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Abstract: The accurate quantitative maturity detection of fresh Lycium barbarum L. (L. barbarum)
fruit is the key to determine whether fruit are suitable for harvesting or not and can also be helpful
to improve the quality of post-harvest processing. To achieve this goal, abnormal samples were
eliminated by the Mahalanobis Distance (MD), and nine components (i.e., R, G, B, H, S, V, L, a, and b)
of the ripe fruit, half-ripe fruit, and unripe fruit were extracted, firstly. Then, significant component
combinations of the three fruits beneficial to the extraction of their areas were determined. Through
binary processing, morphology processing, and other image processing methods, a quantitative
maturity detection model of fruit was established based on the support vector machine (SVM) model.
On this basis, field experiments were conducted to verify and compare the relationship between the
prediction results of the model and the picking forces of fruit. Field experiments showed that the
accuracies of both the training set and prediction set were 100% and the prediction results of the
model were consistent with the picking forces of fruit. Findings provided a theoretical basis for the
accurate quantitative maturity detection of fresh L. barbarum fruit.

Keywords: L. barbarum; maturity detection; color information; Mahalanobis distance; image process-
ing; support vector machine; picking force

1. Introduction

Lycium barbarum L. (L. barbarum) is a solanaceae Lycium indefinite inflorescence de-
ciduous shrub and its ripe fruit [1-3], commonly known as Goji, has been reported to
contain health-promoting bioactive components, such as the polysaccharides, zeaxanthin,
and antioxidant compounds [4]. Both in vitro and in vivo studies of L. barbarum have
demonstrated its anti-inflammation, anti-aging, anti-hypertensive, anti-hyperglycemic,
anti-tumoral, and anti-Alzheimer effects, as well as alleviating mood disturbances during
the rehabilitation of cough syrup abusers [5,6]. For centuries, the mechanized harvesting
of L. barbarum has been a difficult problem [7]. Therefore, the fruit are normally harvested
manually, which results in the low efficiency and high cost. With the continuous expansion
of L. barbarum acreage, labor for harvesting fruit is increasingly scarce. The harvesting be-
comes the bottleneck limiting the development of the L. barbarum industry [3]. At present,
scholars in China and abroad are producing prototypes of L. barbarum harvesting ma-
chines [3,8-15]. With the popularization of the standardized planting mode of L. barbarum,
the large-scale manor planting mode of L. barbarum has become the development trend
and the machine harvesting of fruit over plants has become suitable for the mechanized
harvesting of this planting mode. For this method however, it is important to accurately
predict the optimal harvest maturity of fruits (as is the case for, e.g., nectarines) [16]. There-
fore, determining whether fruit are suitable for harvesting or not is an urgent problem.
Furthermore, the accurate quantitative maturity detection of fruit will also be helpful to
improve the quality of post-harvest processing, such as sorting and grading.

The pericarp color is an important factor for the evaluation of fruit quality and also
indirectly represents sugar content, acidity, and taste [17]. With the development of
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machine vision technology, non-destructive testing methods of fruits and vegetables are
becoming increasingly mature [18-21]. Meanwhile, with the development of the economy
and society, public demand for high-quality fruits is increasing. In response, sorting and
grading systems for fruits have become increasingly developed and good results have
been achieved for, e.g., apple [19,20] and mango [22]. Therefore, it is feasible to achieve the
accurate quantitative maturity detection of fruit using color information.

Samples were easily affected by environment factors when taking photos, such as
illumination and shadow, which affects the accuracy of establishing the maturity detection
model. Eliminating abnormal samples was the fundamental process before establishing
the model. The Mahalanobis Distance (MD) was introduced by the Indian statistician
Mahalanobis and is a representation of the covariance distance of data. This is an effective
method to calculate the similarity degree of two unknown sample sets. In contrast to the
Euclidean distance, the (MD) considers the relationship of various characteristics [23,24].
Therefore, it offers the advantages of being independent of measurement scale and not
affected by dimension, and is widely used to eliminate abnormal samples.

A suitable classification model is also critical for establishing the maturity detec-
tion model. Support vector machine (SVM) is used for the hyperplane separation of
binary classification problems and to adjust a discriminating function based on supervised
learning [25,26]. It makes optimal use of the separation information of boundary cases.
Therefore, it is widely used to sort and grade fruits [19].

Scholars established the maturity detection models of some fruits using different meth-
ods, such as the time-resolved reflectance spectroscopy and computer vision [16-18,22,27-31].
Tijskens et al. assessed harvest maturity in nectarines using the time-resolved reflectance
spectroscopy. It was a novel technique but too expensive for the current L. barbarum fruit
production. Lien et al. assessed tomato maturity using the non-destructive impact test.
However, doing the impact test of L. barbarum fruit took too much time. Poel et al. detected
tomato maturity based on physiological properties. However, it has been difficult to realize
real-time detection of L. barbarum using this method, recently. Aranda-Sanchez et al. deter-
mined tomato fruit ripening stages by establishing the Bayesian classifier. Nonetheless, it
was difficult to establish the maturity detection model of L. barbarum fruit by establishing
the Bayesian classifier. It was widely used to establish maturity detection models based on
color information using computer vision in tomato [17,27,28], mango [22], and apple [31].
Based on the above analysis, color information of pericarp was easy to distinguish and had
a stable difference compared to other characteristics. In addition, the image processing
technology was also mature and convenient. Therefore, we established the quantitative
maturity detection of L. barbarum fruit using color information.

In this paper, abnormal samples were eliminated by the (MD) and nine components
(ie, R, G,B, H,S,V,L, a, and b) of the ripe fruit, half-ripe fruit, and unripe fruit were
extracted, firstly. Then, significant component combinations of the three fruits beneficial
to the extraction of their areas were determined. Through binary processing, morphology
processing, and other image-processing methods, a quantitative maturity detection model
of fruit was established based on the SVM model. On this basis, field experiments were
conducted to verify and compare the relationship between the prediction results of the
model and the picking forces of fruit. This study was expected to provide a theoretical
basis for the accurate quantitative maturity detection of fresh L. barbarum fruit.

2. Materials and Methods
2.1. Sampling of Fresh L. barbarum Fruit

The experiment was conducted in Zhongning in the Ningxia Hui Autonomous Region
(37°22'56" N, 105°37'21"” E) on 28 September 2018. The temperature was 17.6 °C, the
humidity was 20.9%, and the illuminance was 357.6 Lx. Ningqi 7 was selected as the
experiment variety. Shrubs with good growth and no apparent defects were used; the
plants were 4-5 years old with a height of 0.6-1.4 m after pruning. The row spacing of
plants was 3 m, and the plant spacing per row was 1 m. Reference reviews indicated
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that there were significant differences in the pericarp color of different fruits at different
maturity levels [16-18,22,27-31]. According to the differences of the pericarp color, the
fruit can be divided into the ripe fruit, half-ripe fruit, and unripe fruit. Meanwhile, to make
the model more universal, different amounts of the three fruits were used to establish the
model. This ensured that different amounts of the three fruits were mixed for establishing
the model. On this basis, 1828 ripe fruit, 556 half-ripe fruit, and 1164 unripe fruit were
selected. The samples were photographed with an industrial camera (type: JHSM1000F-E),
as shown in Figure 1.

(c)

Figure 1. Fresh L. barbarum fruit at different maturity levels. (a) Ripe fruit, (b) half-ripe fruit, and (c)
unripe fruit.

2.2. Abnormal Sample Elimination Using the (MD)

To exclude the influences of the environment factors, the (MD) was used to eliminate
abnormal samples. Cheng et al. put forward the threshold calculation equation and verified
that it was appropriate to set the threshold adjustment coefficient to 3. In this study, the
threshold calculation equation is as follows:

T = u+3c 1)
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where T is the threshold of the sample set, y is the mean value of the sample set, and ¢ is
the standard deviation of the sample set.

According to the definition of the (MD), there are some good applications for each
sample that has several characteristics of different dimensions [23,24,32]. For example,
Cheng et al. processed the samples; each sample had different wavelengths, and they
eliminated the abnormal samples using the (MD). In this study, each sample has nine
components (i.e, R, G, B, H, S, V,L, a, and b). Therefore, the standard deviations of nine
components of the three fruits could be comprehensively analyzed and abnormal samples
could be eliminated by the (MD). Abnormal samples of the ripe fruit, half-ripe fruit, and
unripe fruit were eliminated in Matlab R2010a (MathWorks, Natick, MA, USA). The (MD)
distribution points of each sample of the ripe fruit, half-ripe fruit, and unripe fruit are
shown in Figure 2.
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Figure 2. The (MD) distribution points of the ripe fruit (a), half-ripe fruit (b), and unripe fruit (c).

The thresholds of the ripe fruit, half-ripe fruit, and unripe fruit were 14.9441, 57.5544,
and 46.4618, respectively. The samples of the ripe fruit, half-ripe fruit, and unripe fruit were
eliminated when the T values were more than 14.9441, 57.5544, and 46.4618, respectively.
The amounts of eliminated abnormal samples of the ripe fruit, half-ripe fruit, and unripe
fruit were 28, 1, and 10, respectively. For example, the eliminated abnormal samples of
the three fruit are shown in Figure 3. As shown in Figure 3a, there was one ripe fruit in
this figure and the T value of this ripe fruit was 17.2988. The T value of this ripe fruit
was more than 14.9441, so that this ripe fruit was an abnormal sample. It was clearly
observed that this ripe fruit was not conducive to the subsequent establishment of the
model due to the effect of illumination. As shown in Figure 3b, the fruit on the far left
was the half-ripe fruit in this figure and the T value of this half-ripe fruit was 407.4555.
The T value of this half-ripe fruit was more than 57.5544, so that this half-ripe fruit was an
abnormal sample. It was clearly observed that this half-ripe fruit was not conducive to the
subsequent establishment of the model due to the fuzziness. As shown in Figure 3¢, the
fruit on the far left was the unripe fruit in this figure and the T value of this unripe fruit
was 59.2474. The T value of this unripe fruit was more than 46.4618, so that this unripe fruit
was an abnormal sample. It was clearly observed that this unripe fruit was not conducive
to the subsequent establishment of the model due to the effect of shadow. Therefore, the
amounts of the ripe fruit, half-ripe fruit, and unripe fruit used to establish the model were
1800, 555, and 1154, respectively.

..\

:

Figure 3. Cont.
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(©)

Figure 3. The eliminated abnormal samples of the ripe fruit (a), half-ripe fruit (b), and unripe fruit (c).

2.3. Extraction of Nine Components

Reference review indicated that RGB, HSV, Lab, and other color models are currently
widely used in color systems [17,22,27,28,31]. Nine components (i.e., R,G,B, H,S,V,L, a,
and b) of the ripe fruit, half-ripe fruit, and unripe fruit were extracted in Matlab R2010a,
as shown in Figures 4-6. The mean values of R, G, B, H, S, V, L, a, and b of the ripe
fruit, half-ripe fruit, and unripe fruit were 162.8945, 55.0421, 49.1244, 0.3415, 0.7009, 0.6488,
39.5295, 43.5344, and 28.1019; 132.8254, 75.5312, 23.4402, 0.0959, 0.8195, 0.5235, 38.6451,
19.3835, and 38.9981; and 75.5590, 92.7886, 30.0260, 0.2127, 0.6850, 0.3674, 36.6010, 16.7032,
and 32.2754. Figure 7 shows the box plots of numerical values of nine components of fruit.

B RGB
(a)

Figure 4. Cont.
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Figure 5. Extraction process of RGB (a), HSV (b), and lab (c) of the half-ripe fruit.
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Figure 7. Box plots of numerical values of nine components of the ripe fruit (a), half-ripe fruit (b),
and unripe fruit (c).

Based on the above results, the accurate quantitative maturity detection model of
fruit could be established. To verify and compare the relationship between the prediction
results of the model and the picking forces of fruit, the picking forces should be measured.
The picking forces were measured by a digital display tensile force meter (range: 30 N,
accuracy: 0.01 N), and the measuring device of picking forces is shown in Figure 8.
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Figure 8. The measuring device of picking forces.

3. Results and Discussion
3.1. Image Processing

According to the above analysis, component R—G was conducive for the extraction of
the area of the ripe fruit; component S was conducive for the extraction of the area of both
the half-ripe fruit and unripe fruit. The above component images were processed using
the binary processing, firstly. The areas of fruit were set as 1, and the other areas were set
as 0. Then, the morphology processing was conducted to denoise images and smooth the
boundary. Finally, masks of nine components of the ripe fruit, half-ripe fruit, and unripe
fruit were made, i.e., the numerical values of each component were multiplied by the areas
of fruit. The image processing of the ripe fruit, half-ripe fruit, and unripe fruit is shown in
Figures 9-11, respectively.

Figure 9. Cont.
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Figure 9. Original image (a), component R—G (b), binary processing (c), morphology processing (d),
masks of RGB model (e), masks of HSV model (f), and masks of lab model (g) of the ripe fruit.

Figure 10. Cont.
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Figure 10. Original image (a), component S (b), binary processing (c), morphology processing (d),
masks of RGB model (e), masks of HSV model (f), and masks of lab model (g) of the half-ripe fruit.

Figure 11. Original image (a), component S (b), binary processing (c), morphology processing (d),
masks of RGB model (e), masks of HSV model (f), and masks of lab model (g) of the unripe fruit.



Horticulturae 2021, 7, 108

14 of 16

3.2. Establishing the Maturity Detection Model

The SVM model was proposed by Vapnik to solve the problem of pattern classification
and nonlinear mapping [25,26]. It established a hyperplane to maximize the distance
between two sample sets, thus enabling the good generalization ability for classification
problems. In this study, the SVM model was adopted as the maturity detection model, and
both c and g of kernel function were used as the training parameters for the optimization.
After training with large samples, the model was optimized when ¢ and g were 1 and
1, respectively.

3.3. Field Experiment Verification

The above samples were used for the field experiment verification. The amounts of the
ripe fruit, half-ripe fruit, and unripe fruit were 1828, 556, and 1164, respectively. The ratio
of the amounts of samples in the training set to the prediction set was 3:1. The amounts of
samples in the training set and the prediction set were 2661 and 887, respectively. After the
calculation, the accuracies of both the training set and prediction set were 100%, and the
confusion matrixes are shown in Figure 12.

Ripe

g
=
5 Half-rape
EJ 0.4
403
02
Unripe
101
— 0
Ripe Half-rape Unripe
Agsigned variety
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1
09
Ripe 08
0.7
£
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Ripe Half-rape Unripe
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Figure 12. Confusion matrixes of the training set (a) and prediction set (b).

The picking forces of the three fruits were obtained using the measuring device and
are shown in Table 1. It can be seen from Table 1 that the differences of picking forces of the
three fruits were obvious. However, the ranges of picking forces of each of the three fruits
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were relatively stable. By comparing the relationship between the prediction results of the
model and the picking forces of fruit, the prediction results of the model were consistent
with the picking forces of fruit.

Table 1. The picking forces of fruit.

Item Mean Value (N) Standard Deviation (N)
Ripe fruit 0.72 0.31
Half-ripe fruit 1.66 0.49
Unripe fruit 2.54 0.61

4. Conclusions

This study was conducted to determine whether fruit are suitable for harvesting or
not by establishing a quantitative maturity detection model of L. barbarum. Abnormal
samples were eliminated by the (MD) and nine components (i.e.,R, G, B, H,S,V,L, a, and
b) of the ripe fruit, half-ripe fruit, and unripe fruit were extracted, firstly. Then, significant
component combinations of the three fruits beneficial to the extraction of their areas were
determined. Component R—G was conducive to the extraction of the area of the ripe fruit;
component S was conducive to the extraction of the area of both the half-ripe fruit and
unripe fruit. Through the binary processing, morphology processing, and other image
processing methods, a quantitative maturity detection model of fruit was established based
on the SVM model. On this basis, field experiments were conducted to verify and compare
the relationship between the prediction results of the model and the picking forces of
fruit. Field experiments showed that the accuracies of both the training set and prediction
set were 100%, and the prediction results of the model were consistent with the picking
forces of fruit. Findings provided a theoretical basis for the accurate quantitative maturity
detection of fresh L. barbarum fruit.
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