tables 2 and 3 listed the main pore properties of the resulting biochar
products prepared at 400, 600 and 800 ◦C from SMC-SF and SMC-BF, respectively. Ob-
viously, it showed that the consistent variations on the pore properties of the resulting
biochar products as a function of pyrolysis temperature (400–800 ◦C). When the pyrolysis
temperature increased from 400 to 800 ◦C, more pyrogenic amorphous biochar was pro-
duced [27], thus forming higher pore properties due to the enhanced charring intensity.
More significantly, the pore properties of the biochar products produced in this work were
higher than those by other studies [3,12–22].

Table 2. Pore properties of biochar (BC) products prepared from SMC-SF at 400–800 ◦C.

Property SMC-SF-BC-400 SMC-SF- BC-600 SMC-SF- BC-800

Single point surface area (m2 g−1) a 3.2 158.8 318.1
BET surface area (m2 g−1) b 3.4 156.1 312.4
Langmuir surface area (m2 g−1) 5.6 231.2 463.3
Micropore surface area (m2 g−1) c – g 127.2 255.0
External surface area (m2 g−1) d 4.1 28.9 57.4
Total pore volume (cm3 g−1) e 0.0093 0.0948 0.1833
Micropore volume (cm3 g−1) c – 0.0672 0.1343
Pore diameter (nm) f 10.91 2.43 2.35

a Obtained at relative pressure (P/P0) of ca. 0.30. b Calculated in the relative pressure range from 0.05 to 0.30.
c Obtained by t-plot method. d Obtained by subtracting micropore surface area from BET surface area. e Obtained
at relative pressure (P/P0) of ca. 0.99. f Obtained from the values of BET surface area and total pore volume.
g Not available.

Table 3. Pore properties of biochar (BC) products prepared from SMC-BF at 400–800 ◦C.

Property SMC-BF- BC-400 SMC-BF- BC-600 SMC-BF- BC-800

Single point surface area (m2 g−1) a 3.8 118.4 285.5
BET surface area (m2 g−1) b 3.9 116.2 280.9
Langmuir surface area (m2 g−1) 6.2 17.6 416.9
Micropore surface area (m2 g−1) c 0.1 93.2 220.8
External surface area (m2 g−1) d 3.8 23.0 60.1
Total pore volume (cm3 g−1) e 0.0088 0.0761 0.1715
Micropore volume (cm3 g−1) c 0.0001 0.0493 0.1164
Pore diameter (nm) f 8.99 2.62 2.43

a Obtained at relative pressure (P/P0) of ca. 0.30. b Calculated in the relative pressure range from 0.05 to 0.30.
c Obtained by t-plot method. d Obtained by subtracting micropore surface area from BET surface area. e Obtained
at relative pressure (P/P0) of ca. 0.99. f Obtained from the values of BET surface area and total pore volume.

The pore properties of the resulting biochar products (i.e., SMC-SF-BC and SMC-BF-
BC) were derived from their N2 adsorption-desorption isotherms, as shown in Figure 3.
Due to the adsorption filling by nitrogen adsorbate into micropores, the high uptakes were
observed at relatively relative pressures, which reflects the Type-I isotherms according to
the IUPAC classification [30]. However, the SMC-BC products produced at higher pyrolysis
temperatures displayed the hysteresis loop, which was indicative of mesoporosity by the
Type-VI isotherms. Accordingly, the resulting biochar products contain pore sizes over a
wide range of micropores and mesopores. Using the BJH method [30], the data on the N2
adsorption-desorption isotherms can be further converted into their pore size distributions,
as depicted in Figure 4. From the Figures 3 and 4, they were highly related to those in
Tables 2 and 3. The differences between the pore properties of SMC-SF-BC and SMC-BF-BC
products were also slight.
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Figure 3. N2 adsorption-desorption isotherms of (a) SMC-SF-BC products and (b) SMC-BF-BC
products.

In order to observe the porous morphology on the surface of resulting biochar products,
Figures 5 and 6 showed the SEM images (×1000) of the SMC-SF/SMC-SF -BC-800 and
SMC-BF/SMC-BF-BC-800, respectively. Obviously, there are many fine pores on the rigid
surface of the representative biochar products, thus exhibiting their high pore properties
such as the BET surface area and total pore volume, as seen in Tables 2 and 3. Due to
their highly porous structures, the SMC-based biochar products may be used as excellent
adsorbents for various applications in the wastewater treatment and water retention in the
soil and water environments.
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3.3. Chemical Characterization of Resulting Biochar

The chemical characterization of resulting biochar was highly dependent on its feed-
stock and preparation conditions. In this work, the EDS system was adopted to semi-
quantify elemental compositions on the surface of the resulting biochar products [33].
Figure 7 showed the EDS spectra of the representative products (i.e., SMC-SF-BC-800 and
SMC-BF-BC-800), indicating the contents of carbon (C), oxygen (O), magnesium (Mg),
potassium (K) and calcium (Ca). The difference between their elemental compositions of
the resulting biochar products also showed to be small in the resulting biochar products,
which could be attributed to their similar thermochemical properties (Table 1). The high
content of C present in the SMC-based biochar should be original from its starting feedstock
and pyrolysis at high temperature (800 ◦C). The carbon element was primarily stored in
condensed aromatic rings [34]. In addition, it showed the high content of oxygen on the
biochar surface, causing its tendency toward hydrophilicity and acidity due to more oxygen-
containing complexes [35]. This polar nature was further elucidated by the FTIR spectra.
Figure 8 showed the FTIR spectra of SMC-SF-BC-800 and SMC-BF-BC-800. These peaks
at about 3450, 2360, 1640, 1380 and 1110 cm−1 could be assigned with oxygen-containing
functional groups (i.e., O-H, C=O, C-O) [36,37].
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4. Conclusions

In the present study, a series of biochar products were prepared from the spent mush-
room composts (SMC, including shiitake fungus -SF and black fungus -BF) at various
pyrolysis temperatures (i.e., 400, 600 and 800 ◦C). Obviously, these SMC samples had
relatively high calorific values (>20 MJ/kg), carbon contents (45.3 wt%), combustible values
(76–77 wt%) and low ash contents (3.5 wt%), indicating that they could be excellent precur-
sor for producing biochar materials. The pore properties (i.e., surface area and pore volume)
of the resulting biochar products were positively related to the pyrolysis temperature range
(i.e., 400–800 ◦C). The values of the maximal BET surface area for the resulting biochar
products produced at 800 ◦C (i.e., SMC-SF-BC-800 and SMC-BF-BC-800) were obtained at
312.5 and 280.9 m2/g, respectively. Based on the spectroscopic peaks of the EDS and FTIR,
the highly porous biochar products had plentiful oxygen-containing functional groups on
the surface, which could be excellent carbon materials in the water/wastewater treatment
and soil amendment due to their polar nature (i.e., hydrophilicity and acidity).
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