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Abstract: Hydroponics provides a stable root environment that can be easily controlled. In this paper,
we investigated the effect of partial excision of early taproots of hydroponic carrots on their growth
and components. Carrot taproots were excised after 30 days from sowing at 5 cm, 10 cm, and 15 cm
from the stem base (C5, C10, and C15) and compared with nonexcised control plants. Time-course
measurements revealed the taproot lengths of C10 and C15 plants gradually decreased. After 28 days
of treatment, C5 taproot tips showed the most rounded shape among root-excised plants. Control
plants possessed long taproots that were not enlarged at the site more than 15 cm from the stem
base. Taproot fresh weight was lower in C5 plants and higher in C15 plants compared with controls.
Although taproot sugar concentrations did not differ between treatments, total phenol concentration
was higher in C5 taproots. These data suggest that partial removal of early taproots can regulate the
shape and ingredients of hydroponic carrots.
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1. Introduction

Hydroponics is an efficient method of growing plants without the use of soils. In Japan, hydroponic
cultivation of leafy and fruit vegetables has been introduced to commercial crop cultivation in the form
of plant factories [1]. However, commercial cultivation of root vegetables using hydroponics has yet to
be established.

In recent years, research on hydroponics for root vegetables, including potatoes and sweet potatoes,
has been conducted using various systems. Using sandy medium-based hydroponics, sweet potato
storage roots have shown to thicken at sites higher than the groundwater level [2,3]. A newly designed
rockwool slab-based hydroponic system has also been demonstrated to produce thickened storage roots
of sweet potatoes [4]. In this system, storage roots developed between the surface of the hydroponic
solution and nutrient-absorbed rockwool slabs, but not in the hydroponic solution. When sweet
potatoes were cultivated in a two-layer system consisting of an upper vermiculite-containing pot and a
lower nutrient solution, the roots thickened in the pots, but not in the nutrient solution [5]. In potatoes,
aeroponics can continuously produce small tuberous roots only in the upper root zone where they are
in direct contact with air [6]. These findings suggest that the water status around roots is an important
determinant of root thickening in root vegetables.

Carrots are root vegetables that are available and consumed around the world. Edible roots,
known as taproots, contain a variety of secondary metabolites such as carotenoids and phenolic
compounds, which are believed to promote human health [7]. Several studies have demonstrated
that carrot taproots can be grown using hydroponics [8-15]. Using a perlite substrate as a hydroponic
growing medium, researchers have found that the size of taproots can be determined in part by the
size of perlite particles [12]. In a rockwool-based hydroponic system, taproot growth was influenced
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by the space of the sink enlargement [10]. Carrots have also been grown experimentally using nutrient
film technique (NFT) and deep flow technique (DFT) hydroponic systems, which do not need substrate
media [9,11,13-15]. In two distinct DFT experiments, oxygen supplementation to water-immersed
roots by aeration has been shown to be required for carrot taproot enlargement [9,15]. Using a DFT
system, it has also been demonstrated that increasing the root zone temperature can alter the growth
and components of carrot taproots [13].

For consumers, the shape of carrot taproots is an important factor in both the appearance and
processing efficiency of taproots and can directly affect market prices. In hydroponically grown carrots,
the shape of the taproots tends to be irregular. In rockwool-based hydroponics, taproot development
depends on the surrounding airspace [10]. In this study, taproot shape was not uniform, even with
identical treatment. Using NFT hydroponics, carrots formed irregular taproots containing many branch
roots [11]. Similar taproot branching has been observed in DFT hydroponics [15]. In another DFT
study, hydroponic carrot taproots formed without branching and elongated more than those grown
in soil [9]. Hydroponic cultivation methods that produce taproots that resemble those of soil-grown
carrots are required. To improve the quality of hydroponic carrots, we examined the effects of partial
carrot taproot excision at the early cultivation stage on growth and components.

2. Materials and Methods

2.1. Plant Growth and Experimental Conditions

An experimental timeline is shown in Figure 1. Carrot seeds (Daucus carota L. cv Tokinashigosun,
Takii, Co. Ltd., Kyoto, Japan) were sown in 2 X 2 X 2 cm sponge cubes and grown at 20 °C under
200 umol m~2 57! of photosynthetic photon flux (PPF) for 16 h under fluorescent lamps (FLs; FL40SBR-A;
NEC Co., Tokyo, Japan). At 10 days after sowing, seedlings with a single taproot extending from
the bottom of the cubes were transferred to a DFT hydroponic system with continuous aeration.
The nutrient solution was based on a half-strength culture solution of A-type Otsuka House Solution
(Otsuka Agri Techno Co. Ltd., Tokyo, Japan). The nutrient solution was changed every two weeks.
To avoid entangling of seedling roots, roots were untangled every three or four days.
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Figure 1. Experimental timeline in this study.

Early taproot excision treatments were conducted 30 days after sowing. Only plants with active
root tips were selected for root excision. Taproot tips were excised 5 cm, 10 cm, and 15 cm from the base
of the stem. Fibrous roots that branched off from the remaining taproots were left even if they extended
longer than the cut size. The taproots of control plants were not excised. After root excision, the plants
were immediately transferred to a new DFT system with a 25 cm deep box. Plants were cultivated at
20 °C under 250 umol m~2 s~! PPF for 16 h under FLs. Growth parameters of leaf number, shoot length,
and taproot diameter were measured at0, 1,2, 3,5, 6,7, 8, 10, 12, 14, 16, 19, 21, 23, and 28 days after
taproot excision. At 28 days after taproot excision, the plants were harvested, and growth parameters
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and components were then analyzed. Photographs of the taproots were taken after the removal of
fibrous roots.

2.2. Measurement of Total Phenol Concentration

Total phenol concentration was measured using the Folin—Ciocalteu method with modification [16].
The middle part of each taproot was sliced and homogenized with a mortar and pestle. A 50 mg
homogenized sample was transferred to a microtube (1.5 mL), to which 500 pL of 90% methanol was
added. The sample was stirred vigorously and was centrifuged at 10,000x g for 5 min. The supernatant
(50 uL) was diluted to 650 uL with distilled water and mixed with 50 uL of phenol reagent. After adding
300 pL of 5% sodium carbonate, the mixture was incubated at 25 °C for 30 min. Absorbance of
the supernatant was measured at 765 nm, and a standard curve was prepared using gallic acid.
Absorbance was converted to total phenolic concentration in milligrams of gallic acid per gram of fresh
sample weight.

2.3. Measurement of Soluble Sugar Concentration

Sliced taproot segments were homogenized with a mortar and pestle, and the homogenates
were filtered with filter paper (No. 1, Whatman plc, Maidstone, UK) to remove tissue debris.
The concentration of soluble solids was measured using an Atago PAL-1 Handheld Digital Brix
Refractometer (Atago, Japan).

2.4. Data Analysis

Data obtained for each parameter were analyzed with the statistical package J]MP (SAS Institute,
Cary, NC, USA). Differences among treatments were determined by one-way analysis of variance.
Mean comparisons were made using the Tukey—Kramer honest significant difference multiple range
test at p < 0.05.

3. Results and Discussion

Thirty days after sowing, hydroponic carrots had a single taproot approximately 60 cm long
with a maximum diameter of 3 mm. In our experiment, taproot enlargement started at this point.
To examine the effects of taproot excision, the tips of the taproots were removed at this time 5 cm
(C5), 10 cm (C10), and 15 cm (C15) from stem base. The growth of the shoot and taproot of these
plants was compared with that of nonexcised control plants. A time course observation of leaf number
and shoot length revealed no significant differences between plants throughout the experimental
periods (Figure 2). By contrast, a time course measurement of maximum taproot diameter showed a
suppression of taproot enlargement in C5 plants compared with C10, C15, and control plants from
20 days after excision (Figure 3A). Taproot length at 0 day after excision was the cut length after
root tip removal, except for nonexcised control plants (Figure 3B). In control plants, taproot length
gradually increased from 5 days after excision treatments, reaching approximately 80 cm at 28 days
after treatments (Figure 3B). The suppression of taproot elongation observed in the days after treatment
in control plants was probably due to transplantation stress. In C15 and C10 plants, taproot lengths
gradually contracted after 28 days of treatment to approximate lengths of 12 cm and 9 cm, respectively
(Figure 3B). In C5 plants, no clear change in taproot length was observed. Root contraction phenomena
have been observed in several plants as a developmental process [17-24]. The lower parts of radish
taproots have been shown to contract during taproot thickening [19]. In our study, taproot contractions
were induced when taproots were cut to a 10 or 15 cm length from the base of stem, but not when
taproots were cut to a 5 cm length. This suggests that carrots are equipped with a taproot contraction
mechanism at a site more than 5 cm from the stem base. In Trifolium pratense, contraction of roots has
been shown to cause the pull of aboveground parts into the soil [24]. As roots do not experience soil
resistance in hydroponics, hydroponic carrots may be able to contract their taproots more easily than
soil grown carrots.
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Figure 2. Time course changes in leaf number (A) and shoot length (B) of carrots after partial taproot

excision. Vertical bars represent + SE (n = 4).
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Figure 3. Time course changes in taproot diameter (A) and taproot length (B) of carrots after partial
taproot excision. Vertical bars represent + SE (n = 4).

Plants were harvested 28 days after excision, and growth and components were then investigated.
Enlargement of taproots was observed in all experimental plots (Figure 4). Control plants had
longer taproots than other plants with excision treatments. The enlarged parts of control taproots
resembled those of C15 taproots, whereas control taproots over 15 cm from the root base exhibited
little enlargement (Figure 4). Control plant roots resembled taproots in another hydroponic carrot
study [9]. Carrot taproots are known to experience increases in cell numbers and weight during taproot
enlargement [25], suggesting that these cell growth activities may exist only within 15 cm of the stem
base in hydroponic carrots. In plants with excised taproots, the tips of the taproot were more rounded
when taproots were cut to a shorter length (Figure 4). Early taproot excision treatments may therefore
be a useful method of improving the root tip shape in hydroponic carrots.

C5 C10

C15 Control

Figure 4. Taproot of carrots 28 days after partial taproot excision. Bar = 2.0 cm.



Horticulturae 2020, 6, 5 50f8

Taproot fresh weight was highest in C15 plants followed by C10 and C5 plants among
taproot-excised plants (Figure 5A). Control plants showed weights similar to those of C10 plants
(Figure 5A). This indicates that early excision of taproots to shorter lengths may reduce the ability to
accumulate photosynthetic products to taproots. The fresh weight of the shoot and fibrous root showed
the same tendency as taproot fresh weight (Figure 5B,C). There was no difference in the ratio of shoot
and fibrous root, but the ratios of shoot/tuberous roots and fibrous/tuberous roots tended to increase in
C5 plants (Figure 6). These findings also suggest a decrease in the accumulation of photosynthetic
products to C5 taproots. Sink size and activity have been proposed to be important determinants
of partitioning of photosynthetic products to the whole plant [26]. In cucumbers, when sink size
was limited by reducing fruit numbers, sink portioning of photosynthetic product was also reduced,
especially when the number of fruits was severely restricted [27]. In C5 plants, not only taproots but
also fibrous roots were more removed compared with other root-excised plants, and a temporary
reduction of root function was induced which limited the growth in the whole plant.
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Figure 5. Effect of partial taproot excision on fresh weights of taproot (A), shoot (B), and fibrous root (C)
of carrots 28 days after partial taproot excision. Vertical bars represent the means + SE (n = 4). Different
letters indicate significant differences as determined by Tukey’s multiple comparison test (p < 0.05).
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Figure 6. Effect of partial taproot excision on the ratios of plant organs of carrots 28 days after partial
taproot excision. (A) (Shoot fresh weight)/(fibrous root fresh weight). (B) (Shoot fresh weight)/(taproot
fresh weight). (C) (Fibrous root fresh weight)/(taproot fresh weight).

Sugar concentrations in the taproots measured by Brix did not differ between treatments (Figure 7A).
However, the total phenol concentration in taproots was highest in C5 plants, followed by C10, C15,
and control plants (Figure 7B). Phenolic compounds are produced in response to various environmental
stresses, such as light, temperature, drought, and wounding [28,29]. Given that C5 taproots contained
more wounded parts compared with C10 and C15 plants, continuous wound stress at a root cut site
may trigger higher production of phenolic compounds in C5 plants.
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Figure 7. Effect of partial taproot excision on the concentration of sugar (A) and total phenols (B) of
carrot taproots 28 days after partial taproot excision. Vertical bars represent the means + SE (n = 4).
Different letters indicate significant differences as determined by Tukey’s multiple comparison test
(p <0.05).

In root vegetables, sink development is regulated by a variety of plant hormones such as auxin,
cytokinin, and gibberellic acid [30-33]. In carrots, gibberellic acids function as negative regulators
of taproot enlargement [34,35]. Wang et al. [35] have shown that treatment of gibberellic acid to the
soil triggers a reduction in taproot development, accompanied by the accumulation of lignin in the
secondary xylem of taproots. In radishes, gene expression that is involved in lignin synthesis was
reportedly reduced during taproot thickening [36]. Lignification of storage roots has also been reported
in the restriction of root thickening in sweet potatoes [5,37]. These findings suggest that root treatment
of hormones controlling the lignification could be a valuable strategy to increase sink biomass in
root vegetables.

4. Conclusions

Hydroponics in environmentally controlled systems such as plant factories are thought to be
required for high-value crops to address high cultivation costs [38]. Enhancement of constituent
compounds that foster human health will likely increase the value of crops. Regulation of
light, temperature, and hormone treatments has been shown to increase phenol content in carrot
taproots [13,39,40]. Therefore, by combining these environmental regulatory efforts, our early root
excision method can be a useful tool for efficiently growing high-value carrots.
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