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Abstract: This work presents quantitative detection of water stress and estimation of the water stress
level: none, light, moderate, and severe on potato crops. We use hyperspectral imagery and state of
the art machine learning algorithms: random decision forest, multilayer perceptron, convolutional
neural networks, support vector machines, extreme gradient boost, and AdaBoost. The detection
and estimation of water stress in potato crops is carried out on two different phenological stages
of the plants: tubers differentiation and maximum tuberization. The machine learning algorithms
are trained with a small subset of each hyperspectral image corresponding to the plant canopy. The
results are improved using majority voting to classify all the canopy pixels in the hyperspectral
images. The results indicate that both detection of water stress and estimation of the level of water
stress can be obtained with good accuracy, improved further by majority voting. The importance of
each band of the hyperspectral images in the classification of the images is assessed by random forest
and extreme gradient boost, which are the machine learning algorithms that perform best overall on
both phenological stages and detection and estimation of water stress in potato crops.

Keywords: water stress; potato; hyperspectral image; machine learning; band importance

1. Introduction

Potato (Solanum tuberosum L.) is the third most important food crop in the world [1].
The potato provides an economic and rich source of carbohydrates and it is included in the
diet of both developed and undeveloped countries. Water deficit is the most important
abiotic stress affecting the development, productivity, and quality of potato cultivars [2].
Hence, it is important to detect, as early as possible, signs of water stress in potato plants
avoiding production and quality losses. Due to climate change, crops worldwide are
suffering from unexpected and longer severe weather changes such as droughts, which
are becoming increasingly more intense [3]. Specifically in Colombia, a good portion
of areas suitable for potato production are vulnerable to increased aridity, soil erosion,
desertification, and variations in the hydrological system as a consequence of climate
change [4]. Therefore, there is a need to map water stress in potato crops using non-
destructive technologies such as remote sensing.

Recently, a spectroradiometer (350–2500 nm) was used to explore the effect of water
stress on the spectral reflectance of bermudagrass and five vegetation indexes were stud-
ied [5]. In the case of potato crops, 12 vegetation indexes including four Normalized Water
Indexes (NWIs), have been studied to detect water stress in potato leaves under different
watering conditions using also a spectroradiometer (350–2500 nm) [4]. The results indicate
clear differences in the spectrum of water-stressed leaves in the 700–1300 nm range [4].
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Remote sensing technologies using unmanned aerial vehicles (UAVs) acquiring visible
and thermal images were used to map water stress in barley crops [6]. The detection of
water stress in plants using aerial imagery has focused on thermal imagery to estimate
plant temperature relative to the air temperature computing NWIs. Since stomata close
under water stress, the temperature of the leaves relative to the air increases [6–8]. More
recently, remote sensing imaging technologies using visible, near-infrared (NIR), short
wave infrared (SWIR), and thermography have been proposed to detect water stress in
potato crops [9]. Rather than using broadband multispectral images, hyperspectral imagery
and machine learning algorithms have been proposed to determine the quality of food
products [10]. Hyperspectral imagery (400–1000 nm) has also been proposed to detect wa-
ter stress in potato crops using spectral indexes [11]. Hyperspectral imagery (400–2500 nm)
was used in combination with partial least squares–discriminant analysis (PLS-DA) and
partial least squares–support vector machine (PLS-SVM) classification to detect abiotic and
biotic drought stress in tomato canopies [12]. Hyperspectral imagery (450–1000 nm) in
combination with machine learning algorithms (random forest and extreme gradient boost)
has been also used to detect water stress in vine canopies [13]. Another possibility for
detecting water stress in plants is to use radar remote sensing technologies [14,15] with the
advantage of penetrating the clouds, a limitation of visible and thermal imagery. Finally,
ultrasound wave spectroscopy has also been used to estimate the water content of plant
leaves using convolutional neural networks and random forest algorithms [16].

As previously indicated, work on detecting water stress in potato cultivars has been
based on vegetation indexes (NDVI, the Simple Ratio, the Photochemical Reflectance
Index, the pigment-specific simple ratio of Chlorophyll-a, the reflectance water index, the
Normalized Water Indexes and the dry Zea N index). Here we use a hyperspectral camera
(400–1000 nm) and several well-known machine learning algorithms to detect water stress
in potato hyperspectral images and to estimate the degree of water stress: none, light,
moderate and severe, using all images bands. The use of machine learning algorithms
allows us to determine which regions in the spectral signature of the leaves are more
influential to better estimate water stress from remote sensing using images in the visible
(400–700 nm) and near-infrared (NIR) (700–1000 nm) bands.

2. Material and Methods
2.1. Plant Material and Experimental Design

The experiment was developed in greenhouse number 17 of AGROSAVIA (Cor-
poración Colombiana de Investigación Agropecuaria), Tibaitatá research center, Colom-
bia (4◦41′25.7064′ ′ N, 74◦12′08.23′ ′ W) at 2543 m above the sea level. Certified seeds of
Solanum tuberosum L., variety Diacol Capiro were planted in the greenhouse. The experi-
ment consisted of a randomized complete blocks design in a factorial 2 × 4 arrangement.
The first factor considered was the level of plant development (phenological stage), this
was fixed according to [17]: tubers differentiation (TD) and maximum tuberization (MT)
(Appendix A). The second factor was the level of water stress severity, determined by the
hydric potential of the leaves, measured using a Scholander pressure chamber in Mega
Pascals (Mpa). Control plants have a hydric potential in the 0–−0.49 Mpa range, light
(L) water stress has a hydric potential in the −0.5–−0.59 Mpa range, moderate (M) water
stress has a hydric potential in the −0.6–−0.89 Mpa, and severe (S) water stress has a
hydric potential equal to or lower than −0.9 Mpa. These hydric potential ranges were
selected based on [18,19], and previous research experience of AGROSAVIA in greenhouses
containing potato crops.

Potato plants were sown in a greenhouse in a loamy soil that was kept at field capacity
(soil water potential did not decline below −0.033 MPa) by drip irrigation from sowing
until the 9th and 13th week after sowing, when each stage of development was reached
(TD and TF, respectively). At that time, the water supply was suspended, and the water
potential in the leaf was measured daily until reaching each level of stress (L, M, S). Control
plants had a water supply throughout the experiment.
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2.2. Hyperspectral Imagery

The hyperspectral images were acquired using a 710-VP Surface Optics Corporation
camera with 520 × 696 pixels and 128 spectral bands in the 400–1000 nm range, using
the Environment for Visualizing Images (ENVI) format. The images were taken at 3 m
above the plant’s canopy level and the camera looking downwards. The image acquisition
campaigns were done at around the same hour of the day. Figure 1 shows a false-color
image of the canopy of a plant loaded and visualized with MultiSpec [20]. As can be seen
from this image a Spectralon reflectance white panel is also used on each image to convert
the hyperspectral intensity images to reflectance. It is easy to segment the white Spectralon
panel from the hyperspectral image by computing the average of the red, green, blue,
and NIR bands and dividing that image by the maximum intensity. Figure 2 shows this
normalized average, where the Spectralon reflectance panel can be segmented from the
image using a threshold above 0.5.
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band 90, green as band 60, and blue as band 40.

The reflectance of each hyperspectral image can be computed using:

ρ(x, y, λ) =
I(x, y, λ)ρS(λ)

Is(λ)
(1)

where ρ(x, y, λ) is the reflectance image at pixel coordinates x, y and waveband λ, I(x, y, λ)
is the raw intensity image at pixel coordinates x, y, and waveband λ, ρS(λ) the known
reflectance of the Spectralon panel at λ wavelength (0.99 at visible and NIR ranges) and
Is(λ) the mean intensity of the Spectralon panel at waveband λ. Once the hyperspectral
images are converted to reflectance, it is necessary to segment the canopy from its back-
ground. The Normalized Difference Vegetation Index (NDVI) has widely been used to
detect vegetation canopy [21]:

NDVI =
ρNIR − ρred
ρNIR + ρred

(2)

where ρNIR, ρred are the reflectances at the NIR and red wavelengths, respectively. However,
the NDVI is affected by several factors including shadows [21] that could lead to 0/0
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undefined values. To avoid this, we used the Soil-Adjusted Vegetation Index (SAVI) that
overcomes the issues of the NDVI [21] and selected those values where SAVI > 0.3 (Figure 3):

SAVI = 1.5
ρNIR − ρred

(0.5 + ρNIR + ρred)
(3)

Horticulturae 2021, 7, x FOR PEER REVIEW 4 of 24 
 

 

where 𝜌 , 𝜌  are the reflectances at the NIR and red wavelengths, respectively. How-
ever, the NDVI is affected by several factors including shadows [21] that could lead to 0/0 
undefined values. To avoid this, we used the Soil-Adjusted Vegetation Index (SAVI) that 
overcomes the issues of the NDVI [21] and selected those values where SAVI > 0.3 (Figure 
3): 𝑆𝐴𝑉𝐼 = 1.5 .    (3)

 
Figure 2. Normalized sum of red, green, blue, NIR bands. 

  

Figure 2. Normalized sum of red, green, blue, NIR bands.

Horticulturae 2021, 7, x FOR PEER REVIEW 5 of 24 
 

 

 

 
Figure 3. SAVI greater than 0.3 to detect leaves. 

  

Figure 3. SAVI greater than 0.3 to detect leaves.

From the image campaign at the tubers differentiation phenological stage, 64 images
were acquired to be used for the machine learning algorithms (stressed and control plants)
with water stresses that range from 3 to 20 days. From the image campaign at the maximum
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tuberization phenological stage, 52 images were acquired to be used for the machine
learning algorithms (stressed and control plants) with water stresses that range from zero
to nine days. The reading and preprocessing of the hyperspectral images were done using
Python 3.8.5 that comes with Anaconda [22]. The Python spectral library [23] was used to
read the hyperspectral images.

There are control plants that provide images for the control class and there are several
images for each stress condition, taken at different days after the application of each
stress level.

2.3. Machine Learning Algorithms

Two supervised classification tasks for the two phenological stages of the potato crops
were carried out: detection of water stress i.e., the plant is water-stressed or not (two
classes) and the estimation of the water level of stress i.e., the plant is not water-stressed, is
lightly water-stressed, is moderately stressed or severely stressed (four classes). To perform
these classification tasks six well-known machine learning algorithms were used:

• Random decision forest (RF) [24] using 100 trees, with a balanced class weight. RF are
an ensemble of decision trees, the class predicted corresponds to the class most voted
for the decision trees.

• Multi-layer perceptron (MLP) [25] with an input layer having equal nodes as the
number of bands (128) and an output layer having equal nodes as the number of
classes (2 or 4). Each layer is followed by a batch normalization layer [26], a dropout
layer [27] with a probability of 0.2, a rectified linear activation function (RELU, a
function that will output the same input if it is positive, zero otherwise) [28] on
the input layer, and a Softmax activation function [28] on the output layer for the
case of four classes or a Sigmoid activation function [28] for the case of two classes
classification (see Figure 5). An MLP neural network consists of layers of nodes: an
input layer, hidden layers and an output layer. Except for the input nodes, each node
is a neuron that uses a nonlinear activation function. Each node on a layer connects
with each node of the following layer by a weight function. The neural network learns
the weights from the training data.

• Convolutional neural networks (CNN) [29] with two convolutional layers using a
kernel size of 3 and 20 filters each one. The two convolutional layers are followed by
a batch normalization layer, a dropout (0.2) layer, and a RELU layer. After the two
convolutional layers, a flatten layer follows to flatten out the last convolutional layer
into MLP nodes. After the flatten layer, an input MLP layer of size equal to the half
of nodes of the flatten layer follows, then a middle MLP layer with half the nodes
of the previous layer and an output layer with equal nodes as the number of classes.
Each MLP layer is followed by a batch normalization layer, a dropout (0.2) layer, and
a RELU layer for the case of the first MLP layer and the second MLP layer. The last
MLP layer is followed by a Softmax activation function in the case of four classes or
a Sigmoid activation function, in the case of two classes (Figure 4). Convolutional
neural networks are a kind deep learning neural network specialized on images, with
convolutional layers applying different kinds of filters on patches of the images and
then on previous convolutional layers, to capture variabilities at higher scales.

• Support vector machine (SVM) [30] using linear SVM with default parameters. SVM
maps training examples to points in space so as to maximize the width of the gap
between the classes.

• Extreme gradient boost (XGBoost) [31] using tree classifiers (gbtree) as weak learners
and 100 estimators. Gradient boosting produces an ensemble of weak predictions
(usually trees) models and generalizes them by the optimization of a differentiable
loss function. XGBoost in an implementation of gradient boosting that uses a more
regularized model formalization to control overfitting.

• AdaBoost (AB) [32] with 100 estimators. An AdaBoost classifier works by fitting a
classifier that first fits the dataset and then fits additional copies of the classifier, but
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giving more weight to the incorrectly classified instances, so subsequent classifiers
focus on harder cases.
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The RF, SVM, AB classifiers were implemented in Python 3.8 using the sklearn library.
The MLP and CNN were implemented in Python 3.5 using the keras library with tensorflow
under the hood in the High Performance Computing servers of Agrosavia, given the
memory required by CNN. The XGBoost classifier was implemented using xgboost python
library in Python 3.8.

Given the size of the images (520× 696× 128) and equipment memory constraints and
processing times, only 10000 pixels were selected at random from the canopy (identified
using SAVI > 0.3) on each image to train the classifiers forming a training dataset. In the case
of CNN, a window of size 5× 5× 128 was selected centered on each one of the 10,000 pixels
selected at random in the canopy to form the CNN dataset. To evaluate the classifiers, five-
fold cross-validation was employed to measure the probability of classfication overfitting,
due to the tendency of classifiers to overfit the training dataset. Here, 80% of the dataset
is used for training and 20% for testing the classifiers on each one of the five-fold cross-
validation runs. In the case of MLP and CNN, 20% of the 80% available data for training
is used for validation in such a way that the MLP or CNN models are saved only if the
computed loss improves for the validation data, as an extra measure to avoid overfitting
the dataset. Furthermore, the classifiers were trained with the full training dataset and then
used to classify the whole canopy on each image (containing many more pixels unseen by
the classifiers) using majority voting, i.e., selecting the class most pixels are classified with.
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3. Results

Figure 6 shows the classification performance using two classes (water stress or
control) for the phenological stage tubers differentiation using overall accuracy, sensitivity,
and specificity (see confusion matrices in the Appendix B), where the standard deviation
of the mean is indicated for accuracy, sensitivity, and specificity, as error bars. As can be
seen from these results RF and XGBoost achieve the best classification performance, being
XGBoost the best.
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Table 1 compares the classification performance using the best three classifiers found:
RF, XGBoost, and CNN alone and using Majority Voting (MV). This table shows that both
RF and XGBoost correctly classify all the images using majority voting, followed by CNN.

Table 1. Comparison of classification performance of RF, XGBoost, and CNN alone and using MV for tubers differentiation
phenological stage using two classes.

RF RF + MV XGBoost XGBoost + MV CNN CNN + MV

Accuracy 0.8691875 1 0.98120469 1 0.69395156 0.875
Sensitivity 0.86965626 1 0.98114434 1 0.71711594 0.875855327
Specificity 0.86857087 1 0.98123905 1 0.69385401 0.875855327

Figure 7 shows the classification performance for the tubers differentiation pheno-
logical stage and four classes: control and three levels of water stress: light, moderate,
and severe (see confusion matrices in the Appendix B), where the standard deviation of
the mean is indicated for accuracy, sensitivity, and specificity, as error bars. In this case,
XGBoost performs best, followed by RF and MLP. Table 2 compares the classification
performance of the three best classifiers: RF, XGBoost, and CNN alone and using MV. In
this case, XGBoost performs best, followed by RF and CNN.

Table 2. Comparison of classification performance of RF, MLP, and CNN alone and using MV for tubers differentiation
phenological stage using two classes.

RF RF + MV XGBoost XGBoost + MV CNN CNN + MV

Accuracy 0.811439063 0.90625 0.985457813 1 0.63530625 0.703125
Sensitivity 0.879199269 0.961538462 0.991209678 1 0.591587693 0.66889881
Specificity 0.707431992 0.829861111 0.978625726 1 0.495725174 0.517834596
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Figure 7. Classification performance, tubers differentiation phenological stage using four classes.

Figure 8 shows the classification performance at the maximum tuberization pheno-
logical stage using two classes: control and water stress (see confusion matrices in the
Appendix B), where the standard deviation of the mean is indicated for accuracy, sensi-
tivity, and specificity, as error bars. The best classifiers are XGBoost followed by RF and
CNN. Table 3 compares the classification performance of RF, XGBoost, and CNN alone
and using MV over all the images. This table shows RF and XGBoost both achieve perfect
classification using MV of all the images taken at this phenological stage.
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Accuracy 0.92025577 1 0.99373077 1 0.84420769 0.980769231
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Figure 9 shows the classification performance at the maximum rate of tubers phenolog-
ical stage using four classes: control, light, moderate, and severe water stress (see confusion
matrices in the Appendix B), where the standard deviation of the mean is indicated for accu-
racy, sensitivity, and specificity, as error bars. Here, XGBoost obtains the best performance,
followed by RF and CNN. As in the case of the two classes, the classification accuracies
are good and allow estimation of the water stress from the first day. Table 4 compares the
classification performance of RF, XGBoost, and CNN alone and using MV, where it can be
noticed that XGBoost in combination with MV achieves perfect classification, followed by
RF and CNN.
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Table 4. Comparison of classification performance of RF, XGBoost, and CNN alone and using MV for the maximum
tuberization phenological stage using four classes.

RF RF + MV XGBoost XGBoost + MV CNN CNN + MV

Accuracy 0.894794231 0.980769231 0.997425 1 0.797767308 0.961538462
Sensitivity 0.914904761 0.991666667 0.997991496 1 0.775300134 0.964285714
Specificity 0.818412336 0.964285714 0.996019078 1 0.713138567 0.982758621

Figure 10 shows XGBoost classification results on some images of the tubers differ-
entiation phenological stage using four classes. The color code here is green for no water
stress, blue for light stress, yellow for moderate stress, and red for severe stress. Figure 10a
shows the classification for a control plant (no water stress). Figure 10b shows a plant that
suffered light stress. Figure 10c shows a plant that suffered moderate stress. Figure 10d
shows a plant that suffered severe stress.

Figure 11 shows some XGBoost classification results for the maximum tuberization
phenological stage using the same color code as in Figure 10.

Figure 12 shows the band importance for RF classification in the detection (two
classes) and estimation (four classes) of water stress at the phenological stage of tubers
differentiation. Figure 13 shows the same band importance for RF classification of two
and four classes at the phenological stage of the maximum tuberization. As indicated in
Figures 12 and 13 the most important bands for classification in RF are the violet, the red
edge, and a few wavelengths in the NIR.
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Figure 14 shows the band importance for XGBoost classification in the detection (two
classes) and estimation (four classes) of water stress at the phenological stage of tubers
differentiation. Figure 15 shows the same band importance for XGBoost classification of
two and four classes at the phenological stage of the maximum tuberization. From these
figures, XGBoost considers important more bands than RF, i.e., it exploits better the spectral
signature of the hyperspectral images. Band importance could help us identify which
bands are better suited to detect water stress from multispectral imagery or to define water
stress indices specially designed for potato crops.
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4. Discussion

The results indicate that even using a small subset of pixels, taken at random from the
hyperspectral images, it is possible to obtain good classification accuracies for detecting
and estimating water stress in potato crops. The results also indicate that as early as one day
after the onset of the stress in the tubers differentiation phenological stage and on the same
day of the onset of the stress in the maximum tuberization water stress can be detected and
measured. Other researchers like [33] also found that hyperspectral imaging could be useful
to detect water supply conditions of leafy vegetables growing under greenhouse, using
modified partial least square regression algorithm, trained to classify different levels of leaf
water potential, obtaining a correlation coefficient of 0.826. In this sense, hyperspectral
imaging could become a useful tool for the design of precision irrigation systems that allow
optimizing the use of water in crops such as potatoes, although it is necessary to develop
more studies in real conditions of commercial cultivation.

It was evident that over all classification tasks and phenological stages XGBoost
provides excellent classification accuracies alone or in combination with majority voting,
followed closely by random forest. Random forest and XGBoost also provide a direct
measure of band importance to detect and estimate water stress. In this case, XGBoost
seems to better use the whole spectral signature of the canopy, while RF uses a reduced
subset of bands. Although the SVM algorithm did not show the best results in this study,
the authors of [34] reported promising results when using this algorithm (R = 0.7684)
in combination with the Kullback–Leibler divergence (KLD) dimensionality reduction
method to select the most relevant bands of hyperspectral images, in the detection of
moisture content in maize leaves at the seedling stage. For future experiments, it may be
useful to evaluate some combinations of algorithms that have proven to be efficient in the
detection of relative water content in leaves, from remote hyperspectral sensing, as reported
by [35] who used artificial neural networks (ANN) after selecting the most important bands
through partial least squares regression (PLSR), improving the performance of ANN alone.

CNN is a deep learning neural network algorithm that extracts features from images.
However, despite being the deep learning neural network most used to analyze images [10],
its classification performance was lower than RF and XGBoost, and only by using majority
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voting, it was possible to improve its performance to classify all image pixels. This is
probably because CNN exploits the spatial structure of the images (such as edges) and not
the spectral signature of the images. In this case, the canopy consists of mostly leaves with
no spatial clues related to water stress.

Our results indicate that using machine learning and spectral images constitute a
phenotyping tool useful to detect and estimate water stress in potato plants, which can also
be used in processes of genetic improvement, by choosing those phenotypes that better
resist water stress. The reflectance images obtained may be sensitive to the physiological
and biochemical changes of the substances and pigments that are degraded and mobilized
due to water stress.

5. Conclusions

This work shows that detection of water stress, as well as estimation of the water
stress level, is possible with good accuracy incremented on the whole canopy, using
majority voting at the tubers differentiation and maximum rate of tuberization phenological
stages. In particular, the classification results are more accurate and available from the
first day of stress for both the tubers differentiation and maximum rate of tuberization
phenological stages. Extreme gradient boost performed best overall phenological stages
and classification tasks, followed by random decision forests. XGBoost and RF also provide
a measure of the importance of each band to detect or estimate water stress in potato crops.
In the case of RF, these bands are the violet, red edge, and some specific NIR bands, while
in the case of XGBoost it includes some additional bands in the visible (green, yellow, red)
and NIR, exploiting better the spectral signature.

These results could lead to the use of more specific normalized water indexes for water
stress detection and estimation in potato crops using these machine learning algorithms.
However, they are not intended to be used by producers, since this research work was
conducted under greenhouse conditions. In this sense, these results are an important basis
for further research considering actual potato crop field conditions and cultural practices.
It will allow to design advanced tools for early detection of water stress, increasing the
efficiency in the application of irrigation.
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of flowering. Gómez et al. report that the stage of maximum tuberization and beginning of filling
coincides with flowering.
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Appendix B

Table A1. Four Classes, Tubers Differentiation.

RF

63,977.80 246.00 340.00 1436.20
6514.60 10,013.60 38.60 1433.20
4497.20 2.40 7114.20 386.20
8758.40 393.20 89.80 22,758.60

SVM

59,562.00 538.80 166.20 5733.00
13,379.40 1381.00 37.80 3201.80
9828.60 58.00 223.20 1890.20

21,264.40 388.00 47.60 10,300.00

CNN

52,467.80 4374.40 1091.40 8066.40
7442.60 7230.20 79.40 3247.80
4198.00 3643.40 2123.40 2035.20
9497.20 2412.60 592.40 19,497.80

MLP

53,304.20 3697.40 668.80 8329.60
10,808.20 4085.00 80.00 3026.80
5405.00 2299.80 1266.80 3028.40

17,965.20 1482.40 587.60 11,964.80

XGBoost

329,137.00 90.00 69.00 704.00
4314.00 85,073.00 14.00 599.00
416.00 5.00 59,409.00 170.00
2869.00 32.00 25.00 157,074.00

Ada Boost

51,866.40 2866.40 3189.60 8077.60
12,534.60 2287.20 498.00 2680.20
7042.40 114.80 3204.60 1638.20

18,669.00 1172.80 1264.00 10,894.20

Table A2. Four Classes, Maximum Tuberization.

RF

56,866.20 51.20 995.00 87.60
1690.80 11,658.00 618.00 33.20
3996.60 539.40 19,275.80 188.20
1678.60 2.40 1060.40 5258.60

SVM

52,848.20 1664.60 2907.80 579.40
3598.00 8849.20 1474.20 78.60

10,426.40 2783.60 9784.40 1005.60
2296.80 165.60 2138.20 3399.40

CNN

50,919.00 2418.20 3942.80 720.00
1010.40 8773.20 3995.00 221.40
3454.80 299.40 18,737.60 1508.20
613.00 188.00 2661.00 4538.00
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Table A2. Cont.

MLP

56,069.80 626.20 690.80 613.20
5170.00 7803.20 942.60 84.20

14,354.60 992.60 7957.60 695.20
3486.80 20.60 895.00 3597.60

XGBoost

289,738.00 150.00 91.00 21.00
520.00 69,382.00 95.00 3.00
291.00 26.00 119,683.00 0.00
131.00 3.00 8.00 39,858.00

Ada Boost

48,421.80 3685.40 4595.60 1297.20
2715.60 8295.00 2920.80 68.60
6624.40 3534.20 11,884.60 1956.80
1909.00 104.80 2486.40 3499.80

Table A3. Two Classes, Tubers Differentiation.

RF CNN XGBoost

58,628.0 7372.0 47,915.2 18,084.8 323,446.0 6554.0
9372.0 52,628.0 19,694.0 42,306.0 5475.0 304,525.0

SVM MLP Ada Boost

43,555.4 22,444.6 47,570.6 18,429.4 46,091.2 19,908.8
23,343.4 38,656.6 24,596.0 37,404.0 18,315.6 43,684.4

Table A4. Two Classes, Maximum Tuberization.

RF CNN XGBoost

54,926.80 3073.20 52,422.00 5578.00 288,103.00 1897.00
5220.20 40,779.80 10,624.40 35,375.60 1363.00 228,637.00

SVM MLP Ada Boost

48,065.40 9934.60 54,502.60 3497.40 49,767.60 8232.40
8949.60 37,050.40 16,840.80 29,159.20 6870.40 39,129.60
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