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Abstract: One of the major problems in the fruit production of citrus, including pummelo (Citrus
grandis) is controlling flowering induction. Water stress is known to be related to flowering induction
via physiological responses related to the flowering gene. However, reports on the mechanisms
underlying floral induction by water stress in pummelo are limited. Thus, this study aimed to
determine the physiological characteristics and the expression of genes related to flowering induction,
CiFT (Citrus Flowering locus T), in pummelo at different levels of water stress. Experiments were
conducted under two growing conditions: field and container conditions, each using a 2 × 5 factorial
experiment in a randomized complete block. Factor A consisted of two red-flesh pummelo cultivars
while factor B consisted of five levels of water stress based on the leaf rolling index. Among the seven
characteristics studied, only the data of total nitrogen, CiFT, and flower number were combined for
analysis due to their results in a homogeneity test. Although a consistent tendency was not observed
for the interaction among environments, genotypes, and water stress levels of all characteristics,
‘KKU-105’ grew more flowers under higher water stress conditions (225 flowers). This result may
imply that decreases in total nitrogen (1.48%), stomatal conductance (50.53 m−2s−1), chlorophyll
fluorescence (0.30 Fv/Fm), and upregulation of CiFT mRNA level (13.95) may induce flowering in
the pummelo cultivar ‘KKU-105’.

Keywords: container growing condition; environment; water deficit; drought stress; floral induction;
mRNA; key signal; stomatal conductance; chlorophyll fluorescence

1. Introduction

In Thailand, Pummelos (Citrus grandis (L.) Osbeck) are divided into two kinds based
on the color of their flesh: white-flesh pummelos and red-flesh pummelos [1]. Currently,
the red-flesh pummelo is popular among consumers due to its richness in lycopene, an-
thocyanin, and beta carotene [2–4]. The red-flesh pummelo cultivars (‘KKU-105’, ‘KKU-101’,
and ‘Manee Esan’) are some of Thailand’s newest and most promising pummelo cultivars,
and can be found in Baan Bung 14, Tambon Nonthong, Amphoe Kasetsomboon, Chaiya-
phum province in the northeast. However, red-flesh pummelos grown in tropical and
sub-tropical areas are frequently susceptible to climate change, which causes their flowers to
fall off owing to high relative humidity and rainfall [5]. Moreover, stress related conditions
can directly and indirectly decrease the expression of genes which are responsible for floral
induction or flowering, which is one of the most crucial events in a plant’s lifecycle [6,7].
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Several genes have been reported to be linked to flowering, namely FLOWERING LOCUS
T (FT) gene, which is one of the most studied genes and is typically maximally expressed
at the onset of floral induction [8]. FT homologs are also the key regulators of flower
development in plants belonging to the Citrus genus [9–14]. A decrease in the expression
of these genes related to flowering would hinder flower development, thus negatively
affecting the yield for pummelo trees.

In general, flowering is influenced by environmental factors such as temperature, light,
moisture, nutrients, and drought stress, all of which are linked to changes in crop plant
gene expression [15]. Plants could avoid water stress by different morphological, biochemi-
cal, and molecular mechanisms [16]. Stress in particular plays a key role in con-trolling
plant flowering [17,18]. While citrus trees are subjected to floral inductive temperatures
during the winter in the subtropics, tropical areas do not experience significant seasonal
temperature variations. Instead, floral induction is linked to water stress during the dry
season instead of changes in temperature. In fact, among the environmental stresses, water
stress is the main factor that affects agricultural production, particularly in irrigated land.
Water stress induces both flowering and the upregulation of the homolog of FT gene in
sweet orange (Citrus sinensis) [13,19]. Moreover, the Citrus FLOWERING LO-CUS T (CiFT)
gene expression level was found to be correlated with floral induction under the water
stress condition [18,20]. Besides, severe water stress produced maximum flowering capac-
ity compared to mild water stress in the Tahiti lime (Citrus latifolia) [21]. The water stress or
water deficit stressful conditions may degrade necessary physiological processes such as
stomatal conductance, photosynthesis, and nitrogen uptake [22–29]. A major reduction in
chlorophyll fluorescence was also caused by water deficiency, suggest-ing photosynthesis
inhibition [30]. In addition, these on the whole enhanced carbohydrate accumulation in the
bud as well as promoted flowering. Flowering is positively correlated with carbohydrate
levels in the bud and phloem [30,31].

Since field conditions provide an unfavorable environment which strongly affects
floral induction, it is necessary to cultivate crops under controlled container conditions
so as to avoid any biotic (pest and disease) and abiotic (rainfall and temperature) stresses.
However, the plant is generally grown under a limited container, which decreases shoot
growth and photosynthesis because of the similarity of physiological mechanisms to those
of water stress [32,33]. Nevertheless, information on physiological responses associated
with the flowering-related gene under limited growing conditions in citrus is still scarce.
An understanding of the association between water stress and flowering is essential for
enhancing flowering induction in citrus. In this study, red-flesh pummelo were subjected
to drought stress in a growth container (potted) and field condition. The goal of determine
the mechanism of the effect of different water stress levels on the flowering gene based on
the physiological response of pummelo. Therefore, the aim of this study is to determine the
responses of physiological characteristics to expression CiFT mRNA level and flowering
in two red-flesh pummelo cultivars at different levels of water stress under two settings
(container-grown (potted) and field-grown).

2. Materials and Methods
2.1. Plant Materials and Treatments

Two red-flesh pummelo cultivars, i.e., ‘KKU-105’ and ‘Manee Esan’ own-rooted by air
layering propagation (both 5 years old) were used. They were grown under two different
conditions, i.e., container and field conditions. The container-grown (plastic pots) under
plant house, the pummelo plants were transplanted into plastic pots during the months of
March–April 2014. Plastic pots (100 L 0.53 m × 0.72 m; W × H) were filled with a mixed
media consisting of rice husk, rice husk charcoal, peat moss, and cow manure in a ratio of
2:1:1:0.5 (v/v), respectively. Field-grown pummelo plants were transplanted into a field
with a spacing of 6 × 6 m during the months of March–April 2014.

Under both settings, pummelo plants were watered daily at field capacity throughout
the experiment, except during the treatment period. which lasted for 2 months. Every two
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weeks throughout the experiment, 1.0 kg of organic fertilizer (cow manure) and 0.5 kg
of inorganic fertilizers (12-24-12/N-P-K) were applied to each plant, except during the
treatment period. The study was carried out with field- and container-grown (plastic pots)
plants at the experiment farm of Khon Kaen University, Thailand (latitude 16◦21.145′ N,
longitude 101◦48.916′ E) during the months of October to November 2018.

The experiment was conducted using a 2× 5 factorial in a randomized complete block
design with three replications under each growing condition (Figure 1). Factor A consisted
of two red-flesh pummelo cultivars (‘KKU-105’ and ‘Manee Esan’), three plants of each
cultivar were used in each replication. Factor B consisted of five levels of water stress
based on a leaf rolling index, i.e., unrolled leaves in the control group (WS1), folded deep-
V-shaped leaves (WS2), fully-cupped U-shaped leaves (WS3), margin-touching O-shaped
leaves (WS4), and tightly-rolled leaves (WS5) [34–36]. Measurements were recorded on the
last day of the water stress period and after re-watering at 10:00 and 14:00 h
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different water stress levels in two environments (container and field conditions).

2.2. Physiological Characteristics Measurement

Stomatal conductance (SC) and chlorophyll fluorescence (CF) were measured at the
middle of the canopy from three fully exposed mature leaves per plant. Stomatal conduc-
tance (mmol m−2 s−1), measured by a porometer, is the rate of CO2 entering, or water
vapor exiting through stomata. A porometer (Model AP4, Delta-T Devices Ltd., Cam-
bridge, UK) was used to measure stomatal resistance (s/cm). CF data were collected using
a Handy PEA chlorophyll fluorometer (Hansatech, Kings Lynn, UK). Air temperatures and
relative humidity were recorded daily using a data logger (HOBO U12 Data Loggers, Onset
Computer Corporation, Bourne, MA, USA). The mature leaves at the upper portion of the
plant were sampled, then immediately frozen in liquid nitrogen and stored at −80 ◦C until
use. The 100 g of fresh leaves were dried in freeze dryers at −53 ◦C for 48 h (Scanvac cool
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safe 55-9 Model). The dried leaves were ground in a blender and stored at −20 ◦C until
further analysis.

Soluble carbohydrates were extracted from 250 mg of ground material by diluted
sulfuric acid (0.2 N H2SO4) as described [37]. The extracted solutions were measured using
a spectrophotometer for TNC concentration by applying the phenol sulfuric acid using the
Nelson-Somogyi method citation.

Soluble extract of 300 mg of the ground material in 98% H2SO4 were obtained by the
method described [38]. TN concentration of the extract was determined based on the UV
oxidation method proposed [39].

2.3. Genetic Characteristics Measurement
2.3.1. RNA Extraction and cDNA Synthesis

Total RNAs were extracted from leaves using PureLink® Plant RNA Reagent (Thermo
Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s instructions. cDNA
synthesis reactions were performed using ReverTra Ace®qPCR RT Master Mix with gDNA
Remover (TOYOBO, Osaka, Japan). The cDNA product was stored at −20 ◦C.

2.3.2. Gene Expression Analysis

Gene expression levels were measured with reverse-transcription-quantitative real-
time PCR (RT-qPCR) using the StepOnePlus Real-Time PCR system (Thermo Fisher
Scientific, Waltham, MA, USA) by comparative CT method. Gene amplification was
performed using 10 ng of working cDNA solution. Each reaction mixture comprised
2 uL of cDNA, 10 uL of THUNDERBIRD® SYBR® qPCR Mix (TOYOBO, Osaka, Japan),
6.8 uL of RNase-free water, 0.6 uL of forward, and 0.6 uL reverse primers. The primers
used for CiFT amplification was designed as (F:GGGAGGCAGACTGTTTATGC and
R:CGGAGGTCCCAGATTGTAAA) [12]. The endogenous control reference genes, FBOX
and SAND were used taken [40] with a final primer concentration that was later diluted
four-fold for the subsequent analysis. A negative control containing all RT-qPCR reaction
elements and water instead of cDNA were used for every 96-well reaction plate. The
parameters for reactions were set as follows: one cycle of pre-denaturation at 95 ◦C for 20 s;
40 cycles of denaturation at 95 ◦C for 20 s, annealing at 60 ◦C for 20 s, and extension at
72 ◦C for 40 s.

2.4. Statistical Analysis

Data of each parameter from each growing condition was statistically analyzed by
using a 2 × 5 factorial in randomized complete block design. The variances were tested for
homogeneity, then data were combined for analysis [41]. Treatment means were separated
by the least significant difference (LSD) test at a 5% probability level (p < 0.05).

3. Results

During the experiment (October to November 2018), the monthly maximum air
temperature, minimum air temperature, average relative humidity, and total rainfall (for
both container- and field-grown plants) were almost similar, i.e., 36.1 ◦C, 16.7 ◦C, 66.2%,
and 3.8 mm, respectively (Figure 2). In terms of homogeneity, the ratios between large
EMSs (error mean square) and small EMSs that were found to be higher than three were the
SC, CF, TNC, and C:N ratios. On the other hand, the ratios of TN, CiFT mRNA level, and
the number of flowers were found to be less than three (data not shown). The genotype-by-
water stress (G × S) interactions were significantly different among the four characteristics
studied (Table 1). The mean values of SC value and CF value in container-grown plants
(131.87 mmol m−2s−1 and 0.61 Fv/Fm, respectively) were lower than those in field-grown
plants (136.89 mmol m−2s−1 and 0.71 Fv/Fm, respectively). Contrastingly, the mean values
of the TNC and C:N ratio value in container-grown plants (151.87 mg/g DW and 7.30%
DW, respectively) were higher than those in field-grown plants (144.56 mg/g DW and
6.10% DW, respectively).
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Table 1. Stomatal conductance, chlorophyll fluorescence, total non-structural carbohydrates, and total non-structural
carbohydrates per total nitrogen (C: N ratio) of two red-flesh pummelo cultivars grown under five different water stress
levels and two settings (container-grown: E1 and field-grown: E2).

Treatments

Stomatal
Conductance

(mmol m−2s−1)

Chlorophyll
Fluorescence

(Fv/Fm)

Total Non-Structural
Carbohydrates

(mg/g DW)

C:N Ratio
(% DW)

E1 E2 E1 E2 E1 E2 E1 E2

Genotype (G)
KKU-105 129.70 135.15 0.57 b 0.67 b 154.60 a 148.28 a 7.08 a 6.69 a

Manee Esan 134.04 139.30 0.65 a 0.74 a 149.15 b 140.84 b 6.80 b 5.53 b
Water stress level (WS)

WS1 352.11 ay 352.95 a 0.85 a 0.86 a 129.20 e 129.30 e 4.66 e 4.67 e
WS2 111.76 b 124.85 b 0.76 b 0.81 b 139.17 d 137.14 d 5.35 d 4.95 d
WS3 86.40 c 89.68 c 0.63 c 0.71 c 153.71 c 142.98 c 6.99 c 5.66 c
WS4 58.97 d 64.49 d 0.47 d 0.60 d 163.52 b 155.76 b 8.81 b 7.49 b
WS5 50.13 e 54.15 d 0.35 e 0.55 e 173.79 a 157.63 a 10.75 a 7.76 a

Interaction (G ×WS)
KKU-105 WS1 354.11 b 358.97 a 0.85 a 0.88 a 129.73 f 129.78 f 4.75 g 4.71 g

WS2 106.04 d 115.00 c 0.73 c 0.80 b 140.67 e 136.16 a 5.45 f 4.94 f
WS3 86.04 e 87.00 e 0.61 e 0.71 c 155.86 cd 143.84 d 7.20 d 5.68 e
WS4 60.97 f 62.80 f 0.36 h 0.52 e 168.55 b 164.32 b 9.61 b 8.89 b
WS5 50.35 g 51.97 g 0.30 i 0.45 f 178.18 a 167.32 a 12.00 a 9.22 a

Manee Esan WS1 359.10 a 346.93 b 0.86 a 0.83 b 128.66 f 128.82 f 4.56 g 4.63 g
WS2 17.47 c 134.70 c 0.79 b 0.82 b 137.67 e 138.12 e 5.25 f 4.97 f
WS3 86.76 e 92.37 d 0.64 d 0.72 c 151.56 d 142.12 d 6.78 e 5.65 e
WS4 56.97 g 62.80 f 0.59 f 0.69 cd 158.49 c 147.19 c 8.01 c 6.10 d
WS5 49.90 g 56.34 g 0.40 g 0.65 d 169.39 b 147.95 c 9.49 b 6.30 c
Mean 131.87 Bx 136.89 A 0.61 B 0.71 A 151.87 A 144.56 B 7.30 A 6.11 B

Genotype (G) ns ns ** ** ** ** ** **
Water stress level (WS) ** ** ** ** ** ** ** **
Interaction (G ×WS) ** ** ** ** ** ** ** **
CV (%) 3.59 7.52 1.74 3.08 1.40 0.77 2.08 1.33

ns, ** not significant and significant at 0.01 probability levels, respectively; the number within the parentheses is relative percentage of sum
squares to total sum of squares. x: Means within a row followed by the same capital letter are not significantly different between growing
condition at p < 0.05 by LSD. y: Means within a column followed by the same capital letter are not significantly different at p < 0.05 by LS.
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For both cultivars and under both settings, it was found that the SC and CF values of
interaction (G×WS) were low at severe water stress levels (WS5). The SC values in both cul-
tivars, i.e., ‘KKU-105’ and ‘Manee Esan’ in container-grown plants (50.35 and 49.90 m−2s−1,
respectively), and those cultivars in field-grown plants (51.97 and 56.34 mmol m−2s−1,
respectively) were low at WS5. On the contrary, the CF values in the container-grown
‘KKU-105’ (0.30 Fv/Fm) were obviously lower than those of ‘Manee Esan’ (0.40 Fv/Fm)
at WS5, as well as in field-grown plants (0.45 and 0.65 Fv/Fm, respectively). In terms
of the responses of both cultivars under each growing condition, the TNC and C:N ratio
values increased during severe water stress levels. Under both settings, the TNC and C:N
ratio values of ‘KKU-105’ were higher than those of ‘Manee Esan’. Furthermore, of the
container-grown plants, ‘KKU-105’ at WS5 gave the highest TNC and C:N ratio value
accumulation (178.18 mg/g DW and 12.00% DW, respectively). Similarly, the field-grown
‘KKU-105’ at WS5 gave the highest accumulated TNC and C:N ratio values (167.32 mg/g
DW and 9.22% DW, respectively). However, the control treatment of both container- and
field-grown cultivars gave the lowest accumulated TNC (129.20 and 129.30 mg/g DW,
respectively) and C:N ratio (4.66 and 4.67% DW, respectively) values compared with the
stress treatments.

Three characteristics, i.e., TN, CiFT mRNA levels, and the number of flowers with
the ratio between large EMS and small EMS that were less than three were combined for a
comparative analysis between two settings (Table 2). It was found that genotype, water
stress levels, environment-by-water stress levels of interaction, and genotype-by-water
stress levels of interaction were all highly significant (p ≤ 0.01). Genotype-by-environment
interaction levels were significantly different for the TN. In addition, the interactions among
environment, genotype, and water stress levels were highly significant for all characteristics
studied. Additionally, the effects of water stress levels accounted for a large portion (major
effect) of the total variations for TN (54.70%), CiFT mRNA level (83.96%), and the number
of flowers (89.88%).

Table 2. Mean squares for total nitrogen, CiFT mRNA level, and flower number of two red-flesh pummelo cultivars grown
under five different water stress levels and two settings.

Source of Variation d.f. Total Nitrogen (%) CiFT Gene Flower Number

Environment (E) 1 84.49 × 10−2 ** (23.60) 7.49 ** (2.62) 3010.40 * (3.38)
Reps. within E 4 0.03 × 10−2 (0.01) 11.90 (0.04) 191.20 (0.21)
Genotype (G) 1 51.15 × 10−2 ** (14.29) 18.70 ** (6.55) 2318.80 ** (2.60)
G × E 4 2.40 × 10−2 * (0.67) 0.01 ns (0.01) 79.70 ns (0.80)
Error (a) 4 0.24 × 10−2 (0.06) 0.05 (0.02) 127.90 (0.14)
Water stress level (WS) 4 195.00 × 10−2 ** (54.70) 239.48 ** (83.96) 80017.50 ** (89.88)
E ×WS 4 8.69 × 10−2 ** (2.42) 9.28 ** (3.25) 1040.90 ** (1.16)
G ×WS 4 12.11 × 10−2 ** (3.38) 9.09 ** (3.18) 2015.50 ** (2.26)
E × G ×WS 4 2.78 × 10−2 ** (0.77) 0.80 ** (0.28) 144.10 * (0.16)
Error (b) 32 0.19 × 10−2 (0.05) 0.16 (0.05) 75.2 (0.08)

CV a (%) 2.12 3.78 12.45
CV b (%) 1.85 6.55 9.55

ns, *, ** not significant and significant at 0.05 and 0.01 probability levels, respectively; the number within the parentheses is relative
percentage of sum squares to total sum of squares.

Under both settings, the TN values of both cultivars decreased while the CiFT mRNA
level and the number of flowers increased at severe water stress levels (WS4-5) (Figure 3).
Under container-grown, TN value of ‘KKU-105’ (1.48%) was lowest at WS5, followed WS4
(1.75%) (Figure 3A). The total nitrogen values of ‘KKU-105′, at severe water stress levels,
were lower than those of ‘Manee Esan’ in both settings. In addition, the control treatment of
‘KKU-105’ and ‘Manee Esan’ gave the lowest accumulated TN value in the container-grown
(2.72 and 2.81%, respectively) and field-grown (2.81 and 2.78%, respectively) compared
with the stress treatments. In particular, the CiFT mRNA levels of ‘KKU-105’ at severe
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water stress levels were higher than those of ‘Manee Esan’ (Figure 3B). However, under
container-grown, ‘KKU-105’ at WS5 gave the highest CiFT mRNA level (13.95) and the
highest number of flowers (225 flowers), followed by WS4 (197 flowers) (Figure 3C). In
addition, the number of flowers in ‘KKU-105’ were higher than those of ‘Manee Esan’
at WS5 and WS4. However, the control treatment of ‘KKU-105’ and ‘Manee Esan’ gave
the lowest accumulated CiFT mRNA levels when container-grown (0.24 and 0.18) and
field-grown (0.19 and 0.10) compared with the stress treatments.
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With regard to linear correlation analysis, significant differences at p ≤ 0.01 were
observed for all characteristics (Table 3). The correlation coefficients among water stress
levels were high and positively correlated with TNC, C:N ratio, CiFT mRNA level, and the
number of flowers (r = 0.816, 0.859, 0.948, and 0.965, respectively). However, the SC, CF, and
TN were also high but negatively correlated with water stress levels (r = −0.842, −0.979,
and −0.847, respectively). The number of flowers was high and positively correlated with
water stress levels, TNC, C:N ratio, and CiFT mRNA level (r = 0.965, 0.719, 0.802, and 0.934,
respectively). Nevertheless, the number of flowers was also high but negatively correlated
with SC, CF, and TN (r = −0.753, −0.949, and −0.775, respectively).
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Table 3. Linear correlations between the content of water stress levels, biochemical, flowering and expression analysis of
flowering related genes.

Characteristics WS SC CF TNC TN C:N ratio CiFT mRNA

SC −0.842 **
CF −0.979 ** 0.845 **
TNC 0.816 ** −0.944 ** −0.826 **
TN −0.847 ** 0.959 ** 0.860 ** −0.910 **
C:N ratio 0.859 ** −0.941 ** −0.873 ** 0.933 ** −0.972 **
CiFT mRNA 0.948 ** −0.854 ** −0.942 ** 0.827 ** −0.869 ** 0.871 **
Flower 0.965 ** −0.753 ** −0.949 ** 0.719 ** −0.775 ** 0.802 ** 0.934 **

** = Significant at 0.01 probability. Stomatal conductance (SC), chlorophyll fluorescence (CF), total non-structural carbohydrates (TNC),
total nitrogen (TN), TNC:TN ratio (C:N ratio), and CiFT mRNA level.

4. Discussion

This study revealed that the number of flowers and CiFT mRNA level for floral
induction in ‘KKU-105’ cultivated container-grown were obviously higher at severe water
stress levels when compared to those cultivated at low water stress levels. This might have
occurred as a result of the three subsequent responses. These are the decrease of TN, SC,
and CF; the increase of TNC and C:N ratio; and the increase of CiFT mRNA level. These
phenomena resulted in the highest number of flowers in this cultivar under the particular
stress growing condition. Nevertheless, the number of flower and CiFT mRNA level in
‘Manee Esan’ were low at any water stress level when cultivated under both settings, which
imply that response to water stress is genotype-dependent in red-flesh pummelo [41].

For the first responses, TN, SC, and CF decreased under severe water stress lev-
els. These phenomena might be explained by the physiological metabolism in the plant.
During water uptake, essential elements are generally transported in water flux through
the whole plant caused by transpiration [42]. Nitrogen is recognized as one of the most
important nutrients for plant growth and development [43,44]. However, the uptake of
con-current nitrogen and water under stress conditions is somehow decreased [45,46]. Un-
der such condition, low nitrogen retards the vegetative growth and promotes reproductive
growth [47]. In addition, the phenomenon of stomata closure or low SC normally occurs in
order to reduce transpiration and can be used as an indicator of plant water status [48,49].
Meanwhile, stomatal closure decreases photosynthesis under water stress [28,29,50]. Fur-
thermore, CF has been generally used as an indicator of photochemical efficiency [51].
Thus, the low CF influences photoinhibition, which implies damage of photosystem II
(PSII) [52,53]. Therefore, the drastic decrease of TN, SC, and CF in ‘KKU-105’ under severe
stress condition compared to the other treatments was a result of the low nitrogen uptake
and photosynthesis reduction during stomatal closure [22,54].

Regarding the second responses, the increase of TNC and C:N ratio started from the
influences of TNC biosynthesis on the upregulation of the C:N ratio, which affected the
greater relative expression of CiFT mRNA level under severe stress conditions. It has
been found in previous studies that growing plants under severe stress conditions, such
as growing them in containers with limited water application, aggressively suppresses
their root and shoot growth [55,56]. In addition, the severe stress conditions have been
found to reduce photosynthetic activity and transportation of its products [57] and has
also been found to cause high accumulated transient storage of sucrose or TNC in the
vacuole [58]. The high TNC is generally recognized as a critical criterion for initiating or
promoting flowering [59,60]. The greater decrease of TN and increases of TNC in ‘KKU-
105’ under severe stress compared to mild stress conditions may indicate lower nitrogen
uptake up-on severe stress, which further leads to an accumulation of carbohydrates in the
leaves of olive [61]. After that, the speeding up of carbohydrates accumulation decreases
photosynthetic proteins (including rubisco) leading to a further decrease in leaf nitrogen
and photosynthesis [62]. Furthermore, these mechanisms increased the C:N ratio in the
leaves [63].
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For the third response, high values of CiFT mRNA level generally induced the high
number of flowers in citrus [14]. From our results, it was interesting to note that the high
numbers of flower and CiFT mRNA level were clearly observed only in ‘KKU-105’ at severe
water stress in container-grown. It has been recently reported that the CiFT gene plays
an important role in the floral induction of citrus [14,64]. The CiFT gene expression and
transcription are precisely regulated and exist in the mature leaves [65–67]. In addition,
it has been found that this pathway is enhanced through the degradation of TNC in-
to sucrose molecules in leaves after re-watering [68–71]. In particular, the high sucrose
normally has an important function for increasing FT expression [72,73]. The FT gene is
normally expressed into two forms, i.e., FT mRNA and FT protein [74]. Then, FT mRNA
and FT proteins transport independently or combine to form what is called an FT RNA-
protein complex before transported to the apical meristem [11,75,76]. The formation of
floral induction will finally be induced by the increase in FT mRNA [8,77].

Nevertheless, the number of flower and CiFT mRNA level in ‘Manee Esan’ were low
at both settings and any stress level. This was perhaps a result from the fact that such stress
treatments were below a critical threshold for this cultivar. On the other hand, the mild
stress levels including the treatments in field-grown did not reach the critical thresh-old of
both pummelo cultivars.

5. Conclusions

The dramatic decrease of TN (1.48%), SC (50.53 m−2s−1), and CF (0.30 Fv/Fm),
together with the increase of TNC (167.32 mg/g DW) and C:N ratio (9.22% DW) were
observed in ‘KKU-105’ under severe stress condition. The increase of TNC and C:N ratio
may upregulate the CiFT mRNA level (13.95). The association between the expression
of CiFT mRNA level and the levels of water stress was observed in ‘KKU-105′. These
indicate that decreases in total nitrogen, stomatal conductance, chlorophyll fluorescence,
and upregulation of CiFT expression may induce flowering induction in pummelo ‘KKU-
105’. That the highest number of flowers were obtained from ‘KKU-105’ (225 flowers)
at severe water stress level in container-grown conditions implies that the production of
red-flesh pummelo cultivars can be managed for quantity over the required period.
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