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Abstract: Fruit colour represents a genetic trait with ecological and nutritional value. Plants mainly
use colour to attract animals and favour seed dispersion. Thus, in many species, fruit colour coevolved
with frugivories and their preferences. Environmental factors, however, represented other adaptive
forces and further diversification was driven by domestication. All these factors cooperated in the
evolution of tomato fruit, one of the most important in human nutrition. Tomato phylogenetic history
showed two main steps in colour evolution: the change from green-chlorophyll to red-carotenoid
pericarp, and the loss of the anthocyanic pigmentation. These events likely occurred with the onset of
domestication. Then spontaneous mutations repeatedly occurred in carotenoid and phenylpropanoid
pathways, leading to colour variants which often were propagated. Introgression breeding further
enriched the panel of pigmentation patterns. In recent decades, the genetic determinants underneath
tomato colours were identified. Novel evidence indicates that key regulatory and biosynthetic genes
undergo mechanisms of gene expression regulation that are much more complex than what was
imagined before: post-transcriptional mechanisms, with RNA splicing among the most common,
indeed play crucial roles to fine-tune the expression of this trait in fruits and offer new substrate for
the rise of genetic variables, thus providing further evolutionary flexibility to the character.

Keywords: tomato; colour; carotenoid; flavonoid; anthocyanin; domestication; alternative RNA
splicing; epigenetics; introgression breeding

1. Fruit Colour and Its Evolution in Tomato Plants
1.1. Function and Evolution of Fruit Colour

Colour is one of the main qualitative attributes of fleshy fruits. Its importance is
strictly dependent on its primary ecological function, which is attracting seed dispersers.
In a typical example of mutualistic interaction, many plants attract animals by offering
their coloured fruits as a nutritious reward in return for their seed dispersal activity. A
wide range of different coloration, spanning from white to yellow, red, green, purple, and
black, can stain fruit peel and flesh, according to different biotic and abiotic factors and
to the developmental stage of fruits. Many fruits, especially when characterized by long
ripening periods, change colour during their development, often acquiring more striking
and/or contrastive hues at the end of the process.

Both the origin and the adaptive meaning of fruit colours, as well as the high variability
of this trait, have been objects of study for long time. Different variables have been
considered, from the role of the mutualists, to phylogenetic or environmental constraints.
One of the most common interpretations is the disperser syndrome hypothesis, which
is in favour of a main role of biotic factors (bird and mammal frugivories, in particular)
in selecting fruit colours according to specific visual perception abilities [1]. It is quite
common that seed-dispersing birds prefer red and black fruits, whereas fruits with more
cryptic colours, yellow, green, or brown, are preferred by mammals frugivories [2]. Under
this perspective, colour may represent a specific signal indicating precise messages, such
as the degree of fruit maturity, to avoid premature fruit removal from the plant, and can
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facilitate recognition of specific food sources, such as certain carotenoids, as nutritional
rewards [1].

Abiotic factors, mainly temperature, altitude, ripening season length, and UV-B radia-
tion, can in turn account for part of the variation existing in nature as far as fruit colours are
concerned [3]. The presence of specific classes of pigments can represent an active defence
towards adverse environmental conditions or pathogens. Anthocyanins, for example,
can offer photoprotection against intense solar radiation and can also absorb more solar
radiation when temperature is low to increase fruit metabolic and developmental rates [1].
Thus, environmental factors can also represent drivers of diversification of fruit colour.

The most recent studies tend to adopt integrative approaches to examine the different
actors in fruit colour diversification and consider dispersers and environment equally
important and interacting variables [2,4]. Contrastive colours, primarily linked with
anthocyanin pigments, appear in fact to be mainly associated with bird frugivories in warm
areas, whereas in cold areas or where UV-B radiation is high, contrastive hues seem to be
prevalent in any case, even in the presence of mammals [4]. Interestingly, the hypothesis
that fruit colour may also be result of phylogenetic constraints [5,6] has progressively lost
importance [7]. Colour as other fruit traits, including size and scent, can be dynamically
shaped by frugivories and in many taxa, and for some groups of animals (e.g., olfactory-
dependent vertebrates), are the object of coevolution more than a phylogenetic signal [8–10].
This could not be truer in fruits which contribute to human nutrition. The domestication
process of crop plants, which have been progressively selected for adaptation to cultivation
for human needs, represented an anthropogenic-driven pressure of adaptive evolution,
especially in terms of fruit size, shape, colour, flavour, and texture [11,12]. However, human
selection, while detecting and improving desirable phenotypic traits, largely contributed
to reduce the genetic variability of cultivated plants, as occurred with tomato with the
near fixation of about 25% of its genome [13]. This could have slowed down the further
diversification of specific traits. In these cases, the use of wild germplasm as a source of
new alleles, also known as “introgression breeding”, continues to represent an important
tool to increase genetic variability in cultivated crops.

1.2. Carotenoid and Flavonoid Pigments as Determinants of Fruit Colour in Solanaceae

The Solanaceae represents one of the most important families of flowering plants, with
more than 2.900 different species [14]. It includes fruit crops, such as tomato (Solanum lycop-
ersicum), chili/pepper (Capsicum spp.), and eggplant (Solanum melongena), tuber vegetables,
such as potato (Solanum tuberosum), medicinal (Datura stramonium, Mandragora officinarum,
Atropa belladonna), and ornamental plants (Petunia spp., Physalis spp.). Some of these species
represent models for the study of important physiological processes, particularly tomato
and potato, tobacco (Nicotiana tabacum), and petunia (Petunia x hybrida). A great diversity
of habitats and ecosystems characterize these plants, which are spread throughout the
continents, with the main centre of taxonomic diversity in South America [14]. The fruits
of the Solanaceae mostly belong to berry and capsule types and can strongly differ in size,
shape, and colour [15]. Some of these traits were commonly selected in different species,
particularly with domestication, whereas others appear more species-specific [11].

Colour represents a very flexible attribute, varying in Solanaceae from white/yellow
to orange, red, purple, and brown: it mainly depends on the quantity and quality of the
pigments synthesized in the fruit. These compounds belong to two different classes of
secondary metabolites, carotenoids, and flavonoids, resulting from specific biosynthetic
pathways, whose enzymatic steps are very conserved among the Angiosperms and well
characterized in several Solanaceae (Figure 1) (for comprehensive reviews see [16–19]).
While flavonoids, particularly anthocyanins, are responsible for purple, blue, and red
colours, carotenoids are typical of yellow, orange, and red fruits.
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ase; LCY-B, lycopene β-cyclase; LCY-E, lycopene ε-cyclase; CHY-B, β-carotene hydroxylase; CHY-E, ε-carotene hydrox-
ylase; VDE, violaxanthin deepoxidase; ZEP, zeaxanthin epoxidase; NXS, neoxanthin synthase. The enzymatic steps inhib-
ited (red lines) or induced (blue arrows) in the tomato mutants r (yellow flesh), t (tangerine), Del (Delta), B (Beta), and og (old-
gold) are indicated. (B) The flavonoid biosynthetic pathway in tomato fruit. PAL, phenylalanine ammonia lyase; C4H, 
cinnamic acid 4-hydroxylase; 4CL, 4-coumaric acid: CoA ligase; CHS, chalcone synthase; CHI, chalcone isomerase; F3H, 
flavonone 3-hydroxylase; F3’H, flavonoid 3’-hydroxylase; F3’5’H, flavonoid 3’5’-hydroxylase; DFR, dihydroflavonol re-
ductase; FLS, flavonol synthase; 3GT, flavonoid-3-O-glucosyltransferase; RT, flavonoid 3-O-glucoside-rhamnosyltransfer-

Figure 1. (A) The carotenoid biosynthetic pathway in tomato fruit. GGPP, geranylgeranyl diphosphate; PSY1, phytoene
synthase1; PDS, phytoene desaturase; Z-ISO, ζ-carotene isomerase; ZDS, ζ-carotene desaturase; CRTISO, carotene isomerase;
LCY-B, lycopene β-cyclase; LCY-E, lycopene ε-cyclase; CHY-B, β-carotene hydroxylase; CHY-E, ε-carotene hydroxylase;
VDE, violaxanthin deepoxidase; ZEP, zeaxanthin epoxidase; NXS, neoxanthin synthase. The enzymatic steps inhibited (red
lines) or induced (blue arrows) in the tomato mutants r (yellow flesh), t (tangerine), Del (Delta), B (Beta), and og (old-gold) are
indicated. (B) The flavonoid biosynthetic pathway in tomato fruit. PAL, phenylalanine ammonia lyase; C4H, cinnamic
acid 4-hydroxylase; 4CL, 4-coumaric acid: CoA ligase; CHS, chalcone synthase; CHI, chalcone isomerase; F3H, flavonone
3-hydroxylase; F3’H, flavonoid 3’-hydroxylase; F3’5’H, flavonoid 3’5’-hydroxylase; DFR, dihydroflavonol reductase;
FLS, flavonol synthase; 3GT, flavonoid-3-O-glucosyltransferase; RT, flavonoid 3-O-glucoside-rhamnosyltransferase; ANS,
anthocyanin synthase; UFGT, flavonoid 3-O-glucosyltransferase. y is a genetic locus associated with the mutation in
the master regulatory factor SlMYB12. Some of the steps of the flavonoid pathway downregulated in the y mutant are
represented. (C) “all-trans-lycopene” molecular structure. (D) “naringenin chalcone” molecular structure.

Carotenoids are a class of terpenoid pigments deriving from the isoprenoid biosyn-
thetic pathway, synthesized and accumulated in plastids [16]. They play different roles
in plants, including photoprotection from oxidative damage in photosynthetic tissues
and attraction of pollinators and seed dispersers when accumulated in chromoplasts of
flowers and fruits. Flavonoids are polyphenolic compounds, synthesized through the
phenylpropanoid pathway. They exhibit several biological activities in plants, including
protection against different abiotic (especially UV radiation, low temperatures, low nitro-
gen) and biotic (herbivores and pathogens) stresses [18]. Anthocyanins are a special class of
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water-soluble flavonoids, generally accumulated into vacuoles, which confer colouration
to several flowers and fruits.

The genetic diversification of the flavonoid pathway is mainly found at the regulatory
level [18], while the evolution of the structural genes, encoding the enzymatic proteins
acting along the biosynthetic way, was strongly constrained, particularly for those genes
involved in the early reactions, common to multiple pathways. In this case, differences in
fruit colour often rely on the presence or absence of specific classes of pigments, in turn
depending on the specific activation or repression exerted by different transcription factors
(TFs) on the pathway, or part of it. Three main types of factors, R2R3-MYB, bHLH, and
WDR, take part in the so-called MBW ternary complexes, which are responsible for the
transcriptional activation of several biosynthetic genes of the flavonoid pathway [17,20].
Different developmental and environmental factors can induce the transcription of the
R2R3-MYB proteins, thus ultimately controlling the activation of the flavonoid pathway.
At the same time, negative feedback loops, under control of both environmental or de-
velopmental factors, can be turned on through production of repressor proteins, such as
R3-MYBs or hormonal signalling intermediates [20], to precisely fine-tune the process.
Most of the phenotypes related to the flavonoid genetic diversification in fruits are caused
by mutations affecting positive or negative regulators of the process, such as MYB or bHLH
TFs. Contrary to flavonoids, carotenoid fruit colour mainly derives from the quantity
of pigments produced or degraded, whose nature can depend on the activity of specific
anabolic or catabolic genes or on their defect [17]. Both anthocyanins and carotenoids
can be synthesised as photoprotective pigments as a response to high light conditions.
Nevertheless, the two biosynthetic machineries are not overlapping. In many species, both
flavonoids and carotenoids accumulate in fruit surface and/or flesh. In others, one of the
two groups is predominant, and the other pathway can be attenuated or even switched off.
However, at the genetic level, both are present, since no major losses in their regulatory or
structural genes have been found in the genomes of this family of plants [11,17]. Due to
their variety of anthocyanins, pepper and eggplant fruits have long been studied as suitable
models for the anthocyanin pathway, whereas tomatoes, containing lower amounts of
flavonoids, have been principally considered as a model for the carotenoid pathway.

In tomato, the fruit colour we can observe is a combination of different pigments
accumulated in the epidermis, the sub-epidermal layer, and the fruit pericarp (flesh).
Whereas in the pericarp of young fruits the green colour is predominant and due to the
presence of chlorophylls, being the photosynthetic apparatus present and functional, a
significant increase in the content of certain carotenoids occurs during ripening, while
the thylakoid membranes in the chloroplasts break down and the plastids are converted
into chromoplasts [21]. Consequently, fruit colour progressively changes from green to
yellow, orange, and red, when different carotenoids and flavonoids are synthesized, and
lycopene, the main carotenoid in red mature fruits, is finally accumulated (Figure 1A,C).
The change in colour progressively occurs between the mature green stage, when all the
plastids are still chloroplasts, and the fully ripe stage, when only developed chromoplasts
are present [21]. This colour change is intimately interconnected with developmental
signals, among which ethylene production plays a key role. Tomato is a climacteric
fruit, and a production of high levels of ethylene is observed at the onset of ripening.
Many of the carotenoid biosynthetic genes are regulated by this hormone [22] and thus
participate in the general transcriptional regulation of the fruit ripeness, which is essentially
driven by ethylene. Important mediators in this process are some TFs belonging to the
MADS-box gene family [17], which, in plants, is involved in the regulation of many
different developmental processes. The master regulator of the ripening cascade in tomato
fruit is the Ripening Inhibitor (RIN) gene, encoding a MADS-box TF which can interact
with the promoter of several genes involved in ethylene synthesis and transduction, cell
wall modifications, and carotenoid biosynthesis, thus synchronising the ripeness cascade
with the initiation of carotenoid production [23]. Other MADS-box TFs are involved in
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the regulation of the tomato fruit ripening [17], with possible influence on carotenoid
production: some of them will be described in the following paragraphs.

Differently from carotenoids, mostly accumulated in tomato fruit pericarp, flavonoids
(Figure 1B) are mainly synthesized in the single-cell layer epidermis, which is normally
yellow due to the accumulation of naringenin chalcone (Figure 1D) from the breaker
stage onward. This flavonoid likely plays an important role against fruit desiccation and
offers photoprotection to the underlying photosynthetic tissues [24]. Anthocyanins are
generally not present in tomato fruits, but when synthesized belong to the delphinidin-type
(Figure 1B), and are also accumulated in the epidermis and in the sub-epidermal layer.

1.3. Phylogenetic Reconstruction and Human Selection of Fruit Colour in Tomato

Cultivated tomato varieties belong to the species S. lycopersicum var. lycopersicum
(SLL), which originated in South America and was first domesticated in Mexico and Perú
(likely in separate phases, [25]), before being introduced in Europe in the 16th century
and finally, from the 19th century onwards, an object of important breeding programs in
Europe and America [11]. The first described tomato fruits introduced in Europe showed
some variability in colour, shape, and size, and yellow and red were described as two
possible colours [26]. SLL belongs to the so-called “tomato clade”, a group of thirteen
Solanum relative species, further divided in four subgroups [27,28] (Figure 2A). SLL is
included in the section Lycopersicon, a restricted group of tomato close species, all self-
compatible, to which Solanum pimpinellifolium (SP) also belongs, considered the closest
relative of SLL, which produces red fruits (Figure 2A). Red fruits are also produced by
the var. cerasiforme of S. lycopersicum (SLC), regarded as an intermediate between SP and
SLL and the direct ancestor of the cultivated varieties due to its close genetic relationship
with them [13,25]. Solanum galapagense and Solanum cheesmaniae are both endemic to the
Galapagos Islands, and produce small orange-yellowish fruits [29,30]. They also belong to
the section Lycopersicon (Figure 2A). In this subgroup of the tomato clade, red and orange
carotenoids represent the main fruit pigments. The orange colour shown by the Galapagos
Islands species, later introgressed in SLL, is due to a high accumulation of β-carotene, de-
novo produced from trans-lycopene thanks to a high expression of the dominant BETA (B)
allele of a chromoplast specific lycopene β-cyclase (LCY-B) gene, which in wild type tomato is
generally poorly transcribed [31,32] (Figure 1A). On the contrary, the old-gold (og) recessive
allele of LCY-B induces higher levels of trans-lycopene production and leads to dark red
fruits [31] (Figure 1A). Other two different “orange” alleles identified in SLL are the Delta
(Del) dominant allele, introgressed from the wild species Solanum pennellii, which induces
increased expression of the lycopene δ-cyclase (LCY-E), resulting in increased transformation
of lycopene in δ-carotene [31,32], and the tangerine (t) allele, a mutated allele of the carotene
isomerase (CRTISO) gene, which leads to the main accumulation of cys-lycopene and other
carotenoids, at the expense of the red trans-lycopene [32–34] (Figure 1A). Yellow-coloured
tomato fruits are due to recessive alleles of the yellow flesh (r) locus, which correspond to
mutations in the phytoene synthase 1 (PSY1) gene, encoding the first committed enzyme in
the carotenoid biosynthetic pathway [32,35] (Figure 1A). In this case, the yellow colour is
due to the flavonols present in the fruit peel and to other carotenoids, such as lutein, which
are normally present in green tissues. The brown colour of some tomato fruits, exhibited
especially by some heirloom tomatoes, is instead dependent on the superimposition of the
red lycopene colouration with the green colour of the chlorophylls, which, usually degraded
during tomato ripening, are here retained because of the inhibition of their degradation.
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Figure 2. (A) Phylogenetic tree of Solanum species belonging to the tomato clade, divided in the
four subgroups identified by [27,28]. Redrawn with simplifications from [29], with the addition of
the fruit colour, represented by coloured circles close to the species names. (B) Photo of a group of
ripe Solanum lycopersicum fruits exhibiting possible colour variants in the carotenoid/chlorophyll
pathway: red, orange, yellow, green, and “green stripe”-like colourations are shown.

The phenotype is called green flesh (gf ) and is due to different types of mutations
identified in a tomato homolog of the staygreen (SGR) gene of rice, which encodes a
chloroplast protein regulating the degradation of chlorophyll during senescence [36,37]. All
these different genotypes thus originated a wide panel of different carotenoid colourations
of tomato fruits (Figure 2B). Other peculiar tomato fruit colours originate from variants
in the flavonoid pathway, such as the pink colour associated with the locus y: this is
caused by a mutation in the master regulatory factor SlMYB12, with the downregulation
of the expression of several structural genes of the flavonoid pathway and the absence
of the yellow-coloured flavonoid naringenin chalcone in the fruit peel, which remains
transparent [13,38]. By combining the loci y and r in the same genotype an almost white
tomato fruit can be produced, characterized by a very pale-yellow flesh [11]. When the SGR
gene is also mutated in a y x r background, tomato fruits remain green, since they do not
contain carotenoids and flavonoids and cannot degrade chlorophylls during ripening [39].
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Naringenin chalcone (Figure 1D) represents the main flavonoid synthesized in tomato
fruits, together with lower amounts of the flavonols quercetin-3-rutinoside (rutin) and
kaempferol-3-rutinoside (Figure 1B). Other trace glycosides of naringenin chalcone, quercetin,
and kaempferol have been identified [38], but the phenylpropanoid biosynthetic pathway
is blocked downstream and does not allow the production of other important classes of
polyphenols, including anthocyanins. Nevertheless, wild related Solanum species can pro-
duce anthocyanins in their fruit peel (Figure 3A), and this trait was repeatedly introgressed
into SLL through interspecific crosses [40]. One of the most studied anthocyanin-enriched
phenotypes was Anthocyanin fruit (Aft), derived from interspecific cross with Solanum
chilense [40–42] (Figure 3B). A similar phenotype, named Aubergine (Abg) [42], was intro-
gressed from Solanum lycopersicoides. An even more marked anthocyanin pigmentation
was obtained in the Aft or Abg tomato lines with the inclusion of the atroviolacea (atv) locus,
introgressed from S. cheesmaniae [40,42] (Figure 3B,C). All these anthocyanin phenotypes
are controlled by genes inherited from wild Solanum species, whose fruits in nature are
commonly green, but are also able to accumulate purple anthocyanins in specific envi-
ronmental conditions [30] (Figure 3A). Excluding the restricted group of Solanum closest
relatives above described, the green fruit phenotype is found in all the other subgroups of
the tomato clade, from Solanum chmielewskii to S. pennellii (Figure 2A). These are all species
characteristic of the Andean regions of South America and the geographic distribution,
particularly the altitude of their typical habitats, may explain the ability they developed and
maintained to produce, when necessary, secondary metabolites allowing photoprotection
and/or protection of the fruit from low temperatures.

In addition to genes involved in carotenoid and flavonoid synthesis and in chlorophyll
degradation, other genes have been shown to influence tomato fruit colour. Mutations
in negative regulators of the upstream light-signalling pathways which regulate both
carotenoid and flavonoid biosynthesis, such as the high pigment (hp) mutations [43,44],
increase the amount of all the pigments normally produced under light stimulation
(carotenoids, flavonoids, and chlorophylls). hp tomatoes thus show a darker colour of
both peel and flesh. Other regulators of fruit colour are some TFs involved in fruit ripen-
ing: besides the already mentioned MADS-box TF RIN [23,45], it is worth to remember
the SBP-box TF Colourless Non-Ripening (CNR) [46], and the NAC TF Non-Ripening
(NOR) [47], as well as some components of the ethylene signalling pathway, such as Never
Ripe (NR) [48] and Ethylene Insensitive2 (EIN2) [49–51].

Going backwards in the phylogeny of SLL, it appears that the red colour, typical of
the fruits produced by SP, likely represented the original colour of the first domesticated
tomato plants and it is still the most typical of the modern varieties (Figure 2A). Red
colour is also shown by the fruits of the several cultivated landraces of SLC, which in
South America still experience occasional gene flows with the wild relative SP [13,52].
Spontaneous mutations in the carotenoid pathways may have occurred on several occasions
during tomato cultivation and some of them, such as the yellow flesh, even in the original
areas of tomato domestication, since this colour was already present in some tomato
genotypes described in Europe in the 16th century [53]. Other colours, such as the orange
or brown, which are typical of heirloom accessions worldwide spread, may have appeared
in similar ways.

Genomic analyses into the history of tomato domestication identified the principal
traits under selection in fruit size and taste: fruit mass, in particular, was the key character
selected by men [13]. However, studying tomato domestication and breeding, structural
variants also affecting the expression of genes involved in lycopene metabolism were re-
cently detected. They would indicate reduction of lycopene from SP to SLC and subsequent
settlement in both the heirloom and modern populations of the big-fruited SLL tomato,
suggesting that the trait could have been under selection during domestication but not in
the more recent phases of tomato improvement and modern breeding [54]. A reduction
in the level of β-carotene was also highlighted in the transition of SP to SLC in the South
American areas of domestication, together with tendencies toward larger fruit size, thicker
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pericarps, higher number of locules, lower content of citric acid, and of soluble solids, all
considered typical traits of tomato domestication syndrome [25].
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Figure 3. (A) Photo of Solanum chilense anthocyanin-spotted green ripe fruits from plants spontaneously grown in Chile,
Toconao, Quebrada de Jere (−23.14553◦, −067.98998◦, 2703 m, 12 dec 2012). (B) SLL fruits, cv. MicroTom, showing different
levels of anthocyanin pigmentation at the mature green stage of ripening. From left to right: Aft/Aft x ATV/atv, Aft/Aft x
atv/atv, and Aft/Aft x atv/atv x hp2/hp2 genotypes. (C) SLL fruits, cv. Ailsa Craig, at mature green with Aft/Aft x atv/atv
genotype, and complete or partial anthocyanin pigmentations.
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The green colour of fruits (Figure 2A), together with allogamy and self-incompatibility,
thus represents a primitive trait in the tomato clade [27]. A recent study identified func-
tional PSY1 enzyme, with similar catalytic activity, in both green-fruited and red-fruited
Solanum species [55]. Therefore, it seems that a major difference in PSY1 expression,
probably due to important changes in PSY1 promoter/5′-UTR regions, with the loss
of regulatory elements involved in abiotic stress response and the acquisition of new
ethylene-responsive elements, was important in the association of carotenogenesis with
ripening, thus contributing to pericarp colour variation from green to red during tomato
domestication [55]. Concomitantly with this, red-fruited tomato species lost the ability to
synthesize anthocyanins, possibly because of differential climatic adaptations or the same
domestication process.

In addition to the effects of spontaneous mutations, diversity in fruit colour existing
in SLL varieties may be ascribed to new alleles introgressed from wild tomato genomes
into modern cultivars. Changes in fruit colours may have also occurred as a secondary
consequence of breeding strategies aimed at improving other traits. More recently, thanks
to the increasing awareness of the beneficial effects on human health of certain classes of
secondary metabolites, colour has become a major determinant of the economic value of
tomato: therefore, enrichment of its fruits with specific groups of pigments, such as antho-
cyanins and other flavonoids, has become a novel goal of genetic engineering or breeding.
These approaches led to the production of high-flavonol [56] and high-anthocyanin [40]
tomatoes (Figure 3C), further increasing the variability of the tomato surface pigmentation.

2. Novel Genetic Mechanisms in the Regulation of Pigment Biosynthesis in
Tomato Fruits
2.1. Alternative RNA Splicing and Epigenetic Modifications May Modulate Carotenoid-Derived
Colour in Tomato Fruits

Spontaneous mutations affecting tomato fruit carotenogenesis have been described
since the beginning of the last century, and many of them were identified in their genomic
determinants in the last decades. As previously described, yellow and orange represent
possible variants of the more common red colour in tomato fruits. These variants origi-
nated several times, either spontaneously or through introgression breeding, because of
mutations in one or more genes involved in the carotenoid pathway (Figure 1A). Recently,
a series of new genotypes characterized by yellow fruit colour, still elicited by different
post-transcriptional mechanisms of gene regulation, were described. These mechanisms
involve a series of processes which act at RNA processing, stability, or translation levels.
Alternative RNA splicing indeed emerged as an important additional way to fine-tune pro-
tein production, produce new protein isoforms, and create novel mechanisms for mutations
to affect expression of genes involved in pigment biosynthetic pathways, thus providing
further evolutionary flexibility to the colour trait.

Alternative splicing (AS) is the process of splicing the exons of the primary transcript of
a gene in different arrangements: this allows the production of structurally and functionally
distinct mRNAs which can lead to protein variants or may reduce the abundance of
the canonical mRNA splicing form, thus leading to a reduction or a suppression of the
biosynthetic pathway in which the relative protein is involved [57]. This mechanism and its
possible effects on fruit colours have been recently described in several species, including
Citrus sinensis [58], Triticum aestivum [59], Arabidopsis thaliana [60], and tomato [61]. Most
of the studies carried out in SLL focused on the AS of the PSY1 gene, which encodes
the only phytoene synthase of tomato expressed in fruits. This enzyme catalyses the
first committed step in the carotenoid biosynthesis (Figure 1A) and is therefore crucial for
carotenogenesis: its suppression is sufficient to block the entire pathway, resulting in yellow
fruits. Recently, in a genomic survey of AS patterns in tomato seedlings, flowers, and
young developing fruits, AS of PSY1, leading to alternative splice variants (ASVs) during
fruit early development, has been identified [61] (Figure 4A); however, the functional
meaning has still to be elucidated. As was found in other plants, for example in wheat
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endosperm [59], it is possible that the production of ASVs reduces the mRNA abundance
of the canonical one, contributing to a decrease of carotenoid biosynthesis.
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Another emerging category of gene expression regulatory mechanisms is the one
mediated by Circular RNAs (CircRNAs). These are covalently closed loop, single-stranded
transcripts that are ubiquitously expressed in all eukaryotes and are increasingly thought
to be involved in regulation of transcription, modulation of AS, and binding of microRNAs
and proteins [62]. In another recent survey carried out in tomato fruits, several CircRNAs
transcribed from pigment biosynthetic genes were discovered, some of them appearing
to be regulated by ripening [63]. In particular, CircRNAs from PSY1, Phytoene Desaturase
(PDS), and 15-cis-zeta-carotene isomerase (Z-ISO) genes, all involved in carotenoid biosynthe-
sis (Figure 1A), resulted to be up-regulated during fruit ripening, exhibiting expression
profiles similar to those of their parent genes. From PSY1, three classes of Circular RNAs
were identified, indicating that alternative circularization events may occur on this gene
(Figure 4A). The overexpression of one of these variants showed correlation with a reduced
transcription of PSY1 in yellow fruited transgenic plants, showing that the continuous
high expression of PSY1 CircRNAs may inhibit their parent mRNA accumulation. The
production of CircRNAs from carotenoid biosynthetic genes could therefore represent an

https://www.ncbi.nlm.nih.gov/gene/543988
https://www.ncbi.nlm.nih.gov/gene/543988
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additional mechanism to modulate the expression levels of their most abundant mRNAs,
fine-tuning the enzymes catalysing specific biosynthetic steps.

A particular mechanism of RNA splicing which has been identified in tomato thanks
to the analysis of a specific fruit phenotype is “trans-splicing”, which produces chimeric
transcripts by joining mRNAs derived from two different genes located on the same or
different chromosomes [64]. This mechanism of alternative RNA splicing still scarcely
described in plants, requires, like “cis-splicing”, canonical splice sites (GU-AG) between
the 5’ splice donor of the pre-mRNA of the first gene and the 3’ splice acceptor of the
pre-mRNA of the second gene. This process was sometimes explained as a by-product of
cis-splicing, because trans- and cis-splicing are generally found to occur in parallel [65].
However, trans-splicing might be another form of AS with regulatory functions. In tomato,
a yellow fruit phenotype was found to be caused by loss-of-function of PSY1 induced by
the contemporary production of hybrid transcripts through the trans-splicing fusion of the
transcript of PSY1 with a portion of the adjacent gene encoding the Acyl-CoA synthetase
(ACoS), transcribed on the neighbour opposite DNA strand (Figure 4B). This peculiar AS
event was first described in two yellow fruited SLC accessions [66,67] and then also in a
cherry SLL genotype [68]. In all these lines, a SNP in the fourth intron of PSY1 and a simple
sequence repeat (SSR) in the intergenic region between the two adjacent genes appeared
associated with the trans-splicing process [66]; however, the only intronic SNP resulted in
not being sufficient to induce it [69]. Interestingly, the sequence fused to PSY1 transcript
resulted almost identical to a previously identified long non-coding RNA (lncRNA) which
was named ACoS-AS1. By analysing several yellow fruited tomato lines, three possible
alternative PSY1-ACoS-AS1 trans-spliced transcripts were isolated, indicating the existence
of possible variants of the trans-splicing event [69]. The transcription of a wild type ACoS-
AS1 sequence resulted essential to produce trans-splicing between PSY1 and ACoS-AS1
transcripts. Finally, the sub-cellular localization analysis showed that the chimeric protein
PSY1-ACoS-AS1 could not enter plastids where PSY1 plays its enzymatic activity [69]. This,
coupled with the reduced expression of the canonical PSY1 transcript, may explain the
yellow phenotype of this group of mutants.

The nature and the abundance of pigments in tomato fruits may also be affected by
epigenetic mechanisms modifying patterns of gene expression. Several different mecha-
nisms of epigenetic regulation exist in plants [70]; some involve cytosine methylation and
histone modification of DNA, which in turn can affect TFs’ binding affinity or recruitment
of chromatin remodelling proteins with consequent alteration of gene expression. An
epigenetic change in a genomic region encompassing the CNR locus, for example, is re-
sponsible of a general inhibition of tomato fruit ripening with the concurrent development
of a colourless fruit pericarp, because of incapacity to synthesise carotenoid precursors [46].
The SQUAMOSA promoter binding protein-like (SPL) gene, belonging to the SBP-box gene
family of TFs, was identified at the CNR locus and the mutated phenotype resulted from a
naturally occurring and heritable hypermethylation of the promoter region, which reduces
SPL gene expression with the consequent inhibition of a subset of downstream processes in-
volved in normal fruit development and ripening [46]. Another exemplary case study is the
“green stripe” fruit colour. The GREEN STRIPE tomato is a natural mutation characterized
by nonuniform pigmentation of the fruit peel, with irregular longitudinal green stripes (GS)
alternated to light green stripes (LGS) in the epidermis of unripe fruits. This phenotype is
controlled by the green stripe (gs) locus, described as a single recessive gene [71] linked to
chromosome 7 [72], and is due to a longer retention of chlorophylls in GS during ripening
(Figure 2B). In fully ripe fruit, the GS may assume a paler red colour than the other parts
of the epidermis, or a yellow colour. In a recent study [73], this phenotype was found
to be associated with the methylation level of the promoter of the Tomato Agamous-Like1
(TAGL1) gene, which encodes a MADS-box TF known to affect chloroplast development.
The promoter methylation was found to be associated to a specific SNP in the second intron
of the same gene. High degrees of methylation of TAGL1 promoter led to downregulation
of TAGL1 expression, associated with GS phenotype. Conversely, low degrees of methy-
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lation increase the expression of TAGL1, leading to LGS phenotype. TAGL1 expression
can in turn affect the transcription of different genes: in particular, it downregulates some
genes associated with chloroplast accumulation in immature fruit, and upregulates the
expression of PSY1, thus acting as a positive regulator of carotenoid biosynthesis in ripe
fruit [74]. The mechanism underlying TAGL1 promoter methylation is as ever-complex. In
plants, de novo DNA methylation to specific genomic DNA sequences occurs via a peculiar
pathway called “RNA-directed DNA methylation” or RdDM, which involves non-coding
RNA molecules such as short interfering RNAs, scaffold RNAs (lncRNAs), and a range
of proteins [75]. It was hypothesized that the second intron of TAGL1 may be transcribed
into lncRNAs, as already observed in Arabidopsis thaliana, where from the second intron
of Agamous gene (which is the homologous of tomato TAGL1) three functional lncRNAs
are produced [76]. Because of the SNP, the lncRNAs transcribed from the second intron of
TAGL1 may be altered in their sequence, resulting in a different ability to take part to the
RdDM pathway, and finally influencing the degree of TAGL1 promoter methylation. In
addition to this mechanism of epigenetic regulation, AS of TAGL1 was also observed, with
production of alternative RNA transcripts in GS and LGS at different levels: this may also
contribute to differentiate TAGL1 expression in the different coloured areas of the fruit peel.

Carotenoid production, as already explained, is a process which is tightly regulated in
the broader context of tomato fruit ripening: ethylene perception, for example, is necessary
to induce expression of several carotenoid biosynthetic genes in fruit pericarp [22]. Thus,
hormonal and transcriptional regulators play a central role in the complex dynamics of fruit
maturation, including proper colour development, and an increasing number of studies
indicate how epigenetic mechanisms, particularly those controlling the DNA methylation
status, represent a key factor interconnected with both hormones and TFs modulation [77].
A general targeted DNA demethylation indeed appears to be an important dynamic
component in the control of tomato fruit ripening; the epigenetic mutations in ripening TFs,
such as those reported in CNR-SPL or TAGL1, can then further modulate the epigenome’s
influence over ripening [77].

2.2. Splicing Mutations and Alternative Transcripts Can Affect Anthocyanin Synthesis in Tomato
Fruit Peel

As occurred in carotenoid biosynthesis, AS and epigenetic modifications of genes
involved in the regulation of anthocyanin pathway can influence the nature and the
accumulation of these pigments as well. Thanks to the increasingly common transcrip-
tome analyses, the AS landscape and dynamics correlated with both flower and fruit
anthocyanin colouration are more and more extensively characterized in plants. What
clearly appears is an important role of these post-transcriptional gene regulatory mech-
anisms in the modulation of flavonoid metabolism and anthocyanin biosynthesis. This
has been recently described in several species, including tea plant (Camellia sinensis) [78],
Brassica napus [79], and chrysanthemum (Chrysanthemum morifolium) [80], where either
MYB or bHLH regulatory genes were found to undergo AS to fine-tune anthocyanin
production in specific tissues.

In tomato fruits, similar mechanisms are still scarcely described. However, some
interesting cues are beginning to emerge as the new flavonol- and anthocyanin-enriched
fruit phenotypes are studied at the genetic level. Two different MYB factors, introgressed
from wild tomato relatives and involved with opposite roles in the ectopic anthocyanin
pigmentation of the fruit peel, have recently been shown to be subject to post-transcriptional
regulation. The first one was the atv locus, introgressed from S. cheesmaniae: it can increase
anthocyanin pigmentation in vegetative tissues of tomato under high light conditions, and,
when expressed with one of the loci Aft or Abg, strongly enhances the fruit peel anthocyanin
pigmentation, leading to the so-called “purple” tomatoes [40,81] (Figure 3B,C). Genetic
and molecular analyses identified the gene SlMYB-ATV, encoding an R3-MYB factor, as
responsible for the phenotype [82,83]. The SlMYB-ATV protein negatively interferes with
the activation of the anthocyanin biosynthetic pathway mediated by the endogenous MBW
complexes, acting as a competitive inhibitor of the R2R3-MYB activating TFs, through
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direct binding with the bHLH factors [83]. Interestingly, either the wild type or the mutated
SlMYB-ATV alleles undergo AS and produce three different transcripts [82] (Figure 5A),
whose functional meaning is still to be elucidated. When transcribed from the wild type
gene, these transcripts are translated in polypeptides characterized by different lengths,
but all displaying the R3-bHLH binding domain and thus putatively able to interfere
with the MBW complexes. While two of them are shorter and do not include long C-
terminal domains after the R3 motif, the third one includes a longer sequence downstream
of the MYB domain. Interestingly, this transcript, which is also the most different from
the predicted mature mRNA produced by canonical splicing, appeared two orders of
magnitude more expressed than the other two in fruit peel, and therefore can be considered
as the most relevant in this organ [82]. In the atv genotype, a 4-nucleotide insertion in the
second exon, which is common to all the three transcripts, produces a premature stop codon
which results in a truncated protein missing the R3-bHLH binding domain [82,83]. It will be
interesting to understand if the three ASVs of SlMYB-ATV may produce alternative forms
of the repressor protein which, in wild type plants, act in different tissues or under specific
environmental signals. It is also possible that the SlMYB-ATV mRNA most expressed in
fruits, which includes the long C-terminal domain, may exert a stronger repression on the
anthocyanin pathway, possibly involving direct binding with the promoter region of some
structural or regulatory genes.
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The relative three different transcripts which can be spliced from the gene (SlMYB-ATV-X1, SlMYB-
ATV-X2, and SlMYB-ATV-X3) are reported with the relative start and stop codons. The first three
exons, represented in black, are the bioinformatically predicted ones for the gene. The green triangle
indicates the position of the 4-nt insertion identified in the gene in the atv mutant genotype. (B) Exon-
intron structure of AN2like gene with the two possible 5′ splicing variants. The transcript produced
from the Solanum chilense allele (ScAN2like) identified in the Aft tomato accession is reported as
well as the two differently spliced transcripts produced in Solanum lycopersicum (SlAN2like-1 and
SlAN2like-2), which both show premature stop codons.
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The other MYB protein whose alternatively spliced transcripts were isolated and char-
acterized is the R2R3-MYB TF identified as the master positive regulator of the anthocyanin
pigmentation in tomato fruit peel. For a long time, it was believed that the default state
of cultivated tomato was the lack of anthocyanin pigmentation in the fruits. This was
supposed to be caused by mutations affecting the expression of structural biosynthetic
genes, such as the one encoding the chalcone isomerase (CHI) enzyme (Figure 1B), whose
substrate, naringenin chalcone, is indeed the main flavonoid intermediate compound
accumulating in the peel [84] (Figure 1D). Through the introgression of delimited chromo-
somic regions from wild tomato species into the S. lycopersicum genome, such as in the Aft
accession (Figure 3B), it was possible to induce a purple-spotted anthocyanin pigmenta-
tion in tomatoes’ skin [41,42]. Recently, the locus responsible for such a phenotype was
identified [85–87]: it corresponds to an R2R3-MYB encoding gene, named SlAN2like, which
is not functional in cultivated tomato due to a splicing mutation affecting an AC splice site
in the second intron [85]. A second possible splicing mutation, leading to an even shorter
transcript, was also found in wild type fruits [86]. Due to these mutations, the gene in
SLL is alternatively spliced, producing aberrant transcripts with premature stop codons
(Figure 5B) which likely induce a nonsense mediated decay, or, if translated, lead to trun-
cated and non-functional polypeptides, lacking the R3 domain with the bHLH-interaction
aminoacidic signature [85,86]. On the contrary, in Aft tomato the AN2like allele, introgressed
from S. chilense (Figure 3A), is functional: it undergoes canonical splicing and produces an
active R2R3-MYB TF (Figure 5B) which, in turn, can trigger the anthocyanin biosynthetic
pathway by taking part to the MBW complexes [85–87]. This recent evidence revealed
that in SLL the inability to synthesize anthocyanins in fruit peel was due to mutations in
regulatory rather than in structural genes. As described in a previous paragraph, since red
fruits are also characteristic of the closest tomato relatives SP and SLC, it is conceivable that
the splicing mutation in the AN2like gene occurred immediately before or in the first stages
of tomato domestication [86,88]. Further in-depth analyses of the chromosome 10 region,
which includes AN2like as well as other three functional R2R3-MYB genes [86,89], in SLL
and in other species of the Solanum clade, including both close relatives of SLL and more
distant wild species, may help to piece together the evolution of this important genomic
region, whose structure and function are major determinants of anthocyanin synthesis in
tomato fruits.

3. Conclusions

The fruit colour is a complex phenotypic trait that can be modelled by different factors:
environmental elements, phylogenetic constraints and, more than others, coevolution with
seeds dispersers’ preferences. Tomato fruits experienced a profound change in most of their
attributes as domestication progressed. From the small, red, and round fruits produced
by SP plants, edible but still considered wild, major changes occurred in size, taste, and
scent in SLC and SLL fruits, as a consequence of the selection carried out by humans. From
this point of view, colour appears as a quite stable trait, since most of the modern tomato
varieties still bear red fruits. Actually, the big change in fruit colour seems to have occurred
earlier, from the green-fruited to the red-fruited species of the tomato clade, then before
domestication or at the very early history of that. Another important step in the evolution
of this trait was the loss of the capacity to synthesize anthocyanins in the fruit peel, which
presumably occurred again in the passage from the green-fruited to the red-fruited species.
Recent studies indicate that an important step in the acquisition of the red colour was
the activation of the carotenogenesis in tomato fruits thanks to the progressive increase
of the expression of PSY1, the key biosynthetic gene of the carotenoid pathway in fruits,
through the modification of important regulatory elements of its promoter region. The
loss of anthocyanins was instead due to knock out mutations in the gene encoding the key
regulatory TF, activating their biosynthetic pathway in fruit peel.

Beyond the evolution of the major determinants of fruit colour in tomato, a common
feature that is clearly emerging from the most recent studies is the complexity of the
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mechanisms that underlie the expression of this trait. Transcriptional, post-transcriptional,
and epigenetic mechanisms affecting the expression of an increasing number of regulatory
and structural biosynthetic genes appear to cooperate to finally modulate the abundance
of the functional proteins operating in the different pathways. If these mechanisms appear
multiple and intertwined with each other, they offer an even more complex scenario for
possible alterations, further increasing the possibility to modulate the system. As for
other important physiological characters, recent studies demonstrate that tomato fruits
can represent a model for the genetic dissection of the colour determinants, and as the
knowledge of the novel molecular mechanisms controlling gene expression advances, it
is plausible that new discoveries will be made in the next years. This will probably allow
further modification to tomato colour trait, according to both aesthetic and nutritional
criteria, to fully meet human needs.
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