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Abstract: The current N and P fertilization practices for vegetable crops grown in organic soils are
inaccurate and and may potentially damage the environment. New fertilization models are needed.
Machine learning (ML) methods can combine numerous features to predict crop response to N and P
fertilization. Our objective was to evaluate machine learning predictions for marketable yields, N and
P offtakes, and the N/P ratio of vegetable crops. We assembled 157 multi-environmental fertilizer
trials on lettuce (Lactuca sativa), celery (Apium graveolens), onion (Allium cepa), and potato (Solanum
tuberosum) and documented 22 easy-to-collect soil, managerial, and meteorological features. The
random forest models returned moderate to substantial strength (R2 = 0.73–0.80). Soil and managerial
features were the most important. There was no response to added P and null to moderate response
to added N in independent universality tests. The N and P offtakes were most impacted by P-related
features, indicating N–P interactions. The N/P mass ratios of harvested products were generally
lower than 10, suggesting P excess that would trigger plant N acquisition and possibly alter soil
N and C cycles through microbial processes. Crop response prediction by ML models and ex post
N/P ratio diagnosis and N and P offtakes proved to be useful tools to guide N and P management
decisions in organic soils.

Keywords: muck vegetables; yield-limiting factors; random forest; universality tests; N and P excess;
Redfield ratio; N and P stoichiometry

1. Introduction

Current nitrogen (N) and phosphorus (P) fertilizer recommendation models rely
primarily on soil and tissue test calibration based on a limited number of multi-environment
fertilizer trials (MEFTs) and on field surveys [1–3]. Questionable nutrient budget models
based on nutrient offtakes and efficiency were thought to support recommendations led to
insurance applications, overfertilization, and economic loss [4]. Extra N dosage is often
applied by growers against uncertainty [5], resulting in economic loss, environmental
damage [6,7], altered crop quality [8], and greater crop susceptibility to pest attacks [9].
On the other hand, the insurance P fertilization of vegetable crops contributed to P loss
and the eutrophication of surface waters [10]. Traditional methods to make fertilizer
recommendations be revisited in relation to system’s sustainability.

The MEFTs are conducted under the ceteris paribus assumption [11]. Such assumption
fails at the step of assembling results from several MEFTs because climatic, managerial, and
soil factors vary widely and simultaneously among the experimental sites [12]. Using large
and diversified datasets, machine learning (ML) models can combine relevant site-specific
features to predict yield response to added nutrients [13]. Although complex models such
as ML models may show high accuracy, universality tests are still required to verify the
model’s generalization capacity to real cases in growers’ fields unseen by the model [14,15].

On the other hand, the N and P cycles are stoichemically related by N/P ratios specific
to life systems to reach stable protein/RNA ratios [16–19]. At vegetation level in short-term
fertilization trials, N/P mass ratios less than 10 correspond to N-limited production, and
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N/P mass ratios exceeding 20 indicate P-limited biomass production [17]. However, plants
and the soil microbial biomass must compete for soil available N and P forms. The well-
constrained atomic C:N:P ratio in the microbial biomass (60:7:1) may become a useful tool
to assess nutrient limitation to plants in terrestrial ecosystems [18,20]. In high-P soils, N
could become limiting to both microbes and plants despite the high N mineralization rates
often reported in organic soils [21].

The N/P ratio is generally interpreted phenomenologically as N or P limitation. In
natural peat soils, sub-optimal N supply is controlled by P availability [22]. However,
too low a N/P ratio depends on whether the value at numerator (N) is too low or the
value at denominator (P) is too high. The nutrient limitation hypothesis does not hold in
intensive vegetable production where extra N and P fertilization rates are applied due to
high crop value and thus N and P are not limiting crop yield. Hence, the N/P ratio should
be interpreted conversely as relative excess rather than relative limitation.

Because the N/P stoichiometry must be maintained in plants [17] and the soil microbial
biomass that scavenges for soil C, N, and P, and strives for N/P homeostasis [18,20], new
questions are raised:

1. Is there higher N fertilizer requirement where plant P nutrition is managed at excessive
levels? This could occur in high-P soils;

2. Is there higher P fertilizer requirement where plant N nutrition is managed at excessive
levels? This could occur in high-N mineralizing soils.

Growers can improve N and P fertilization decisions using ex ante ML-assisted site-
specific crop response to added N and P, ex post N and P offtakes, and a wise interpretation
of the N/P mass ratio of the final product. We hypothesized that ML models are accurate
to predict marketable yields, N and P offtakes, and the N/P ratio in the harvested product.
Our objective was to apply data science to fertilization trials to avoid growers’ inclination
toward extra N and P rates that endanger the sustainability of on- and off-farm agroecosys-
tems. The database of N and P fertilizer trials on vegetables grown in organic soils com-
prised several managerial, soil, and meteorological features, marketable yields, and N and
P offtakes.

2. Materials and Methods
2.1. Data Source

The database included 79 nitrogen (N) and 75 phosphorus (P) fertilizer trials, as well
as three potassium (K) fertilizer trials, conducted by several research teams on vegetable
crops grown in organic soils south of Montreal, Quebec, Canada (45.015 to 45.277 latitude
north, and −73.707 to −73.374 longitude west) during the 1995 to 2008 period (Table 1).
Such soils, also called Histosols or peat soils, contain ≥30% organic matter [23]. Where
nutrient rates and timings were varied at an experimental site, other nutrients were applied
following state recommendations. Fertilizer treatments were arranged as a randomized
complete block design with three to four replications per site.

Target variables were marketable yields, N and P offtakes, and the N/P mass ratio
between N and P offtakes. Marketable yields were measured in two central rows. Five
plants were harvested randomly in each plot, oven-dried at 65 ◦C for 24 h to 36 h, ground
to pass through a 1-mm sieve, composited, and analyzed for total P by plasma emission
spectroscopy (ICP-OES) after tissue digestion [24]. Total N was quantified by Dumas
combustion (Leco-2000 instrument, St Louis, MO, USA). Crop N and P offtakes were
assessed as nutrient concentration in the dry matter (65 ◦C) times the dry biomass of the
harvested product.

Key relevant yield-impacting features are listed in Table 2. Soil analyses were con-
ducted for samples collected in the 0–20 cm layer at springtime before crop establishment.
Soil acidity was reported as pH in water. Soil organic matter was quantified by Dumas
combustion (LECO 2000 equipment, St Louis, MO, USA) as C and N concentrations. In
older studies where soil organic matter was quantified by ashing or using the Walkey–Black
procedure and for N by micro-Kjeldahl, conversion to total C and N was obtained after
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proper calibration. The C and N concentrations reflect the potential rate of N mineralization
in organic soils [21]. Phosphorus and metals were extracted using the Mehlich3 method [25]
then quantified by plasma emission spectroscopy. Soil P saturation was computed as the
[P/(Al + 5Fe)]Mehlich3 molar ratio [10].

Table 1. Fertilizer trials conducted on vegetables grown in organic soils of southwestern Quebec, Canada.

Common Name Latin Name
Trials

N P K

Number of Sites

Head lettuce

Lactuca sativa

10 12 0

Leaf lettuce 7 3 0

Romaine lettuce 8 7 0

Celery Apium graveolens 23 21 3

Onion Allium cepa 18 17 0

Potato Solanum tuberosum 13 15 0

79 75 3

Table 2. Lists of features to be related to target variables.

Feature Unit Range

1. pHwater pH unit 4.31–7.65
2. Total C % on weight basis 9.7–54.3
3. Total N % on weight basis 0.61–4.04
4. P soil test mg P kg−1 10–1337
5. K soil test mg K kg−1 64–2189
6. Ca soil test mg Ca kg−1 4087–22,183
7. Mg soil test mg Mg kg−1 378–3810
8. Cu soil test mg Cu kg−1 0.9–65.1
9. Zn soil test mg Zn kg−1 5.6–51.1
10. Mn soil test mg Mn kg−1 7–164
11. Fe soil test mg Fe kg−1 202–1739
12. Al soil test mg Al kg−1 0–1632
13. N dosage kg N ha−1 0–300
14. Number of split N applications - 0 to 3
15. P dosage kg P2O5 ha−1 0–240
16. K dosage kg K2O ha−1 0–375
17. Seeding/planting date Julian day 121–210
18. Harvest date Julian day 174–287
19. Seasonal precipitations (seeding/plantation to harvest) Cumulated rainfall (mm) 45–469
20. Irrigation Yes/No Yes/No
21. Shannon diversity index for rainfall (seeding/plantation to harvest) - 0.44–0.78
22. Seasonal heat units (seeding/plantation to harvest) Degree-days ≥ 5 ◦C 434–1883

Seeding and plantation dates were obtained from growers. Previous vegetable crops
in the rotations were assumed to contribute negligibly to N supply in the following year.
Lettuce and celery crops were irrigated following local models. Irrigation water was
supplied to 72.5% of the onion plots. Potato crops were not irrigated. Meteorological data
were retrieved from the closest meteorological stations using the geographic coordinates
and the year of experimentation. The Shannon diversity index (SDI) that reflects rainfall
distribution during the growing season was computed as follows [26]:
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SDI =
[
−∑n

i=1
piln(pi)

ln(n)

]
where pi is the fraction of daily rainfall relative to seasonal precipitation (n days); there is
complete evenness of daily rainfall where SDI = 1; where SDI = 0, all rain falls within a
single day (complete unevenness).

2.2. Machine Learning Model

Random forest (RF) generates decision trees from the random extraction of features.
This bagging method averages predictions from sampling with replacement. The RF
was run using the Orange Data Mining freeware v. 3.34.0 programmed in the Python
language (University of Ljubljana, Ljubljana, Slovenia). Decision-tree models such as RF
separate subsets recursively about cutoff values in the training dataset to minimize the
variance of the target variable until a prescribed minimum number of instances is reached.
The number of trees was tuned at 50. No split subsets were smaller than five instances.
The model was run using random sampling stratified by category (crop type and site
number as categorical variables) rather than across observations. Indeed, model overfitting
occurs where observations from the same trial (site) are assigned to both the training and
testing subsets.

A subset made of one trial per crop picked at random was set apart to assess model’s
ability to generalize to unseen cases. The remaining database was partitioned between the
training subset (75%) to build the model, and the testing subset (25%) to measure model
accuracy or strength. Because the size of the N and P offtake and N/P databases were
only 2/3 that of the marketable yield database, universality tests to test model’s capacity to
generalize were run for marketable yields only. General statistics are presented for N and P
offtakes and the N/P mass ratio.

The relative importance of features was ordered using the RReliefF algorithm based on
the nearest neighbor paradigm after considering feature interactions [27]. Model accuracy
was reported as R2 coefficient, RMSE (root mean square error), and MAE (mean absolute
error), as follows:

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ŷi)

2

RMSE =

√
1
n∑n

i=1(yi − ŷi)
2

MAE =
1
n∑n

i=1

∣∣yi − ŷi
∣∣2

where yi is the observed target variable, ŷi is the predicted target variable, ŷi is the mean
of observed target variables, and n is the number of observations. The coefficient of
determination (R2) for the relationship between predicted and observed yields was inter-
preted as model strength as follows [28]: R2 < 0.25, very weak; 0.25 ≤ R2 < 0.50, weak;
0.50 ≤ R2 < 0.75, moderate; R2 ≥ 0.75: substantial.

3. Results
3.1. Model Accuracy

The RF model relating marketable yields to 22 managerial, soil, and meteorological
features returned substantial strength with R2 = 0.805 (Table 3). Nonetheless, yield pre-
dictions varied widely about the mean as shown by RMSE and MAE (Figure 1). Indeed,
not all yield-impacting features were documented by research teams due to the different
objectives and financial constraints. The RF models for the N/P ratio and N offtake were
less accurate than that for P offtake. The offtake and N/P models will need to be reinforced
with additional field trials and the contribution of growers to universality tests.



Horticulturae 2024, 10, 356 5 of 14

Table 3. Model R2 coefficient, RMSE (root mean square error), and MAE (mean absolute error)
relating crop N and P offtakes and N/P ratios to features.

Target Features RMSE MAE R2

Mg ha−1

Yield
Crop, pH, soil C, soil N, soil test P, K, Ca, Mg, Cu, Zn, Mn, Fe, Al, N-P-K
fertilization, number of split N applications, seeding/plantation date, harvest
date, precipitations, heat units, SDI

8.2 5.6 0.805

kg ha−1

N offtake Crop, pH, soil C, soil N, soil test P, N-P-K fertilization, number of split N
applications, seeding/plantation date, harvest date, precipitations, heat units, SDI 26.9 18.7 0.732

P offtake Crop, pH, soil C, soil N, soil test P, N-P-K fertilization, number of split N
applications, seeding/plantation date, harvest date, precipitations, heat units, SDI 5.4 3.8 0.800

Crop N/P mass
ratio at harvest

Crop, pH, soil C, soil N, soil test P, N-P-K fertilization, number of split N
applications, seeding/plantation date, harvest date, precipitations, heat units, SDI 0.81 0.54 0.743
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Figure 1. Relationship between predicted and measured marketable yields of vegetables grown in
organic soils using 22 features. RMSE = root mean square of error; MAE = mean absolute error;
R2 = coefficient of determination.

The RReliefF algorithm ranked features in order of importance for marketable yields
(Figure 2). Nutrient management features such as number of N splits, N and P dosage,
crop type, and seeding/plantation and harvest dates, as well as soil tests appeared to be
important. Meteorological features were of lesser importance. Because all features, but
irrigation that was confounded with crop type, contributed to some degree to crop yield
and were easy to collect, they were included in the ML model to make yield predictions.
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Figure 2. RReliefF scores of feature importance for yields of vegetables in organic soils.

Marketable yield, N offtake, and P offtake varied widely among crops (Table 4). While
the N/P mass ratios varied between 1.2 and 11.6 and overlapped across crops, 99.5% of
the observations showed N/P mass ratios < 10, indicating relative N limitation or P excess.
Median ratios varied little from 3.3 to 4.8 among crops. The RReliefF scores indicated that
crop type, P-related features, and soil N were important features in relation to N and P
offtakes and the N/P mass ratio (Figure 3), confirming the central role of P features in the
N and P cycles in those vegetable agroecosystems.

Table 4. Statistics on fresh yield, N and P offtakes, and the N/P ratio of the harvested portion of the crop.

Crop Statistics
Marketable Yield N Offtake P Offtake N/P Ratio

Mg ha−1 kg ha−1

Celery
Minimum 2.7 4.3 1.5 1.2

Median 44.7 70.9 19.9 3.3
Maximum 87.4 146.5 40.0 9.6

Lettuce
Minimum 0.9 8.0 1.8 2.4

Median 26.3 57.2 11.4 4.8
Maximum 77.0 258.5 53.1 9.9

Onion
Minimum 6.4 16.2 3.0 2.1

Median 50.2 74.2 21.8 4.7
Maximum 66.3 175.6 42.3 10.3

Potato
Minimum 14.4 37.8 8.9 1.6

Median 35.6 96.5 20.0 4.5
Maximum 58.0 282.2 69.6 11.6
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Figure 3. The RReliefF scores order the relative importance of features impacting crop N and P
removal and the N/P ratio in the harvested portion of the plant.
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3.2. Universality Tests to Predict Marketable Yields

Universality tests were run on one field per crop by combining the 22 features to
predict yield response to N and P additions (Table 5). Features were within the ranges
reported in Table 2. Soil pH, the C/N ratio, soil P saturation index, and Mehlich3-extractable
elements varied widely among growers’ sites. Crop response trajectories were obtained by
varying the N and P rates at each site.

Table 5. Features used to run eight universality tests in growers’ fields. The C/N ratio and P
saturation index were added to facilitate interpretation.

Feature (Unit)

Site Number

N Tests P Tests

1 2 3 4 5 6 7 8

1. Crop Head lettuce Celery Onion Potato Head lettuce Celery Onion Potato
2. pHwater 6.11 6.09 5.32 5.13 5.74 6.29 6.34 5.50
3. Total C (%) 49.2 38.3 44.3 42.3 48.4 40.3 33.9 44.2
4. Total N (%) 1.90 1.99 1.50 2.09 2.01 2.04 1.71 1.97
5. Mehlich3 P soil test (mg kg−1) 159 261 148 498 101 223 608 199
6. Mehlich3 K soil test (mg kg−1) 463 260 438 706 586 241 376 402
7. Mehlich3 Ca soil test (mg kg−1) 11,200 14,780 9195 13,770 12,333 13,303 8336 15,538
8. Mehlich3 Mg soil test (mg kg−1) 858 1792 3302 1239 1934 1756 1202 1818
9. Mehlich3 Cu soil test (mg kg−1) 31 10 6 15 28 10 14 12
10. Mehlich3 Zn soil test (mg kg−1) 32 24 24 15 21 24 14 10
11. Mehlich3 Mn soil test (mg kg−1) 39 26 31 88 58 23 43 28
12. Mehlich3 Fe 425 781 357 899 625 688 670 846
13. Mehlich3 Al soil test (mg kg−1) 3 63 343 256 8 68 434 147
14. N dosage (kg ha−1) 0–120 0–210 0–150 0–150 90 140 120 100
15. Number of split N applications 1–2 1–3 1 1 1 1 2 1
16. P dosage (kg ha−1) 60 100 80 90 0–120 0–160 0–120 0–200
17. K dosage (kg ha−1) 120 200 150 100 120 200 150 180
18. Seeding/planting date (Julian day) 143 153 129 172 160 153 134 151
19. Harvest date (Julian day) 201 243 247 276 213 243 231 262
20. Seasonal precipitations from

seeding/plantation to harvest (mm) 2.18 290 377 3.29 220 290 373 3.59

21. Shannon diversity index for rainfall from
seeding/plantation to harvest 0.70 0.68 0.73 0.74 0.68 0.68 0.75 0.73

22. Seasonal heat units (seeding/plantation to
harvest) (degree-day) 903 1469 1630 1463 874 1469 1543 1594

C/N ratio 26.0 19.2 29.3 20.2 24.0 19.7 19.9 22.5
Mehlich3 P saturation index: molar ratio as

100 × [P/(Al + 5Fe)]Mehlich3 (%) 13.8 11.7 10.8 17.6 5.9 11.3 25.9 8.0

In general, yield response to added N was null in prediction (Figure 4), indicating
the great N supply capacity of the tested organic soils as shown by C/N ratios less than
30. However, observed yields appeared to level off at 50 kg N ha−1 for potato and at
30 kg N ha−1 for lettuce. Measured onion yields were higher than predicted ones and
seemed to level off at 100 kg N ha−1, indicating more favorable growing conditions at the
tested site compared to sites showing similar features in the database. However, there was
short-distance variability as shown by differences in onion yields between replications.
Note that the number of the N trials was not so large. More trials are required.

Observed and predicted crop responses to added P were negligible (Figure 5) due to
high soil test P levels and soil P saturation ratios across sites. Potato, a high-P demanding
crop, showed no response to added P even though the soil showed the lowest soil test P and
P saturation index (Table 3). For other crops, where soil test P and the P saturation index were
higher, the P fertilization was also ineffective. Hence, there was great potential to reduce the
environmental footprint of P fertilization of those vegetable crops. Again, large yield variation
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at plot scale, especially in onion trials, indicated that factors not documented in the database,
such as those causing short-distance soil variability, could have impacted crop yield. Because
the database was relatively small, more trials and universality tests are needed.

 

 

 

Figure 4.  

 

Figure 4. Patterns of crop responses to added N in organic soils. Predicted yields show no response.
Observed yields show some response. Black dashed lines indicate plateauing. Quadratic trends for
head lettuce and potato and linear trend for onion are misleading due to plateauing. Celery shows
one outlier at 140 kg N ha−1 and may require additional tests.
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4. Discussion
4.1. Model Accuracy

Using 22 features, the RF model to predict marketable yields from added N and
P in organic soils showed substantial strength (R2 = 0.805) across four vegetable crops.
Indeed, features not documented in the database could contribute to model variation. In
comparison, the accuracy of ML models for multi-environmental trials reached 0.80 for
maize (Zea mays) [13] in Quebec, Canada. Given the substantial strength of the RF model to
predict the marketable yields of vegetables, optimum growing conditions could be defined
for a given species. Due to data dispersion (Figure 1) that may affect predicted yield and
optimum N and P dosage at field scale, universality tests are still needed to compare model
outputs to observations made in grower’s fields, and contribute increasing the size and
diversity of the vegetable database.

4.2. Universality Tests for N

Universality tests showed null to moderate responses of predicted and observed yields
to added N due primarily to high N mineralization rates [21]. However, the right N rate to
apply was difficult to assess because yields either responded linearly and quadratically at
low N rates or tended to plateau. Selecting other response curves to determine optimum
dosage is challenging because functions showing similar R2 values may return contrasting
optimum rates [29,30].

Eliminating N could be risky in organic soils for early-planted crops despite large
amounts of organic N mineralized later in the season [31]. The decision to apply N would
thus depend on planting date and seasonal climate. Due to the importance of N rate and
timing as shown by RReliefF scores, the N fertilization could also be split into several
applications adjusted to soil N supply during the season. Indeed, an alternative model
could be built and updated using features and the climatic conditions prevailing before
split N application [13].

4.3. Universality Tests for P

Universality tests for P indicated no response to added P above the P saturation index
of 5%, supporting earlier results using traditional soil calibration methods [10]. Hence,
there was little risk to reduce or eliminate P fertilization. In a high-P organic soil south
of Lake Ontario, there were no adverse consequences where P was omitted during three
consecutive years [31]. Hence, there is a great potential to abate the P load without yield
loss in organic soils showing a P saturation index more than 5%, leading to economic and
environmental gains as supported by universality tests in grower’s fields.

4.4. The Need to Document More Yield-Limiting Factors

The N delivery and crop N demand are difficult to synchronize in space and time due
to yearly variations in soil N supply from soil organic matter and crop residues, and in
the nitrification, nitrate leaching, and denitrification processes [8]. Soil N mineralization
potential depends on drainage, soil properties such as organic matter quality during organic
soil transformations, crop management, temperature, and rainfall, especially early season
rainfall, and the spatial distribution of soil water content.

A single harvest was established on experimental sites each year. The main crop may
also be combined with another crop established earlier in the season that leaves crop and
fertilizer residues on the soil after harvest. The main crop could also be followed by a cover
crop to mop up easily accessible nutrient residues and make them available to the next-year
crop. Such practices could be tested in the future.

Soil classification and drainage were not documented in the database. Organic soils
are highly productive but vary widely in composition and evolution [32,33]. Organic soils
of southwestern Quebec, reclaimed for agriculture in the early 20th century, are made of
shallow shore swamps and deeper basin bogs deposited in channels and depressions [34].
Following the drainage of the original peatland, reclamation, and intensive cultivation,
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organic soils undergo profound physical, chemical, and biological transformations [35].
During soil alteration, illuviated humus accumulates at the bottom of the arable layer,
forming a layer of low permeability [36]. Such layer may become brittle upon irreversible
drying. Prismatic and platy structure may even form in upper layers [37] and accelerate
the leaching of nitrate, phosphate, and soluble carbon.

Peat thickness less than 60 cm shows signs of soil degradation [38]. Soil thickness and
quality may vary widely [39]. Peat thickness and the presence of the humus illuviation
layer could be documented in future studies. On the other hand, crops can be affected
locally by other phenomena such as wind erosion, excess water, splash and rill erosion,
surface sealing, and pest attacks. Precision agriculture could delineate soil management
zones to account for limiting factors [39,40].

Soil nutrient limitations for vegetables grown on organic soils could also be assessed
using tissue tests [3,31]. Nutrient ranges have been suggested for several vegetables grown
in Quebec, Canada [3]. The present ML model and tissue testing could be combined to dig
further into nutrient factors limiting the yields of vegetable crops.

4.5. Potential Economic and Environmental Gains

Searching for the right fertilization rate and timing is challenging in intensive vegetable
production where fertilization cost is small compared to crop value. Nevertheless, organic
soils show great capacity to supply nitrogen to the crop [21] and thus have high biological
buffering capacity [2]. On the other hand, the strong legacy of continuous P overfertilization
in organic soils impacts profoundly the P cycle [41].

In the present study, all N/P ratios were less than 10, indicating N-limited biomass
production even in high N-supply organic soils [21]. The moderate crop response to added
N compared to the absence of crop response to added P in the high soil test P cultivated
organic soils indicated fast acquisition of P by the plant from easily available P forms,
compared to N acquisition that is mediated by organic matter mineralization. The N/P
ratio of vegetable crops grown in organic soils should be interpreted as relative excess rather
than relative limitation as currently diagnosed in relation to growth-limiting factors [17].

4.5.1. Nitrogen

Predicted crop response to added N, N offtake, imbalanced N/P ratio, and N2O
emissions are strong arguments to support the sustainability of vegetables grown in organic
soils. Net N nitrification rates in fast-mineralizing Quebec organic soils are like those of
fast-nitrifying organic soils worldwide [21,33]. High N mineralization rates up to nearly
600 kg N ha−1 [21,42] may exceed N offtake by the crops (Table 4). Nonetheless, the high
N offtakes (147–282 kg N ha−1) may exceed soil N supply for short periods during the
growing season, requiring supplemental fertilization to cover crop N requirements.

Fast nitrification rates also lead to high N2O emissions [43]. Compared to emission
rates of 4.0–11.7 kg N2O ha−1 year−1 reported in cultivated organic soils of northern
Europe [44], the N2O emission rate in cultivated organic soils of eastern Canada ranged
from 3.6 to 40.2 kg N2O ha−1 year−1 [42]. Using 273 as conversion factor, this repre-
sents one to 11 Mg CO2-equivalent ha−1 year−1 as CO2-equivalent off-farm impact on
climate change.

The N2O emission rate depends on mineral N content in the soil, gas concentrations,
temperature, water table height, soil water content, and irrigation [42]. Fertilization rates
up to 150 kg N ha−1 may impact N2O emissions differentially in non-irrigated and irrigated
plots, due to plot-specific soil moisture/aeration and carbon and nitrate bioavailability.
The N fertilization did not impact N2O emissions at the irrigated site, likely due to nitrate
leaching and limited soil denitrification capacity at high nitrate concentration in the soil [7].

Supplemental N fertilization may be needed because the rate of N mineralization
may not be fast enough to meet plant requirements, the N2O emission rates may be too
fast, or the soil microbial biomass may acquire more N to stabilize the N/P ratio constant
in high-P soils and maintain homeostasis. As a result, excessive P fertilization could
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increase N requirements, combining environmental damages through eutrophication and
N2O emissions.

On the other hand, irreversible carbon losses in organic soils have been compensated
in part by biomass additions [45–48] that must also alter the C:N:P stoichiometry in the
soil. Soil and fertilizer N and P would thus impact not only the N and P cycles but also
trigger soil carbon loss. The C:N:P relationships could be further investigated in organic
soils in relation to the N-P fertilization, soil microbial biomass, and carbon loss through
decomposition and carbon leaching.

4.5.2. Phosphorus

The critical P saturation index has been set at 5% [P/(Al + 5Fe)]Mehlich3 molar ratio to
inform growers about crop response probability to P additions and the associated risk of
surface water eutrophication [10]. Above that critical P index, the P accumulates in organic
soils primarily as NaOH-extractable organic and inorganic P forms, NaHCO3-extractable
inorganic P forms, and easily leachable resin-extractable inorganic P forms [41], resulting
in high risk of P loss to the environment [10]. The P loss between the fall and the following
spring was found to average 41 kg PMehlich3 ha−1 or 84 kg Poxalate ha−1 in the region [49].
The Poxalate form that is close to total P [41] was greater than P offtake for the highest crop
yields (Table 4). As a result, P fertilizers can be viewed as a useless source of pollution of
surface waters.

Universality tests confirmed the low N/P ratios of the harvested products due to P
overfertilization. The P application rates could thus be skipped or reduced substantially
with no yield loss. Nonetheless, soil test P should be monitored yearly to check for P
saturation index dropping below 5% because crop response to added P has not been
documented. Fertilizer trials should be conducted to validate the agronomic significance to
P saturation indices below 5%.

5. Conclusions

The random forest model was moderately to substantially accurate to predict mar-
ketable yields and P offtake of vegetables grown in organic soils, and moderately accurate
to predict N offtake and the N/P ratio of the harvested products. The P fertilization in
high-P soils proved to be wasteful in independently conducted universality tests. Extra
N fertilization that causes nitrate leaching and N2O emissions can be addressed factually
by yield response patterns drawn by the predictive ML model and by universality tests.
While the RF model relating target variables to 22 features showed substantial strength,
more features may impact the target variables. Universality tests should thus be conducted
to verify model’s capacity to generalize to local conditions unseen by the model.

Median crop P offtake was similar across crops. Potato showed the highest median N
uptake among crops. Median P offtakes were much lower than the reported P loss between
the fall and the following spring in the region, indicating large potential for P leaching and
surface water eutrophication. The N and P offtakes were impacted by P-related features,
indicating an effect of P overfertilization on the N cycle.

The N/P ratio was found to be too low in the harvested products compared to forbs
even where N was applied in excess of plant needs. The N/P ratio of vegetables grown
on organic soils should thus be interpreted in terms of relative P excess rather than N
limitation. This study showed that growers’ inclination toward extra N and P dosage
to produce vegetables in organic soils can be reduced substantially based on ML model,
nutrient offtakes, and crop N/P ratios, contributing to the sustainability of on-farm and
off-farm agroecosystems.

Funding: The research was funded by provincial programs (Programme de Soutien aux Essais
de Fertilisation—PSEF) and Programme de soutien à l’innovation horticole—PSIH) and federal
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Council #2254).
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