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Abstract: Plants can reduce erosion during heavy raining periods and improve slope stability through
their root morphology, development, biomass, and architecture. Heavy rains can increase erosion,
becoming a danger for traffic and people who live around slopes. The control of slope stability is
often required in urban and peri-urban environments, and for this reason ornamental species can be
appropriately selected for a dual use, namely improving the aesthetical value of green areas along
the urban and suburban roads and mitigating the erosion effects. The species used must have good
tolerance to abiotic stresses, such as high and low temperature, drought, pollution and nutrient
deficiency. Otherwise, their limited growth can reduce their beneficial effects. Ornamental plants
that can be used for reducing the erosion of slopes must be in full growth during periods with a
higher incidence of rains and must also be compatible with the temperature ranges in different
seasons. These species can be also selected for their ability to avoid erosion and enhance the stability
of slopes. In this review, the biological contribution of plants for improving slope stability has been
reported and discussed with a special focus attention on the Mediterranean environment. Particular
emphasis has been placed on root biomass changes and root growth parameters, considering their
role as potential markers for selecting suitable plants to be used for enhancing slope stability. A brief
description of planting on slopes and root growth has been also considered and discussed.

Keywords: root development; root morphology; abiotic stress; growth regulators; biostimulants;
plant choice

1. Introduction

Urban and peri-urban green areas provide important ecosystem services for the qual-
ity of the urban environment such as air pollution mitigation, direct effects on local climate,
noise abatement, stormwater management during rainy periods, carbon dioxide assimila-
tion, oxygen supply, and recreational and social benefits [1]. Turfgrass, ornamental shrubs,
and trees, can deliver different ecosystem services beyond their aesthetical contribution
depending on the composition and biodiversity [2]. They are also used for improving the
stability of slopes along roads and in urban areas [3]. The stability of slopes is mainly due to
plants’ root biomass, distribution, and architecture [4]. The current review has the objective
of highlighting the biological contribution of ornamental plants to increasing slope stability.
Through a review of the literature, the current work will explain how ornamental plants
(with their habitus, growth, and roots systems) can prevent erosion and improve slope
stability in urban and suburban areas.

Roots grow in soil and create an underground net able to reduce or avoid erosion
and landslides that can be dangerous and induce severe damages in urban environments.
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Plant density and biodiversity affect both the number and architecture of roots and their
contribution to the slope stability through hydrological and mechanical processes [5].
Root morphology and growth are influenced by genetic background, soil characteristics,
and climate conditions (i.e., prevailing winds) [5]. The root morphology, in terms of
diameter or ramification, can enhance the soil held back and the shear-strength of the
rooted soil; a higher root diameter has beneficial effects on soil stability, acting as strong
underground grid. Moreover, roots can improve water retention during the raining period
and create a drainage network that allows for soil water absorption, avoiding runoff and
erosion [6]. The soil around the roots is hydrologically and mechanically more stable and
the consequences of this are easier infiltration, better physical and chemical properties of
the soil, and higher shear strength [7]. All of these factors can positively or negatively affect
soil erosion [8]. Factors reducing the soil erosion are mainly represented by vegetation
or physical barriers [9]. The effect of vegetation on erosion control can be dramatically
observed in areas subjected to fire events, where the massive destruction of plants and their
roots system cannot hold the soil in slope conditions with high incidence of landslides.
Roots are living organs and are subjected to turnover. Therefore, dead roots generate empty
channels useful for drainage [6,10].

Slope stability also depends on the roots” depth, uniformity, and distribution. Different
plant species should be closely planted, and the selection of species should be conducted
with regard to the root distribution in soil and their interactions, avoiding those that
can have antagonist responses. Plants with deep root systems should be associated with
species having superficial roots, providing a good root network at different depths [10]. The
stability of soil in planted slopes depends on the interaction of roots of different species that
can synergistically work or have antagonist effects. Some allelopathic compounds could
reduce the efficacy of the plants to prevent erosion or landslides. Therefore, plant selection
for slope greening must be accurately carried out. A wrong plant species combination can
limit plant growth and benefits, and this can be also a disadvantage for slope stability [11].

However, plant leaf area, branch density and ramification can reduce the energy of
precipitation (soil impact) of rain and runoffs. The combination of turfgrass, shrubs, and
ornamental trees can simultaneously reduce the kinetic force of rain with multiple canopies
at different heights and water run-off is slowed down by grass [12]. The reduced superficial
run-off velocity increases soil water infiltration exploiting, the channels created by the roots
of different species. In evergreens, the canopy can also reduce the snow accumulation on
the slopes avoiding possible landslide events. Evergreen shrubs or trees can also remove
the water from the soil through transpiration (even in winter) and by reducing landslides
(even if low temperatures slow down plants’ metabolism). Slopes subjected to landslides
should be preferentially covered by evergreens, these being deciduous plants with inactive
roots during winter, thereby possessing a lower stability efficacy in the rainiest season [13].

Biophysical properties can modify the contribution of roots in stabilizing slopes.
Among Mediterranean trees and shrubs, for instance, Moresi et al. [14] found that the most
resistant roots to breaking under tension were those of Quercus cerris L., while roots of Ilex
aquifolium L. had the highest tensile strength among all shrub species. In cold or freezing
environments, on the other hand, ornamental plants must be selected among those that are
tolerant to low temperatures and evergreens. Analysing the plant-root-reinforced shallow
slopes, Tsige et al. [15] observed that the effect of vegetation on slopes increased when the
spacing between plants decreased, and that the slope angle modification in combination of
plant roots had a relevant influence. Among the analysed species, Salix subserrata Willd.
was the most promising plant species for slope stabilization, due to the effect of its better
root mechanical properties.

However, it must be highlighted that the positive effects in the urban environment
can be obtained if green space management is regularly carried out. Therefore, species
must be selected considering technical parameters but also the municipal budget for urban
green areas management [16].
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Information related to the urban environment and to the ornamental plants used
in the green areas is limited if compared to that of the natural environment, while it
could be a support for city managers in taking decision about slope management. In the
review, attention was therefore given to providing useful information for this purpose,
with particular emphasis on the Mediterranean environment where extensive periods of
water stress in summer and rainfall occurrences through intense precipitations that can
turn into severe flash floods and floods can accentuate the problems of stability of the
slopes.

1.1. Root Growth under Slopes Increase

Roots and canopies are strictly connected, and their relations dynamically change
in terms of biomass, architecture, and organization during growth and according to the
season conditions. Roots” distribution in soil follows the nutrients and water availability.
Roots represent the transport system for nutrients and water and connect soil with leaves
where the most part of metabolic processes take place. Each species has a specific roots
architecture [17] and distribution in the soil (Figure 1). The genetic background of the
species defines the potential root growth and distribution in the soil (i.e., depth, spreading,
density) (Figure 1A-E). Roots mainly grow close and parallel to the soil surface and can
strengthen the soil by intensifying the in-plane tensile strength of the rooted soil [5], while
roots growing perpendicular to the soil surface strengthen the soil by improving shear-
strength of the rooted soil mass on the sheared surface.

Figure 1. Different root systems development. (A) Tuft and deep root systems, (B) taproot root
system, (C) superficial root system, (D) taproot and horizontal lateral roots, (E) heart-shaped root
architecture. Redrawn by the authors from Ghestem et al. [5].

Roots of ornamental plants growing in slope conditions, in addition to nutrient and
water transport, must guarantee plants” biomechanical stability and indirectly contribute
to the slope stability. The increase of the slope induces different root responses and
growth modifications. Mechanical stresses such as wind, rain, and gravitational force in
sloping conditions influence root growth and their distribution, as mentioned above. As
a consequence, the same species grown in different slope conditions can have different
roots system that function to increase plant stability. Root growth under different slope
degree has not been sulfficiently detailed and this knowledge gap can represent limitations
for plant species selection for practical applications. Further studies should be carried
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out for elucidating how roots can balance the mechanical stability and their physiological
functions.

Plant growth in slope conditions must follow the positive and negative gravitropic
responses [18]. In a sloped soil, the aerial part and roots tend to align vertically during
growth (Figure 2A). It means that plants in slope conditions have canopy and roots distri-
bution that are not symmetric but this growth conditions could reduce the beneficial effects
of plants for preventing landslides (Figure 2B).

Figure 2. Plants grow in response to gravitropic stimuli: (A) the line represents the plant growth
response to gravity. In slope conditions, the plants try to grow in a vertical position, reducing
the angle between the ax of the trunk and the soil in slope, similarly, roots respond to gravity
underground. Roots growth follows negative gravitropic response and aerial part positive response;
(B) the increase of the slope influences in roots growth, development, and distribution which are a
resultant of the gravitropic response and environmental conditions (original drawing).

As mentioned, root stability function is primarily determined by the biomass. How-
ever, root distribution in soil also plays an important role [19]. Unfortunately, the study
of root distribution in soil is very complicated and in vivo monitoring of root growth and
architecture distribution cannot be easily performed without having a perturbation effect
on the roots system. On the contrary, invasive root analysis can lead to unreal results,
especially regarding thinner apical roots. Plants located in slope conditions are more
vulnerable to climatic events with potential danger for the closer buildings or roads [20].
Herbaceous plants combined with shrubs and trees can increase the roughness of the
surface and enhance water infiltration, but higher water content in soil can increase the
pressure and the weight and the susceptibility to landslides. The role of roots of ornamental
plants in slope stability needs further investigations and multidisciplinary approaches
are required for understanding the biological, hydraulic, and mechanical related aspects.
Using biological solutions can have several applications for slope stabilization, but the lack
of information regarding species behavior in different environments, especially in urban
environments, represents one of the most significant limitations.

1.2. Root Morphology and Slope Stabilization

Ornamental plants should be selected considering the root morphology and develop-
ment in relation to physical (sandy, clay, etc.) and chemical (mainly pH and salinity) soil
proprieties and depth. For rocky slopes along urban areas with limited soil availability
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ornamental plants with superficial (Figure 1C) or heart-shaped (Figure 1E) root systems
should be used. On the contrary, for slopes with adequate soil depth plants with deeper
root systems that can ensure higher slope stability can be selected [21]. The response of
different root systems under different slope conditions should be further investigated for
improving slopes stability through greening with ornamental plants.

2. Root Physiology and Development under Abiotic Stress

The root system is an integral plant organ involved in the acquisition of nutrients and
water, the synthesis of plant hormones, organic acids, and amino acids, and it is necessary
to ensure the anchorage of plants [22,23]. It also plays a fundamental role in maintaining
cellular homeostasis under normal growth conditions and in plant-to-plant communication.
Through the roots, plants absorb water and nutrients from the soil and transfer them to
the aerial part. During stressful conditions, this equilibrium is modified, and the roots
must implement structural and functional changes [24]. Root morphology and physiology
are closely associated with the growth and development of aboveground plant material.
However, it is known that the degree of the responses of roots to abiotic stresses may vary
considerably within a family, a genus, and even a species [25].

In the presence of different abiotic stresses, the root system is modified due to presence
of phytohormones that regulate this process [26]. The root is the initial part affected
by abiotic stresses, and its morphological and physiological characteristics are closely
correlated with plant resistance [27] or tolerance.

Different abiotic stresses affect the plants, and the drought stress is among the most
important. In order to overcome drought stress conditions, plants modify the root system
morphology and activate different physiological and biochemical processes [28,29].

A first response of the plant to an abiotic stress is the modification of the root biomass.
In drought conditions, the roots, as the principal organ for water and nutrient uptake, play
an important role in the plant drought tolerance [30]. Penstemon barbatus (Cav.) Roth, for
instance, was able to tolerate drought by increasing root biomass and reducing stomatal
conductance [31]. Similar results were observed in sunflowers (Helianthus annuus L.) [32]
and Catharanthus roseus (L.) G.Don [33-35].

Even in presence of salt stress, the root biomass is modified. The osmotic stress caused
by the salts present in the root environment induces a decrease in soil water potential at the
root surface and, as a consequence, a difficulty for water uptake by the plants (decreases in
leaf osmotic potential and leaf water potential) [36-38]. Fornes et al. [39] observed in three
ornamental species (Calceolaria x herbeohybrida Voss, Calendula officinalis L., and Petunia
hybr.) that root growth was reduced by salinity. During salt stress conditions, root dry
biomass is an important parameter, because the higher root growth allows higher water
and nutrient uptake to take place, favoring the accumulation of toxic ions in roots, in
particular Na*, thus diminishing its negative effects on shoot growth [40].

Drought and salt stresses can indirectly modulate root system architecture since they
can produce unfavourable changes in the soil nutrient composition and distribution, soil
density and compaction, and the type of soil particles [41]. Root growth is then deeply
influenced by the availability and by the quality of water in the soil; the root system is the
first to perceive the stress signs due to drought and salinity. Water scarcity inhibits the
growth and development of the whole plant in numerous important species, while the root
system, which is more tolerant than the aerial part, continues to grow even in the presence
of low water potentials [42].

By increasing their root system, plants are able to explore the deeper layers to obtain
water. An increase in the biomass ratio between roots and shoots (R/S ratio) under drought
stress confirms this statement [43]. When the plant is affected by extreme soil drought, the
regulation capacity, through asymmetric growth approach, may be also lost abruptly [43].

Due to drought stress, the plants modify the R/S ratio, for reducing water consump-
tion and increase water absorption [44,45]. The increase in R/S ratio was observed in
different species: Lonicera implexa Aiton [46—48], Lupinus havardii S.Watson [49], Myrtus
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communis L. [50], Nerium oleander L. [51,52], Opuntia ficus-indica (L.) Mill. and O. robusta
J.C. Wendl. [53], Rhamnus alaternus L. [54], Rosmarinus officinalis L. [55], two rose rootstocks
(Rosa multiflora Thunb. and R. x odorata (hort. ex Andrews) Sweet) [56], Sambucus mex-
icana C.Presl ex DC. [57], Silene vulgaris (Moench) Garcke [58,59], in different shrubs of
Mediterranean basin [60], and in Viburnum tinus L. [61]. Tribulato et al. [61] found an
increase in root dry biomass (a higher R/S ratio) in V. tinus plants subjected to a severe
water stress condition. This adaptation would allow to overcome the transplant condition
and water shortage [62,63]. It is proved that the increasing R/S ratio is considered one of
the avoidance mechanisms enabling plants to maximize the water uptake under drought
stress condition [64].

In presence of drought stress, the plants need to maintain a greater root surface, while
in salt stress conditions in some cases they can even reduce the root surface to limit the
accumulation of toxic ions in the shoot, inducing in both situations a different distribution
of the roots [65-67]. This can reduce water depletion around roots for minimising resistance
to water transport to the root system [68], and modifies the water use efficiency that is
improved, as demonstrated by Ferndndez et al. [69] on Phillyrea angustifolia L. Gomez-Bellot
etal. [70] and by Alvarez and Sanchez-Blanco [71] who reported an increase in the R/S ratio
in Euonymus japonicus Thunb. and Callistemon citrinus (Curtis) Skeels plants under moderate
salt stress (EC 4 dS m™!). Under salt stress condition this modification is frequently
observed in plants [72]. Cirillo et al. [73] found unchanged R/S ratio in Callistemon citrinus
and Viburnum lucidum L. plants subjected to salt stress; one interpretation of the unchanged
R/S ratio may be a greater severity of NaCl stress (200 mmol NaCl).

During drought conditions not only the R/S ratio is modified but also other root char-
acteristics such as root length, fresh weight (FW), dry weight (DW), diameter and surface
area, deep rooting and cortex thickness and behaviours (i.e., root turnover, metacutisation,
hardening, and hydraulic conductivity) can be influenced [68,74].

In Callistemon plants, Alvarez et al. [75] observed that water deficit increased the
percentage of fine roots and decreased those with a diameter higher than 0.5 mm. In
general, stressed plants showed a reduced root volume, although root dry weight was not
modified, with the result that root density increased [34,75]. The root diameter increases
with depth, and it is greatly linked to the uptake of water in deep soil layers [76].

Another factor that plays an important role in the tolerance of the drought stress is
the hydrotropism [77,78]. Takahashi et al., [79] in a study about Arabidopsis and radish
demonstrated that a gradient of moisture determined by water stress induces an immediate
degradation of amyloplasts in the columella cells of plant roots, producing less response to
gravity and increasing the hydrotropism.

A higher percentage of fine roots, able to penetrate the smallest soil pores, presumably
optimises the exploratory abilities of the root system, and may play an important role for
the survival of plants during drought stress [80]. Instead, in Myrtus communis L. and Nerium
oleander L. plants, the percentage of thick roots increased, and the percentage of medium
and fine roots was reduced following drought stress [50,51]. Different authors reported an
increase in root diameter in different species (Picea sp., Pinus banksiana Lamb., Portulaca
oleracea L.) in response to salt stress [74,81]. The higher robustness and accumulation of
reserves, observed in these plants, could be linked to a higher root density [74,75,82].

Several studies have reported the association of the length, volume, and density
of roots in crop species with drought tolerance [83-86]. Drought stress decreased the
root length in Abelmoschus esculentus (L.) Moench [87], Albizzia seedlings [88], Eucalyptus
microtheca F. Muell. seedlings [89], Nerium oleander L. [51], Rhamnus alaternus L. [67]. The
opposite effects of drought stress on root length in other species agreed with the results
of Chyliniski et al. [90] on geranium (Pelargonium hortorum L. H. Bailey) and impatiens
(Impatiens walleriana Hook) also reported by Shober et al. [91] on Viburnum odoratissimum
Ker Gawl. and by Franco et al., [59] on Silene vulgaris (Moench) Garcke.

The development of lateral roots is inhibited in conditions of water stress, while the
induction of new roots does not change and the development of primary roots increases
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due to the hydrotropism that are under the control of ABA [92]. However, this is not
always confirmed. Indeed, in a study conducted by He et al. [93] on Camellia oleifera Abel,
subject to drought stress, plants at the end of the experiment did not show a significantly
decrease in the number of lateral roots. The root-crown and root-plant ratios indicated that
in drought conditions the plant gives priority to the normal development of the root system,
by maintaining the contact area with the soil, thus obtaining the necessary water [94]. This
has also been observed in other studies [95].

Hardening of roots, measured by increasing of brown root percentage, is frequent in
drought-stressed plants [68]. Plants of Limonium cossonianum Kuntze [96], Lotus creticus
L. [47] and Silene vulgaris (Moench) Garcke plants [59], with limited water availability,
showed variation of root colour, from white to brown, that is linked to the suberisation of the
exodermins and it is an index of metacutisation process. This was also found in Rosmarinus
officinalis L. by Sdnchez-Blanco et al. [55] and in Nerium oleander L. by Bafion et al. [51]. In
two trials conducted by Franco et al. [59] about Silene vulgaris subjected to drought stress an
increase in cortex thickness:root radius (C:R) ratio was observed improving the resistance
to dehydration. These changes could increase the resistance of Silene vulgaris seedlings at
the drought conditions.

On the contrary, flooding or waterlogging represent extreme conditions for plants
and roots as the first target of waterlogging stress in plants. In urban environments,
severe soil compactions and limited drainage can induce waterlogging, thus hypoxia and
anoxia effects on plants. Soil waterlogging has in fact been identified as one of the main
abiotic stresses in urban areas; the constraints imposed on the root have marked effects
on the growth and development of plants [97,98]. Waterlogging inhibits respiration in the
root, due to an insufficient supply of oxygen [99]. Hypoxia is the main stress factor in
waterlogging conditions [100] and the primary effect of soil flooding is to slow down the
oxygen transfer to the roots. This limits their aerobic respiration and dramatically depresses
their metabolism. In addition, if tissues are hypoxic, the aerobic energy is reduced and the
functional relationships between roots and shoots are compromised [101,102].

The development of adventitious roots is stimulated by the increase of ethylene
production in the shoots of the trees or for effect of external increasing of the compound
in the soil solution [103]. Formation of adventitious roots in response to ethylene has
been considered a major adaptive mechanism of wetland plants to root damage caused
by waterlogging stress [104]. Adventitious roots emerge and grow horizontally close to
the water surface, and they are connected to the stem close to the site of aerenchyma
formation [105]. Hence, adventitious roots can facilitate oxygen capture of submerged
tissues alleviating the hypoxic conditions and contributing to the recovery and maintenance
of aerobic respiration in waterlogged seedlings [106,107].

Under salt stress conditions, the root mitochondrial electron transport might be dis-
rupted, promoting O, accumulation in a manner similar to that from hypoxia condi-
tions [108]. Tolerant species exhibit several physiological and biochemical modifications
including quasi-dormancy of shoot tissues, stomatal closure, elongation of submerged
stems, and the formation of aerenchyma in existing root tissue or development of new
nodal roots at the stem base [101].

The density of the xylematic vessels is one indicator of plant capacity to absorb and
transport water in the roots. In drought conditions, a higher vessel density could increase
the tolerance. This was observed in a study on Lotus creticus L. subjected to drought
stress [48].

In northern countries, the abiotic stress predominant during winter is due to cold or
freezing. The cold can damage the cell membrane and the severity of damage can reach
the leaves or branches of evergreens. In slope conditions, the plants used for enhancing
the stability must have a high tolerance to freezing temperatures, especially at the root
level. The ice formation in the soil can induce roots damage or death. In these conditions,
landslides can occur with the de-icing when the connection between roots and soil is
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lessened. In cold environments, it is very important to select winter herbaceous species
and evergreen shrubs or trees.

As above described, certain abiotic stresses could stimulate root development and
indirectly improve slope stability. The green areas of slopes are not subjected to constant
management, and therefore the abiotic stresses such as drought represent common and
frequent stress in peri-urban greens. Based on the predominant abiotic stress, suitable
ornamental plants should be selected so that the response of the plants will probably be an
increase of the root systems that improves the soil stability.

3. Use of Plant Growth Regulators and Biostimulants for Increasing Root Biomass

In slope conditions, transplanted plants rapidly need to develop their roots to ensure
a good anchorage with soil so that they can soon reach stability. The root development can
be enhanced with plant growth regulators such as cytokinins, auxins, or using plant bios-
timulants. The increase of roots length and biomass can be a response of a plant hormones
equilibrium that is influenced by the external stimuli. Beside plant growth regulators,
biostimulants can be also used as agronomic tools for stimulating root development and
biomass accumulation. Research on biostimulants and roots demonstrated that several of
these products can be effective for root formation and growth. Biostimulants can be derived
from different raw materials, seaweeds, plant extracts (botanicals), inorganic compounds,
beneficial fungi, and bacteria and are commonly used for increasing plant growth and
abiotic stress tolerance [109,110]. Biostimulant applications in nursery or after transplant
can enhance root formation.

The main application of these products is for production purpose in horticultural
crops, but also in urban environments [111]. However, their environmental impact is
low since most of them have organic nature. Among the plant extract, there are only
few published works. Willow bark extract formation was effective in the development
of adventitious roots and root branching in lavender and chrysanthemum [112]. Plant
growth-promoting rhizobacteria (PGPR) applications can also improve root biomass and
functionality and several positive results have been reported for flower and ornamental
plants [113]. In Eucalyptus clones (hybrid Eucalyptus grandis W. Hill x E. urophylla S.T.
Blake) the application of Aspergillus flavipes (ATCC®16814™) has been used as a novel
biostimulant for rooting-enhancement, in terms of biomass and root length [114]. The
positive action of PGPR is also due to the induction of auxins or cytokinins by the roots. The
fast root development after transplant can rapidly cover the soil and in slope conditions is
very important for reduce erosion.

The nursery phase influences plant development after transplant and also the root
systems. In Lotus creticus L. subsp. cytisoides (L.) Arcang., the irrigation two days/week
instead of six days/week determined a greater root length: shoot length ratio and a
higher percentage of brown roots more favourable to tolerate transplant stress [115]. Also,
treatments with arbuscular mycorrhizal (AM) in the nursery phase can improve the root
system architecture and resistance to drought in Pistacia lentiscus L. [116].

Biostimulant fungi based such as Trichoderma increase root growth and nutrient uptake
by the induction of auxin biosynthesis [117]. In Impatiens walleriana Hook. f. plants treated
with Trichoderma isolates showed longer roots and higher roots dry weight than control and
comparable with commercial indole-3 butyric acid (IBA). These studies demonstrated that
different isolates have different efficacy and appropriate species should be used for roots
induction and development [118]. Mexican petunia (Ruellia brittoniana Leonard) treated
with humic acids, amino acids, and active dry yeast showed an increase in root length and
weight, indicating the potential role of these compounds in roots development [119].

Seaweed extracts obtained from Ascophyllum nodosum (L.) Le Jolis applied to Passiflora
actinia Hook. increased 10% of rooting with 40% seaweed extract [120]. The rooting stimu-
lation of a commercial biostimulant-based seaweed extracts has been also demonstrated in
woody cuttings of Camellia japonica L. [121]. Analogous results were also observed cutting
of old rose cultivars [122,123]. These results were observed at nursery using cuttings; pre-
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or post-transplant application should be also studied to understand if biostimulants could
be applied as application for inducing rapid root development and reaching a rapid vege-
tation covering of slopes. Moreover, biostimulants could be also applied during the green
management on slopes. These products stimulating the root development can rapidly
enforce the integration of vegetation with soil and increase the slope stability.

4. Use of Ornamental Plants for Slope Greening

Ornamental plants are often valued only for their visual aspect. For this reason, the
concept of ornamental plants is frequently used in its broadest sense to include plants that
are grown for decorative purposes such as in the case of gardens, home gardens, landscape
design projects, squares, parks, street trees, indoor plants, and cut flowers [124]. Recently,
very widespread ecological requests have determined that ornamental plants are not only
beautiful, but that any plant able to improve the environment and the quality of our
lives [125] by providing ecosystem services is valuable. Ornamental plants can be adopted
to restore degraded landscapes, and in particular to control erosion. In consideration of
the numerous green area typologies and the breadth of the meaning of ‘ornamental’, the
number of species that can be used is extensive [29]. The wide number of ornamental or
potentially ornamental species enhances the possibility of identifying genotypes that are
able to cope with the different conditions where these plants can be used.

However, it is also important to evaluate the geographical distribution of the different
plant species during selection. It is advisable to avoid exotic species that can cause invasive-
ness problems. Soil erosion is a typical environmental problem that inflicts numerous and
serious damages in agricultural cultivations as well as in natural ecosystems. In particular,
erosion reduces the water-holding capacity of plants due to rapid water runoff and reduces
soil organic matter [12], which can also affect green areas (especially those realized in
slope surfaces). The key role of plant cover in controlling water erosion is widely accepted.
According to Naylor et al. [126], the effects of vegetation on soil can be divided into two
major categories: bioprotection, by reducing water runoff [12], and bioconstruction, by
increasing water infiltration into the soil matrix [127].

Plants with their roots fix the soil [128] and with their canopy reduce the energy of
raindrops [12]. The way the plants are arranged along the slopes can decrease the sediment
runoff [129] (resulting from superficial down slope transport of soil particles) [7,130].

Gyssels et al. [130] stated that the aboveground vegetative cover was the most im-
portant factor to splash and interrill erosion processes; the roots were as important as
aboveground vegetation cover for rill and gully erosion processes. The relative contribu-
tion of roots to runoff and soil loss reduction varied with vegetation types. Roots conserve
soil or increasing infiltration, thus reducing runoff and soil loss [131], or improving soil
properties by increasing soil organic matter levels, enhancing the quantity of soil stable
aggregates and stabilizing soil layer structures [132,133].

Unfortunately, information on root characteristics of ornamental plants and their
effects on the topsoil resistance to concentrated flow erosion is lacking. Roots influence
the properties of the soil, such as infiltration rate, aggregate stability, moisture content,
shear strength, and organic matter content, all of which control soil erosion rates to various
degrees. The presence of roots also increases soil roughness, improving the capacity for
water infiltration and reducing surface runoff velocity [134].

The impact of herbaceous and woody plants on soil erosion is crucial and different
according to the species. Since ornamental plants can be both herbaceous and woody, it
is possible to count on both effects against soil erosion. Perennial grasses provide year-
round soil cover and reduce water runoff and sediment loss and promote soil-development
processes by enhancing soil organic matter, soil structure and soil water and nutrient-
holding capacity. Dense root architecture and vegetative cover on soil surface can reduce
soil erosion. Woody plants reduce water erosion by improving water infiltration, reducing
the negative effects of droplets, intercepting rain and snow and stabilizing the soil through
roots and leaves.
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In the semi-arid Mediterranean region, where water erosion is particularly severe,
different experimental studies on the influence of the native vegetation on erosion have
quantified soil loss and runoff under woodlands or shrublands comprising a mixture
of plant species [135-137]. All of these studies have shown that typical Mediterranean
shrubland vegetation is very efficient in reducing water erosion, also under extreme
torrential simulated rainfalls [138].

In general, under similar climatic and topographic conditions, shrubs are most efficient
in reducing runoff and sediment levels, followed by herbaceous plants and trees [133]. The
coverage rate plays a similarly important role as vegetation type in affecting runoff and soil
loss; the effects of vegetation types and coverage rates on runoff and soil loss are related.

Not all grass species, despite their many fine roots, appeared to have strong roots [139],
and so species choice is very important in reducing erosion. The choice of suitable plant
species depends on the context. De Baets et al. [140] used four criteria to evaluate the
capacity of different species to control erosion, i.e., plants having: (i) a high potential to
prevent incision by concentrated flow erosion, (ii) the potential to improve slope stability,
(iii) the potential to resist bending by water flow, and (iv) the ability to trap sediments
and organic debris. The scores for these indicators were represented on amoeba diagrams,
indicating the strengths and the weaknesses of plant traits, in relation to erosion control.
The scoring of plants on these criteria was based on a multi-criteria analysis. In the species
choice, the plant tolerance to abiotic stress, and in particular to drought gains relevance,
especially in the Mediterranean area.

In an experiment Bochet et al. [141] analysed the relative efficiency in reducing water
erosion on slopes of three representative species of the Mediterranean vegetation, that
showed different plant morphologies (Rosmarinus officinalis L., Stipa tenacissima L., and
Anthyllis cytisoides L.). The results showed that the three species differently reduced runoff
and soil loss. Stipa plants, characterized by dense canopy, counteracted rainfall erosivity,
reducing splash erosion. Rosmarinus, in addition to the canopy effects, improves the topsoil
structure by means of incorporation of organic matter. The litter cover seems to be very
important in erosion control. Anthyllis, that is a deciduous shrub, give little protection
against the impact of rain on soil surface as compared to a bare surface.

Burylo et al. [142] carried out an experiment to investigate the effect of the root systems
of three species [Robinia pseudoacacia L. (tree), Pinus nigra var. austriaca (Hoss) Badoux (tree)
and Achnatherum calamagrostis (L.) P. Beauv. (grass)], on concentrated flow erosion rates.
Ten functional traits, related to plant morphological and biomechanical features, were
measured. Analyses were conducted to identify traits that cause plant root effects on
erosion control. Erosion rates were lowest for samples of R. pseudoacacia, intermediate in A.
calamagrostis and highest in P. nigra var. austriaca. The study also highlighted the role of
fine roots in reducing erosion rates.

To compare the contribution in erosion control, five fern natives of southern China,
namely, Blechnum orientale L., Cyclosorus parasiticus (L.) Farw., Dicranopteris pedata (Houtt.)
Nakaike, Nephrolepis auriculata Trimen, and Pteris vittata L., were selected. The leaf area
index, root area ratio and root density were significantly correlated with erosion-reducing
potential. Among the species, N. auriculata performed better the other species by showing
higher values of the determined plant traits [143].

Over the species choice (Table 1), the relationships between vegetation structural
attributes (spatial pattern, functional diversity), soil surface properties (crust, stone, plant,
and ground cover, and particle size distribution) and hillslope hydrologic functioning have
been kept in consideration [144]. Since a typical landscape is a blend of species (herbs,
grasses, shrubs, trees, etc.), it is possible to organize the plant arrangement to obtain the
best result in erosion control to take advantage of plant and root characteristics.
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Table 1. Species with ornamental value ! suitable for erosion control.

Species Family Plant Habitus References
Amorpha fruticosa L. Leguminosae Shrub [145]
Anthyllis cytisoides L. Leguminosae Shrub [128,139,140,146]
Artemisia vulgaris L. Compositae Herb [146]
Atriplex halimus L. Amaranthaceae Shrub [128,139,140,147]
Carpobrotus edulis (L.) N.E.Br. Aizoaceae Succulent [148]
Comptonia peregrina (L.) J. M. Coult. Myricaceae Shrub [149]
Dorycnium pentaphyllum Scop. Leguminosae Shrub [128,146]
Hedera helix L. Araliaceae Climber [148]
Hippophae rhamnoides L. Rhamnaceae Shrub [150]
Lantana montevidensis (Spreng.) Briq. Verbenaceae Shrub [148]
Lavandula lanata L. Lamiaceae Shrub [7]
Limonium supinum (Girard) Pignatti Plumbaginaceae Herb [139,140]
Lonicera japonica Thunb. ‘Repens’ Caprifoliaceae Climber [148]
Medicago arborea L. Leguminosae Shrub [151]
Myoporum parvifolium R. Br. ‘Prostratus’ Scrophulariaceae Shrub [148]
Nephrolepis auriculata (L.) Trimen Nephrolepidaceae Fern [143]
Nerium oleander L. Apocynaceae Shrub [128,140,146]
Opuntia ficus-indica (L.) Miller f. amyclaea and f. elongata Cactaceae Succulent [152]
Origanum bastetanum L. Lamiaceae Herb [7]
Origanum vulgare L. Lamiaceae Herb [147]
Psolarea bituminosa L. Leguminosae Herb [151]
Putoria calabrica (L.) DC. Rubiaceae Shrublet [153]
Retama shaerocarpa (L.) Boiss Leguminosae Shrub [128,139,140,146]
Robinia pseudoacacia L. Leguminosae Tree [142]
Rosa abyssinica R. Br. ex Lindl. Rosaceae Shrub [153]
Rosmarinus officinalis L. Lamiaceae Shrub [128,140,141,146,153,154]
Rosmarinus officinalis L. ‘Prostratus’ Lamiaceae Shrub [148]
Salsola genistoides Juss. ex Poir. Amaranthaceae Shrub [128,139,140,146]
Salvia lavandulifolia Vahl Lamiaceae Shrub [7]
Santolina rosmarinifolia L. Compositae Shrub [7]
Senecio jacobaea L. Compositae Herb [147]
Tamarix canariensis Willd. Tamaricaceae Tree [128,139,140,146]
Tanacetum vulgare L. Compositae Herb [147]
Tephrosia vogelii Hook. f. Leguminosae Tree [155]
Vinca major L. Apocynaceae Herb [148]

1 Species of Poaceae family, often successfully used for erosion control, are not considered.

Berendse et al. [156], analysing the effect of the use of four diversity treatments (one,
two, four, and eight species commonly found in grassland), found that plant species
diversity has important effects on the erosion resistance of slopes. The loss of species
diversity, in fact, reduces the erosion resistance. They concluded that the presence of
diverse plant communities on slopes are essential to minimize soil erosion.

In the US, highway departments request wildflowers for erosion control. On road-
sides, wildflowers ensured a source of colour as well as erosion control [157]. Effects of
wildflowers are linked to their biodiversity that helps to reduce soil erosion [158]. Roads
have a great impact on the environment, habitat fragmentation, soil erosion, edge effects,
and pollution. In order to reduce such impacts, native plants, naturally occurring in road-
side vegetation and well adapted to those conditions, provide highly effective mixes for
revegetation [159-161].

Garcia-Fayos and Bochet [161], analysing climate change consequences and the in-
crease in soil erosion, found that high plant species biodiversity and plant cover are
negatively influenced by climate change and soil erosion, which negatively influences soil
resistance to erosion, nutrient content, and water holding capacity. They also reported
that plant species diversity weakly correlates with plant cover, but strongly with soil
characteristics related to fertility, water holding capacity, and resistance to erosion.
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In the experiments, different species were analysed to identify important plant traits
that influence the hydraulic roughness to contrast erosion. The results indicated the
stronger effect of density-weighted traits, demonstrating that communities with the best
trade-offs among stem density, diameter, and leaf area are the key to mitigate soil erosion.
For these reason, herbaceous ecosystems could play an important role in soil erosion
mitigation [147]. Herbaceous vegetation, in fact, was more efficient than trees in improving
aggregate stability [162]. In crop trees of Vernicia fordii (Hemsl.) Airy Shaw, aggregate
stability was improved in the presence of herbaceous Artemisia codonocephala Diels. Mixtures
of different plant functional types, typical of landscape arrangement, would improve soil
conservation on slopes, by reducing both surface water erosion and shallow substrate
mass movement [162]. The combination with nitrogen-fixing species will also be useful for
providing this element for improving roots growth and development.

5. Limitations and Research Gaps in the Use of Ornamental Plants for Improving
Slope Stability

The use of plants represents a long-term solution for preventing landslides in slope
soils. Nevertheless, there can be some limitations that can be summarized as follows:

- Slow roots establishment and stability: the contribution of roots to stability increases with
the roots” development and establishment. The highest stability is achieved when the
species used reach maturity and the roots network is well integrated with the soil.
Therefore, the stability of the slope is not immediately obtained (a limitation to be
considered);

- Unpredictable environmental effects: plants development depends on environmental
parameters and unpredicted events can reduce the efficacy of plants used in slope
stabilization. These can also include soil-borne diseases and the limitation of the use
of specific agrochemicals can represent an important limit in the maintenance of plants
health.

- High costs and regularity of maintenance: public urban areas are under municipality
maintenance and the lack of funds or of regularity in the management can compromise
the benefit of the plants on the stability of the slopes;

- Minimum of soil for plants growth: the use of plants as slope stabilizers can be a solution
if there is a minimum of soil for roots development and for a better anchorage that
can harness the soil itself avoiding landslides.

The research gaps in the use of ornamental species for slope stabilization are rep-
resented by the limited case studies. Research activities should be focused from plant
material propagation to agronomic management in the early stage of plant growth after
transplant.

At the nursery level, appropriate strategies should be adopted to increase the biomass
and functionality of the roots to enhance their development after transplants. Agronomic
strategies should be evaluated for increasing roots development using PGPR or bios-
timulants. A wide range of species combinations should be studied in different urban
environments with different soil and different slopes. In particular, further studies are
required for evaluating the effect of abiotic stresses on the ability of plants to prevent
landslides. Limited information is available for the effect of cold or freezing temperature
on roots metabolism and their potential roles as slope stabilizers.

Moreover, the stability of vegetated areas should be mechanically determined for
providing objective results. Since plants are living organisms, the stability of slopes should
be studied over a long period and the weakness associated with the age of the vegetated
area should be identified.

6. Conclusions and Outlook

Ornamental plants in urban and peri-urban areas have a wide range of beneficial
effects that are beyond the aesthetical values of green areas. The positive role of ornamental
plants on urban environments and their effect on the residents is well known. This review
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provides information and suggestions concerning the utilization of ornamental species,
including herbaceous and woody species, as biological elements that can be exploited
for improving the stability of slopes and reducing the risk of landslides. The potential
benefits of ornamental plants have been illustrated and the biological traits that could help
in improving slope stability have been reported and discussed. In this respect the recent
events in Western Europe and North Italy, in regards to flooding and landslides, have shown
that slope management is also of paramount importance in countries where these kinds of
events used to be rare in the past but are becoming more frequent due to climate change.
Under this scenario the application of nature-based and hybrid solution (i.e., nature-based
solutions in combination with conventional engineering solutions) approaches for landslide
risk management is calling for the attention of researchers. One of the major questions to
be answered regards the selection of suitable species. Species with deeper roots are more
effective in preventing shallow soil failures, as their roots and stems provide mechanical
reinforcement and restraint and their root uptake and foliage interception modify slope
hydrology. The length of the establishment period is also important in selecting species
since some species have been shown to establish themselves better and faster than others.
Further, with regard to woody species in particular, information on root system architecture,
root growth rates, and lifespan would provide environmental managers with data which
would enable them to more efficiently manage slopes. Unfortunately (and mainly due to
the difficulty of carrying out in situ researches that are time and money consuming and
not easily replicable), most of this information is not still available, and therefore further
investigations are required for providing enough details that could help the ornamental
species selection for slope condition areas.

From the analysis of the literature, a need to extend research to other plant species,
differing in root architecture, and to comprehend how future results can be applied at
practical level is emerging. Although many models have been developed to predict rainfall
dynamics and subsequent erosion potential, few of these have taken root architecture and
dynamics into account in terms of their ability to improve soil water flow predictions.
This review provides useful suggestions and research directions that can be considered
for further studies and investigations focusing on ornamental plants as key elements for
controlling erosion and increasing slope stability.
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