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Abstract: This comprehensive review scrutinizes tissue culture and micropropagation methodologies
in geophytes, focusing on bulbous plants. The examination encompasses key stages, including so-
matic embryogenesis, bulb growth, dormancy breaking, and planting. Studies underscore the pivotal
role of plant growth regulators (PGRs) in plant regeneration and bulb growth. Bioreactor systems
for healthy plant regeneration, rooting methods, acclimatization strategies, and considerations for
ex vitro survival are elucidated. The review also delves into somaclonal variation dynamics and
acknowledges the burgeoning field of gene editing, particularly Clustered Regularly Interspaced
Short Palindromic Repeats (CRISPR) studies, as a promising avenue for enhancing valuable com-
pound content in geophytes. In addition to addressing challenges in flower bulb micropropagation,
this review briefly highlights emerging opportunities, including the potential integration of artificial
intelligence (AI) to optimize culture conditions, predict growth parameters, and enhance efficiency in
bulb production. The conclusion emphasizes the necessity of a multifaceted approach integrating
biochemistry, physiology, and molecular biology to address existing challenges and improve tissue
culture protocols for diverse geophyte species. This review article also intends to highlight how
tissue culture techniques could contribute to the development and valorization of flower bulbs in
today’s scenario of the ornamental industry.

Keywords: flower bulbs; organogenesis; somaclonal variations; somatic embryogenesis

1. Ornamental Geophyte History

For centuries, flower bulbs have captivated societies worldwide, drawing attention
for their enticing fragrance, vibrant colors, and diverse blooming periods. These bulbs
have held a significant place in various forms of art [1–3]. Greek philosophy dating back
to 300 BC mentions the medicinal and consumable properties of flower bulbs like Crocus,
Colchicum, and Gladiolus. Greek mythology also references bulbs such as Lilium, Hyacinthus,
Crocus, Iris, and Narcissus [4,5]. Furthermore, Warren [6] reported that Anemone coronaria,
Ranunculus asiaticus, and Lilies were shown in Knossos Palace in Crete, Greece, during the
Bronze Age. Day [7] emphasized that the Crocus has been recognized in Minoan art as
an important motif during the Aegean Bronze Age. Japan and China are known to have
numerous wild Lilium species that are endemic to their regions. The United Kingdom is the
origin of Narcissus pseudonarcissus, commonly known as the lenty lily, which serves as the
ancestor for many cultivated daffodil varieties. The Persian-style gardens of the Taj Mahal,
an iconic 17th-century monument, feature essential flower bulbs like Anemone, Ranunculus,
Fritillaria, Iris, Lilium, Pancratium, and Gloriosa [8]. Flower bulbs such as Aztec lily, canna,
dahlias, and tuberose are reported to have originated in the Americas [9]. In the 1180s,
flower bulbs, particularly those with iris motifs, adorned the military uniforms of Italians
from Florence-Tuscany and the French [10].

The worldwide spread of tulips has sparked numerous hypotheses. Originally found
in the western regions of China, the Caucasus, Turkey, Iran, and Central Asia, tulips first
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appeared in Anatolia in 12th-century Konya motifs. The breeding of tulips began during
the Ottoman Empire in the 16th century [11]. Tulip mania reached its peak between 1673
and 1736 during the Ottoman era, earning that period its name. The arrival of tulips
in Europe has triggered several hypotheses. One suggests that Busbeck, an ambassador
representing the Austro-Hungarian Empire in 1554, brought tulip bulbs from Istanbul to
his friend Carolus Clusius in Austria. Another possibility involves a French physician
named Belon, who traveled to the Near East in 1549 and visited Istanbul. Belon recorded in
his memoirs that numerous foreigners journeyed to Istanbul by ship to acquire tulip bulbs,
which he referred to as the “red lily”. These accounts shed light on the early introduction
of tulips to Europe and the growing fascination with these captivating flowers. In the 17th
century, tulip mania took hold in the Netherlands. The tulip, originally imported from
Ottoman lands in the 16th century, became a highly sought-after commodity in the 18th
century, primarily sourced from the Netherlands [11–14].

As mentioned by Rees [15], the habitats of the ancestors of some flower bulbs were
reported by Bailey [16], namely Tulipa: in the Mediterranean and across Asia to Japan;
Hyacinthus: in Greece, Syria, and Asia Minor; N. pseudonarcissus L.: from Sweden to Spain
and Romania; Narcissus tazetta L.: from the Canary Islands to Japan; Narcissus poeticus L.:
from France to Greece; Iris tingitana Boiss. & Reut.: in Morocco; Iris reticulata Bieb.: in
the Caucasus; Iris xiphium L.: in Spain and North Africa; Freesia: in South Africa; Lilium
longiflorum Thunb.: in Japan; and Lilium regale Wils.: in West China.

Over time, flower bulbs have been recognized for their unique characteristics and
have been cultivated with consideration for their potential uses and economic and social
values. They have transitioned from being sold as individual bulbs to being traded in bulk
quantities and have found commercial applications as cut flowers and potted plants. By
the conclusion of the twentieth century, the Netherlands had emerged as the leading global
player in the flower bulb trade, asserting its dominance in this industry [10].

2. World Ornamental Plants Sector: Situation of Flower Bulbs in the Sector

The global production of ornamental plants has witnessed a widespread increase,
playing a crucial role in boosting the economies of more than 50 countries. According to
Gabellini and Scaramuzzi [17], the total worldwide cut flower and potted plant production
is about 35.5 billion, with a cultivation area of 745,000 ha. Asia–Pacific is the largest region,
covering about 79% of the total surface area dedicated to ornamentals. The European
Union occupies about 10% of the world flower production surface [18], but thanks to
its high productivity per hectare, the ornamental industry represents about 40% of the
worldwide production (value of more than 11 billion EUR). The biggest producers are the
Netherlands (32%), France (12%), Germany (12%), Spain (12%), and Italy (11%). Outside the
EU, Mexico, Colombia, and Ecuador are important producer countries in Central America.
Thanks to favorable climatic conditions, foreign investments, and relatively cheap labor,
Latin American countries have become an important export region for both the American
and European markets. In South America, Brazilian floriculture has developed in the
past five years with a cultivated surface of about 15,600 ha and a production value of
1.7 billion EUR; the internal market absorbs most of this production [19]. Countries such
as Kenya, Tanzania, Ethiopia, Uganda, and Zambia in Africa, especially in the equatorial
belt, have boosted the production and export of cut flowers. Advantages such as the
economy being based on agriculture, suitable climatic conditions, and cheap labor in
African countries have led to the development of ornamental plant production. Production
areas are generally managed by professional companies and consist of large-scale nurseries
owned by foreign investors. The global trade volume of ornamental plants is expected to
surpass 60 billion USD (about 54.6 billion EUR) in 2027 at a CAGR of 8.8% (source: Flower
and Ornamental Plant Global Market Report; https://www.thebusinessresearchcompany.
com/report/flower-and-ornamental-plant-global-market-report, accessed on 25 February
2024), with a particular emphasis on markets with strong purchasing power, including the
European Union, USA, and Japan. The Netherlands confirms its central and dominant role
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in the international trade of flowers and ornamental plants thanks to the combination of
national production and re-exported products. Other important exporting countries in the
world are Colombia, Kenya, Ecuador, and Israel. The EU is a net exporter of pot plants,
conifers, and hardy perennial plants, bulbs, and corms, and a net importer of cut flowers
and cut foliage. The most important European importing countries for flowers and potted
plants are Germany, France, and the UK.

As the global economic situation improves and people want to spend more, the
demand for high-quality products increases. This trend also applies to the global market for
flowers and ornamental plants. Consequently, there is a growing demand for high-quality
bouquets from different flower collections. Thanks to the huge diversity of the genera,
flower bulbs can satisfy the need for new products; in addition, increasing research progress
enables the establishment of a productive chain, enhancing the local flower industry. This
can be of particular interest for countries that are aiming to diversify their production from
the major popular floriculture products. An interesting example is provided by Turkey,
which is very rich in natural resources of ornamental geophytes and quite recently started to
develop a commercial production for flower bulbs with 51 ha dedicated (Turkish Statistical
Institute, 2023).

Ornamental geophytes, also called flower bulbs, contribute significantly to the global
ornamental industry and are used for commercial bulbs, cut flowers or potted flowering
plant production, landscaping, and private gardening. In 2010, Benschop et al. [1] estimated
the global value of the flower bulb industry at more than 1 billion USD, with perspectives
of expansion all over the world. In 2022, the product category “Bulbs and Roots”, including
dormant and in growth bulbs, tubers, roots, corms, crowns, and rhizomes, registered a
global value of export of over 2 billion USD (about 1.82 billion EUR), with a slight decrease
with respect to the year 2021 counterbalanced by a 4% increase in the period 2018–20
(source: Trade statistics for international business development; https://www.trademap.
org/, accessed on 17 October 2023). In 2022, the EU exported a total of over 100 million
EUR worth of orchid, hyacinth, narcissi, and tulip bulbs in growth or in flower; the imports
were 30.9 million EUR. Of all EU countries, the Netherlands was responsible for 81% of
all exports of these bulbs, and other exporter countries were Lithuania (7%), Poland (5%),
Denmark (2%) and Latvia (2%). The majority of these exported bulbs are addressed to the
European area (Switzerland, UK, Norway, Russia, and Ukraine; Eurostat database, 2023;
https://ec.europa.eu/eurostat/web/products-eurostat-news/-/edn-20230406-1, accessed
on 17 October 2023). Due to the versatility of the marketable ornamental geophytes and
the evolving consumption trend, in recent years the ratio for bulb forcing and landscaping
uses has varied in the different countries [1]; moreover, as with any other product of
the floriculture industry, the ornamental geophytes have also had to adapt their quality
to the “big-box” selling system, requiring new products, standard quality, availability
of product quantity, consistency in price, and regular supply. Flower bulbs can address
these challenges thanks to their great diversity in morphology, growth, and physiological
responses to environmental factors, which allow for scheduled production. Moreover,
the globalization of the horticulture trade has led to new production centers located in
Latin America, Africa, and Asia, expanding the production of high-quality flower bulbs
once limited in countries with temperate climates. Another important aspect that can
enhance the value of flower bulbs in the global economic situation is the increasing use
of these plants in landscaping or gardens to satisfy the new customer-driven approach in
the ornamental industry [10]. On this basis, the current megatrend of ”neo-ecology” has
also increased interest in natural products. Consequently, drugs from medicinal plants are
more frequently included in clinical treatments, and many herbal extracts are authorized
to be used in therapy [20]. Flower bulbs are well recognized for their utility as food or
medicinal and aromatic plants [18,21–24]. The World Health Organization (WHO), aware
of the fact that a poor scientific literature is addressed to evaluate medicinal herbs and
that in most countries the market for herbal medicines is poorly regulated, published
monographs where scientific information on the safety, efficacy, and quality control of
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widely used medicinal plants is provided [25–29]. Ornamental geophytes are considered in
these monographs, and it can be envisaged that the number of flower bulbs used for the
extraction of natural products will increase due to the worldwide floristic diversity of these
plants and the various underground organs that can be used for the extraction of bioactive
compounds, such as alkaloids. For example, it is reported that an increase in research
activity is foreseen for Narcissus due to the increasing demand for galanthamine-based
oral medicines and other alkaloids (the so-called Amaryllidaceae alkaloids) that promise to
be of value to medicine [30].

Although ornamental geophytes consist of more than 800 different genera, the industry
is still dominated by a few genera. Besides the genera that comprise most of the worldwide
bulb production (Tulipa, Lilium, Narcissus, Gladiolus, Hyacinthus, Crocus, and Iris), there are
other ornamental geophytes of economic importance in the cut flower industry (e.g., Freesia,
Altroemeria, Hippeatrum, and Zantedeschia). Anemone and Ranunculus are two important
genera for cut flower production under Mediterranean conditions.

In the following paragraphs, we want to review the most salient and recent findings for
the micropropagation of flower bulb crops by providing examples of successful application
of tissue culture techniques and outlining concluding remarks on the state of the art of
flower bulb in vitro culture and future perspectives.

3. Methodology

The literature review on geophytes micropropagation followed the https://guides.
library.uq.edu.au/research-techniques/literature-reviews#s-lg-box-16401198 (accessed on
4 February 2024) and Pautasso [31] rules guidelines to ensure a transparent and rigorous
methodology. The review process began with a clearly defined research question focusing
on tissue culture and micropropagation methodologies in ornamental geophytes, with a
specific emphasis on bulbous plants. A comprehensive literature search was conducted
across relevant databases, including Web of Science, Google Scholar, PubMed, ScienceDirect,
and Scopus, using predetermined search terms.

The inclusion and exclusion criteria were established to filter studies based on their
relevance and quality. Initial screening involved reviewing titles and abstracts, followed
by a full-text assessment of potentially eligible articles. Data extraction included key infor-
mation on somatic embryogenesis, bulb growth, dormancy breaking, planting, and other
relevant aspects (Table 1). The quality of the included studies was assessed, and potential
bias was considered during the analysis. The relevant literature was saved in the paper
management system, Endnote Library. The flow diagram presented in Table 2 illustrates
the study selection process, and the resulting evidence was synthesized and presented in
accordance with Pautasso [31] guidelines. The gray literature not available in traditional
channels and not represented in indexing sources addressed to commercial applications
was not considered in this review article. The paper concluded with a discussion on the
challenges and opportunities in geophyte micropropagation, emphasizing the necessity of
a multidisciplinary approach integrating biochemistry, physiology, and molecular biology
to advance tissue culture protocols for diverse geophyte species.

Table 1. The determined flow before starting to write the literature review.

Inputs Outputs

Research Question Micropropagation methodologies, challenges, and opportunities
in geophytes, flower bulbs

Databases Web of Science, Google Scholar, PubMed, ScienceDirect, Scopus

Sectioning

The basic flow (history, economy, flower bulb propagation and
challenges, micropropagation, flower bulb micropropagation,
stages, challenges, opportunities, conclusion) was determined for
the literature review, and titles were added

https://guides.library.uq.edu.au/research-techniques/literature-reviews#s-lg-box-16401198
https://guides.library.uq.edu.au/research-techniques/literature-reviews#s-lg-box-16401198
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Table 1. Cont.

Inputs Outputs

Searching For each section, keywords were determined

Screening literature First, titles and abstracts; selecting the quality and relevance
Second, full text assessment

Paper Management Endnote

Table 2. The keywords used for relevant and quality literature search.

Sections Keywords

History Geophytes history
Flower bulbs history

World Ornamental Plants Sector–Flower
Bulbs situation in the sector

Flower bulbs production rate
Flower bulbs marketing
Flower bulbs sector
Ornamental plants sector
Ornamental industry
Flower market
Ornamental plants sector reports

Flower bulb propagation and challenges

Geophytes propagation
Flower bulbs propagation
Flower bulbs traditional propagation
Storage organs
Flower bulbs seed propagation
Flower bulbs vegetative propagation
Flower bulbs micropropagation

Micropropagation

Micropropagation
Somatic embryogenesis
Organogenesis
Plant regeneration
Factors affecting plant regeneration
Explant choice for plant regeneration
Culture medium for plant regeneration
Environmental conditions for plant regeneration

Micropropagation of Flower Bulbs

Geophytes micropropagation
Flower bulbs micropropagation
Flower bulbs tissue culture
Flower bulbs in vitro culture
Flower bulbs micropropagation stages
Flower bulbs plant material preparation
Flower bulbs mother stock material
Flower bulbs surface sterilization
Flower bulbs disinfection
Flower bulbs multiplication
Flower bulbs dormancy breaking
Flower bulbs acclimatization
Flower bulbs planting
Tissue culture and artificial intelligence

Somaclonal variation Flower bulbs somaclonal variation
Geophytes somaclonal variation

Conclusion
Flower bulbs genome editing
Flower bulbs CRISPR
Flower bulbs
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4. Flower Bulbs: Traditional Propagation and Challenges

Flower bulbs are geophytes with storage organs that are of several kinds, morphologi-
cally and physiologically (Figure 1). These storage organs can allow the plant to survive
unfavorable periods (whether too dry, too hot, or too cold) [15,32,33]. Thanks to the nutrient
reserves within these modified structures, plant viability and further plant development
are ensured despite the severe external conditions [34,35]. Prior to the onset of favorable
environmental conditions, the differentiation of new buds occurs, allowing for shoot devel-
opment through the ongoing physiological processes in the underground organs. [18,33,36].
Bulbs go through distinct developmental phases: juvenile vegetative, adult vegetative, and
reproductive. The transition to the adult vegetative phase is necessary for flower initiation,
which occurs after several years in the juvenile phase for certain species like Tulipa and
Narcissus. The shift to the reproductive phase is triggered by high temperatures, leading
to flower bud formation. Dormancy follows, requiring a prolonged period of cold for
dormancy release and preparation for spring growth. This life cycle is common among
bulbous plants, including Tulipa, Crocus, and Hyacinthus [15,33,37].
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Geophytes can be propagated through generative (seed production) and vegetative
methods [18]. The commercial production of flower bulbs through seed propagation is
not widely preferred due to several reasons [36,38]. Firstly, seed production could result
in offspring that are not identical to the parent plant, leading to increased diversity. This
lack of uniformity makes this kind of propagation unsuitable for commercial production,
except for specific seed-raised crops. Furthermore, the seed of some bulb plants has limited
viability, and precise requirements for germination could be necessary to produce seedlings.
Another difficulty in applying seed multiplication is the extended juvenile phase, lasting
up to 5–7 years before flowering, which could be faced by certain species [38]. Nevertheless,
seed production is highly valuable in breeding programs, allowing for the development of
new cultivars. Seed propagation is particularly advantageous if a high number of seeds
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can be obtained, the juvenile phase is relatively short, and variability is not a concern
compared to vegetative propagation [32]. Another advantage of seed propagation is that
in almost all cases, plants produced are free of virus infection; vice versa, through vegeta-
tive propagation methods, there is the risk of spreading pathogenic microorganisms and
compromising production. Examples of geophytes that can be commercially propagated
through seed production include Anemone, Allium, Begonia, Cyclamen, Freesia, Fritillaria, and
Ranunculus [18,33,36,38,39].

New techniques and strategies have been developed to improve the seed set, increase
seed germination, and shorten the time required to flower [40]. Interesting findings were
presented by Anderson [41] for reducing the generation time in Lilium and Gladiolus (less
than 1 year from seeding to flowering). His laboratory developed a selection strategy
to reach rapid generation cycling (RGC) in geophytes. A “toothpicking” technique by
selecting germinated seedlings having different colors based on the week of germination
was proposed to select early flowering hybrids of Gladiolus. In addition, comprehensive
selection work was undertaken for all the phases of the life cycle of geophytes to correlate
the features with the early flowering. The author’s conclusions were that the geophytes
breeding program can be shortened by selecting genotypes with good seed germination
and seedlings with rapid leaf growth or with enhanced leaf unfolding rates, followed by
further observations on the geophytic structures and contractile root generation, as well as
the dormancy status and the subsequent stalk elongation and flowering.

In nature, the vegetative propagation of flower bulbs occurs through natural division.
Natural division can be with daughter bulbs (tulip, crocus), offsets (hyacinths, muscari),
bulblets (lily), bulbils (lily), cormels, rhizomes, branched rhizomes, and stolons (allium,
oxalis) [32,38,42]. The multiplication rates of the natural division are quite low [15,18,32]. For
this reason, it has been envisaged that flower bulbs need alternative propagation methods.
Traditional propagation methods include scaling, twin scaling, chipping, scooping, and
scoring, as well as stem and leaf cuttings [42]. Scaling is the method where individual
scales are removed from the bulb to produce bulblets. Twin scaling, a variation of scaling,
involves attaching two scales to a piece of the basal plate. Chipping, a mechanical technique
similar to twin scaling, is employed to separate scales. Scooping involves removing the
basal plate from the scales, while scoring entails cutting the basal plate. Additionally, stem
and leaf cuttings can be used as propagation methods for certain bulbous plants. These
techniques have been widely practiced by horticulturists and gardeners to propagate and
expand their bulb collections, ensuring the continued availability and diversity of these
plants [18,38,39]. It can also be considered a bulbous structure and propagation method.
Tunicate bulbs can be multiplied using techniques such as offsets, scoring, scooping,
coring, sectioning, and cottage. Non-tunicate bulbs, on the other hand, can be propagated
through scaling after they have bloomed. Corms can be multiplied using cormels, which
are small corms that develop between the old and new corms. It typically takes one to
two years of growth for cormels to reach the size at which they can produce flowers.
Tubers can be propagated by either planting the entire tuber or dividing it into sections,
ensuring each section has at least one bud (eye). Rhizomes are divided into sections, each
containing at least one shoot bud or active shoot. Some rhizomes have roots attached
to their bottoms and can be individually planted in containers. Rhizomes can also be
planted in nursery beds and used as a source of bare-root stock for planting or for cultural
purposes such as basketry. Crown division is another method of propagation that differs
slightly from dividing rhizomes [32,43]. However, these methods also present notable
limitations. Firstly, generating a substantial number of plants within a practical time frame
can be challenging. Secondly, the propagation process carries a significant risk of disease
transmission. Tissue culture techniques offer effective solutions to conventional challenges
in flower bulb propagation, and this is explained in Section 5.
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5. Micropropagation

Micropropagation is a widely recognized method of vegetative propagation that
allows for the production of numerous offspring plants. Podwyszyńska et al. [44] reported
that the global annual production of ornamental plants through in vitro cultures has surged
from 800 million to 2 billion in the last decade. According to a recent research report, the
micropropagation market size is expected to rise by 2030, reaching a value of 2.8 billion
USD (about 2.5 billion EUR; report “Micropropagation Market-Global Outlook and Forecast
2022–2027”-https://www.reportlinker.com/p06313600/?utm_source=GNW, accessed on
25 February 2024). Europe is one of the most prominent geographical segments in the
global micropropagation market, with 140 commercial in vitro laboratories for which the
production of ornamental plants is pivotal [44].

The micropropagation process involves multiplying plants under sterile conditions
on a nutrient culture medium with a known composition and optimal artificial culture
conditions [45]. Micropropagation represents an intricate plant multiplication technique
involving substantial capital investment, significant operational costs, and a need for
specialized expertise [46–48]. However, tissue culture methods offer various benefits,
particularly in micropropagation, which is employed to multiply diverse plants, including
genetically modified or conventionally bred ones. It proves useful for producing plantlets
from seedless or challenging-to-reproduce plants economically and quickly, significantly
reducing the time needed for abundant plantlet production [36].

5.1. In Vitro Regeneration Pathways

In vitro plant regeneration is a process where explants, through cell division and
differentiation, give rise to the formation of organs and tissues [49]. This comprehensive
process involves the regeneration of an entire plant from various sources, including adult
tissues, organs, unorganized calli, or even a single cell [50,51].

Somatic embryogenesis is a remarkable process in which plant somatic cells undergo
dedifferentiation, acquire embryonic cell characteristics, and subsequently, through embry-
onic development, form complete plants [52–54]. This process highlights the totipotency
of plant cells, demonstrated by the formation of embryogenic calli [51,55]. It involves the
development of structures resembling zygotic embryos from cells that are not associated
with zygotes or the original tissue, closely mirroring the characteristic stages observed dur-
ing zygotic embryogenesis [54]. Somatic embryos can differentiate through two pathways:
direct somatic embryogenesis, where they differentiate directly from explants without
the formation of a callus, and indirect somatic embryogenesis, where differentiation oc-
curs after passing through a callus stage [56]. Somatic embryogenesis is favored for mass
propagation due to its higher proliferation rate, ease of liquid culture medium utilization,
efficient handling of numerous embryos, and greater adaptability for bioreactors [36,49].

Freshly formed structures like shoots, roots, or embryos can emerge on plant tissues
without preexisting meristems. These recently developed organs are termed adventive or
adventitious, and this initiation of a novel structure and organization is termed organogen-
esis [57,58]. Organogenesis involves the perception of phytohormones, differentiation of
specialized cells to gain organogenic competence, cell division regulation, cell expansion,
and the overall patterning of the organ [59–61]. The presence or absence of the callus stage
results in two distinct developmental stages. The developmental stage that includes the
callus phase is called indirect organogenesis. In indirect organogenesis, the likelihood of
observing somaclonal variation is higher. The developmental stage that occurs without
the callus phase is termed direct organogenesis [62,63]. The first step in the propagation of
plant material using the organogenesis technique is the selection of the explant source from
the donor plant. Usually, embryos, seedling parts, apical meristems (root or shoot tips),
primordial organs, protoplasts, and young flower buds are used [58,61].

Many factors can affect the efficiency of the regeneration pathway, such as explant
type, genotype, concentration, and type of PGRs, regeneration medium, other chemicals
that indirectly affect plant growth, stress conditions, subculture, electrical excitation, or

https://www.reportlinker.com/p06313600/?utm_source=GNW
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gene expression modification [51–53,64,65]. The shoot regeneration capacity depends on
the establishment of a complex process involving the endogenous cytokinin metabolism
of tissues and how the explants react to the exogenously supplied plant regulators in the
culture medium [60]. Consequently, many factors should be considered when an explant
is chosen to initiate an in vitro culture. Beside the medium composition and the culture
conditions, the physiological and ontogenic age of the tissues, the season in which the
explant is taken, the size and location of the explant, and the quality of the donor plant are
key factors, which affect the explant viability and the degree of contamination in in vitro
culture [51]. In addition, explant age and origin, as well as the period of the year in which
the in vitro culture is initiated, affect the phenolic content of the tissues, which, in turn,
can cause browning and subsequent death of tissues [66]. Figure 2 shows the aforesaid
regeneration pathways.
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5.2. Micropropagation of Flower Bulbs

Micropropagation of ornamental plants has been studied since the 1950s [67,68]. The
impact of this technology on flower bulbs is also testified to by the literature cited in this
review. Micropropagation involves axillary bud development through organogenesis,
adventitious shoot formation, and somatic embryogenesis [69].

Plant biotechnology significantly contributes to the production of ornamental geo-
phytes through various approaches. These methods focus on propagating specific geno-
types, acquiring virus-free plant material, and supporting breeding and crop improvement
programs [18,36,69,70]. Techniques such as callus culture, embryo rescue, in vitro pollina-
tion, somatic hybridization, induction of somaclonal variation, protoplast culture, synthetic
seed production, in vitro ploidy manipulation, genetic transformation, gene mapping, and
DNA fingerprinting play essential roles [22,69,71]. In vitro pollination and fertilization,
embryo, ovary, ovule, anther, and pollen culture have been reported for some geophytes
such as Lilium, Cyclamen, Anemone, Ranunculus, and Amaryllis [72–80]. Further scientific
inquiry is warranted to evaluate the feasibility and potential applicability of protoplast
culture and somatic cell hybridization techniques in the context of geophytes such as Crocus
cancellatus as studied by Karamian and Ebrahimzadeh [81]. Recently, Koetle et al. [82]
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reported about the procedures using Agrobacterium strains to transform into geophytes such
as Crocus, Allium, Agapanthus, Lilium, Tulip, Gladioulus, Hyacinthus, and Narcissus [83–92].

Micropropagation systems were developed for major bulbous plants, but commercial
propagation was achieved only for a few bulbous plants, such as Lily and Zantadeschia [36].
For other ornamental geophytes, more efforts are necessary to reach commercial appli-
cations. Nevertheless, it is well recognized that the availability of proper tissue culture
protocols would enable the production of high-quality stock plant material that is virus-free
and the advancement of breeding programs or the propagation of selected genotypes.

5.3. The Key Factors Affecting Micropropagation of Flower Bulbs

Establishing a successful micropropagation protocol is a complex task, influenced by
various interacting factors, including plant materials, culture conditions, and culture media
ingredients. Despite the development of micropropagation protocols for many flower
bulb crops, challenges hinder commercial viability. Key limitations include the high cost
of tissue-culture plantlets, inefficiencies in the initiation phase, low propagation rates for
numerous genotypes, challenges during the acclimatization of ex vitro plantlets, and the
occurrence of off-types.

5.3.1. Explant Choice

Thanks to its totipotent character, the potential for entire plant regeneration exists
within every living plant cell. However, cells or tissues displaying active growth and
robust physiological metabolism are commonly utilized as explants for the regeneration
process in many studies [51]. A variety of tissue sources, including shoot tips (apical
and axillary buds), bulb scales, leaves, stems, and different parts of the inflorescence, are
utilized as explants in the initial stages of in vitro culture [38,93]. Below, in Section 5.4.2,
some examples of the establishment of an in vitro culture for flower bulbs are provided.

As previously explained (Section 5.1), the selection and preparation of suitable explants
play a crucial role in successful in vitro culture. Factors such as the regeneration capacity,
physiological state, and hormonal balance of the donor plant, the origin, age, and size
of the explants, their polarity, and pre-treatment methods are key considerations for the
successful initiation of ornamental bulbous plants [94]. The induction of in vitro bulblets
is primarily influenced by the temperatures and storage durations of the mother plant.
Yasemin et al. [95] emphasized the significance of explant types regarding factors such as
callus color, callus hardness, callus fragility, callus formation rate, embryogenic callus rate,
and callus growth rate of Pancratium maritimum.

5.3.2. Culture Medium

The composition of the culture medium is a critical factor influencing the growth
and morphogenesis of plant tissues in culture. The Murashige and Skoog (1962; MS) [96]
formulation is widely used, initially designed to support the optimal growth of tobacco
calli through extensive dose–response curve studies for essential minerals. Furthermore,
N6 [97], Woody Plant Medium (WPM) [98], and B5 [99] are used as culture media in tissue
culture [51]. Plant tissue and cell culture media are generally made up of some or all of the
following components: macronutrients, micronutrients, sugar(s), vitamins, amino acids or
other nitrogen supplements, other undefined supplements, solidifying agents or support
systems, and growth regulators [100]. Undefined elements can be coconut milk, meat,
malt, yeast extracts, potato extracts, juices, pulps, fruit extracts, plant/plant pars/seedling
extracts. Osmotic balance, pH, and buffers of the culture medium also affect the target in
the tissue culture [101]. Elicitors, such as chitosan, aminolevulinic acid (ALA), alginate
(ALG), N-acetylglucosamine (NAG), salicylic acid (SA), hyaluronic acid (HA), silver nitrate
(AgNO3), jasmonic acid (JA), methyl jasmonate (MeJA), phloroglucinol (PG), and pectin,
are extensively employed to induce secondary metabolites in plant tissue culture [71].
Methyl-Jasmonate (MeJA) and various polyamines also prove advantageous in tulip tissue
culture by promoting efficient bulb formation during micropropagation [102]. Moreover,
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the medium’s physico-chemical properties can alter the nutrient status of microshoots. The
selection of the gelling agent is a crucial factor in the process of in vitro plant regeneration.
The medium should be sufficiently firm to support explants, avoiding excessive rigidity
that may hinder proper contact. The phenomenon of hyperhydricity, linked to agar, is also
a recognized concern [103]. The experiments carried out over a ten-year period, highlighted
that a relationship can be found between gel properties and the biological performance
of in vitro Ranunculus shoots, and we correlate it with the different water and nutrient
availability created in the different gelled media [104]. Moreover, our studies identified the
concentration and diffusion through the gel of major phenolic impurities that can be found
in the agar powder used to jellify the media. These findings proved that agar impurities can
greatly affect the growth and multiplication of microshoots (Figure 3). Therefore, attention
should be paid to choosing the agar brand and concentration and, even more importantly,
creating a standardized method for the preparation of the gelled media.
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Figure 3. Biological performance of Ranunculus shoots cultured in vitro on basal MS medium gelled
with different agar brands. (A) agar Oxoid (OX; cd L13(3)), 8 g/L; (B) agar Roth (RT; cd 4508),
8 g/L; (C) agar OX (8 g/L) supplemented with the impurities collected from dialysis of 8 g of RT agar
powder; (D) washed agar RT, 18 g/L. It is possible to see that the gelling agent is responsible for quite
different performance, with the growth on OX gels being satisfactory (A), while poor development
and hyperhydricity were observed when RT gels were used (B). Removing the impurities from
RT agar and increasing the agar concentration to reach a good gel firmness also allowed for good
growth on RT gels (D). Vice versa, adding the RT impurities to OX gels decreased the quality of the
microshoots (C).

The use of solidified media in micropropagation offers advantages, including easy
visibility and recovery of small explants, maintained explant orientation, improved aeration
without special measures, and orderly growth of shoots and roots. In contrast, liquid media
can cause disoriented growth and difficulties in shoot separation. However, there are
drawbacks to semi-solid media, such as the presence of the above-said inhibitory substances
in agars, slow growth rates, and limited diffusion of toxic exudates. Poor oxygen diffusion
to developing roots is a concern, even in aerated liquid media. Adherence of gel to roots
can pose issues during plantlet transfer to soil, and cleaning containers for re-use becomes
time-consuming with semi-solid media [105]. Different plants have varying nutritional
requirements, affecting optimal growth and morphogenesis. Tissues from different plant
parts may have unique needs for satisfactory growth [51].

5.3.3. Environmental Conditions

Temperature and light have key roles in micropropagation. Under in vitro condi-
tions, younger tissues typically import sucrose and have limited photosynthesis. How-
ever, light (color and intensity) influences plant growth, metabolism, and organogene-
sis and has proved to be crucial for the in vitro regeneration of the storage organs of
geophytes [38,70,71]. White, fluorescent light (350~750 nm) is conventionally used in
in vitro culture but has drawbacks like high electricity consumption and uneven radi-
ation. Monochromatic LEDs with specific wavelengths are now widely used for more



Horticulturae 2024, 10, 284 12 of 31

energy-efficient and controlled in vitro plant propagation [71,106]. Phytochrome governs
the plant’s light response, influencing organogenesis induction and direction. Blue light
and its receptor, cryptochrome, play a role in storage organ formation [107]. Examin-
ing light quality effects during adventitious organogenesis in bulbous plants, researchers
utilized monochromatic fluorescent lamps. The results revealed that in in vitro cultures
of Hyacinthus orientalis, blue light stimulates adventitious shoot development, while red
light encourages the formation of adventitious bulbs [108]. Studies have explored the
impact of light on plant growth and development parameters in various lily species and
cultivars during in vitro organogenesis. [109–111]. According to Bach and Sochacki [38],
the choice of light may interact with tissue cytokinin metabolism, potentially influencing
in vitro tissue dormancy and subsequent development. While light is crucial for typical
green shoot and plantlet growth, unorganized cell and tissue cultures can thrive without it.
Surprisingly, darkness may enhance growth and morphogenesis, with brief dark periods
observed to promote shoot morphogenesis in certain cases [105]. Embryo explants from
P. maritimum were cultivated under both photoperiod and dark conditions. The results,
based on unpublished data from Yasemin S., indicate that the dark condition was more
successful in generating calli, and Figure 4 illustrates the outcomes after one month
of incubation.
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Figure 4. Embryo cultures of P. maritimum under 16/8 h photoperiod (A) and dark (B) conditions
after one month of incubation.

Temperature influences both growth rates and the transition between vegetative and
reproductive phases in plant development. In flower bulbs undergoing in vitro culture,
temperature is a vital factor influencing regeneration, bulbing, and dormancy. For temper-
ate ornamental geophytes, lower temperatures mimic winter, prompting dormancy. Under
in vitro conditions, reduced temperatures induce storage organs to withstand unfavorable
growth conditions [67]. Temperature is another key factor that is able to influence the
regeneration, bulbing, and dormancy of flower bulbs during in vitro culture [112]. In vitro-
regenerated bulblets necessitate dormancy breaking to facilitate ongoing development. A
cold treatment was proven to be effective for bulblet initiation and for breaking dormancy
in the regenerated bulblets [38].

5.4. Stages of the Micropropagation of the Flower Bulbs

Many scientific papers have been published on flower bulbs, highlighting the dis-
crepancy between the potentiality of the micropropagation technique and its practical
application. Next, we would like to analyze the most important findings related to the
major steps in micropropagation of flower bulb crops, which are: preparation of mother
plants, initiation, multiplication, bulbing/bulb growth, dormancy breaking, and planting.
Dormancy breaking is a different step from the other herbaceous and woody plants [18,36].

5.4.1. Stage 0: Preparation of Mother Stock Plant Material

Happy plants make happy plantlets. Stage 0 in ornamental geophyte propagation
represents the initial and crucial phase dedicated to ensuring the selection and cultivation
of healthy plants [47]. This pivotal stage aims to pre-process the chosen specimens to
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prevent contamination, ultimately fostering the development of thriving plantlets [42]. Key
pre-treatments, such as regulating humidity, irrigation methods, temperature, and light
exposure, are implemented to curtail the potential source of contamination and maintain
the genetic integrity of the desired traits. Additionally, the duration of storage impacts
the formation of bulb-like structures in geophytes, further emphasizing the significance of
meticulous handling during this phase [18,46,70,113–116].

To initiate the in vitro culture of tulip, Podwyszyńska and Sochacki [117] selected
healthy, true-to-type, and virus-free plants during their flowering phase in spring. After
having carried out ELISA tests to verify the virus-free status of their plants, they harvested
the bulbs in June and stored them at 17–20 ◦C until October, followed by dry cooling at
5 ◦C. The selected healthy bulbs (the recommended bulb size is 10 cm in diameter) were
then planted in pots with a fungicide (Captan)-soaked perlite substrate and forced in
darkness at 9 ◦C for 5–14 days prior to initiating the in vitro culture. The effect of a bulb
pre-treatment at 5 ± 2 ◦C for a period of 3–4 weeks was also positively referred by Muraseva
and Novikova [118], who developed an efficient protocol for in vitro propagation from
bulb scale explants of Fritillaria ruthenica Wikstr., an endangered and rare species. In other
cases, natural conditions made it advisable to prepare the mother plants. Kumar et al. [119]
successfully established an efficient plant regeneration system for Lachenalia. viridiflora
via somatic embryogenesis by growing the mother stock plants in greenhouses under
controlled conditions that closely resembled the natural habitat of this plant species, which
is collected from a specific sub-population in St. Helena Bay, Western Cape, South Africa,
credited to Prof. Graham Duncan. Around 10 mature bulbs of L. viridiflora were carefully
selected and planted in terracotta pots with a standardized diameter of 200 mm. The
potted plants were then nurtured under ambient temperature conditions and exposed to
the natural photoperiod in the controlled environment of the University of KwaZulu-Natal
Botanical Gardens’ greenhouse. The researchers took special care to ensure regular watering
and maintained a weed-free environment to promote optimal growth and development,
mimicking the plants’ natural conditions as closely as possible. Mirici et al. [120] studied
in vitro bulblet regeneration from fresh bulb scale and immature embryos of the endangered
geophyte Sternbergia fischeriana. Before explant sterilization, the collected bulbs were
subjected to a drying process in the dark at room temperature for a duration of 6 weeks.

In conclusion, it could be argued that closed environments, such as glasshouses and
tunnels, are high-quality places for plant cultivation with a reduced risk of contamination.
Treating plants with fungicides and insecticides before obtaining plant material helps to
decrease the risk of contamination. Various practices are available to enhance in vitro
development, altering the physiological state of the parent plant from which explants will
be taken. These practices include implementing long-day treatments, cultivating under
red light, maintaining bulbous plants at low temperatures, and applying PGRs to the
leaves [48]. By focusing on the careful selection and pre-processing of mother plants, stage
0 lays the foundation for a successful propagation process, leading to the cultivation of
healthy ornamental geophytes [47].

5.4.2. Stage 1: Establishment of Aseptic Culture

In this stage, the selected explants are excised from the stock plant material and
surface sterilized with certain chemicals before they are inoculated in the culture medium.
Surface sterilization of plant explants for successful establishment in in vitro conditions,
particularly in the context of plant tissue culture, is very important. The primary goal is to
eliminate microbial contamination, both exogenous and endogenous, without causing harm
to the plant tissues. The success of the sterilization process is crucial for the subsequent
stages of tissue culture [121–124]. Various chemicals, such as antibiotics, fungicides, sodium
hypochlorite, mercuric chloride, ethanol, hydrogen peroxide, calcium hypochlorite, and
silver nitrate, are commonly used for surface sterilization. The concentration and duration
of the disinfection process need to be carefully considered to achieve effective sterilization
without compromising the viability and regeneration ability of the explants. The choice
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of disinfectants depends on the specific plant species and type of explant. The goal is to
create aseptic conditions for plant tissue culture by addressing the challenges associated
with microbial contamination and maintaining the health of the explants [122,125]. The
use of seeds as an initial material in in vitro studies is advantageous because it decreases
the risk of contamination. After germination of the seeds, in vitro seedling parts can be
used as explants for some research [124,126,127]. Yasemin et al. [124] conducted the surface
sterilization experiments for the seeds of P. maritimum. They used 70% ethanol and washed
the seed with distilled water, followed by treatment with different concentrations of sodium
hypochlorite (NaOCl 1.6% and 3.2%) at different durations (15, 20, and 25 min). High
NaOCl and long durations had negative effects on the seeds viability, germination, and
plant formation. Kumar et al. [119] described the successful surface sterilization process for
L. viridiflora leaves. The leaves were treated on a laminar flow bench using 70% ethanol
(v/v) for 60 s, followed by immersion in 2% sodium hypochlorite (NaOCl) for 10 min. To
aid in the process, a few drops of Tween 20 were added as a surfactant. After sterilization,
the leaves were rinsed three times with sterile distilled water.

Unfortunately, the contamination issue represents a substantial concern for the flower
bulb tissue culture, particularly when underground plant tissues are used to initiate the
culture. Although surface sterilization is successful, the plant tissues can be contaminated
due to endogenous microorganisms in the bulbs, and this could also appear in further
culture cycles [36]. Therefore, a thorough sterilization process is indispensable to eliminate
contaminants from the geophytic storage organ explants. In the study conducted by
Lagram et al. [128], a protocol was employed for the preparation of saffron daughter corms
(Crocus sativus L.). The corms were subjected to a series of treatments, including a 30 min
immersion in tap water, gentle brushing with Tween-20, a 1 min exposure to 80% ethanol,
a 20 min treatment with freshly prepared mercuric chloride (HgCl2) at a concentration of
0.2%, and, finally, rinsing four times for 4 min each with sterile distilled water. Sochacki
and Orlikowska [129], in their studies aimed at improving the micropropagation protocol
for two Narcissus cultivars, tested several pre-treatments of bulbs, including the use of
fungicides and hot water treatment (44.4 ◦C for 3 h), followed by a disinfection procedure
with HgCl2 and chloramine T. By using these methods, they were successful in reducing the
initial contamination to 14–17%, and they showed that different genotypes could differently
react to the same treatment.

Seeds of P. maritimum were used as explants in some studies, and surface sterilization
was successful [95,124,126,130]. However, surface sterilization of the flower bulbs is not
quite easy. According to studies conducted by Yasemin S (unpublished data), Gladioulus
corms and Fritillaria bulbs were washed under tap water, then treated with 70% ethanol
and 2.5% NaOCl and washed by sterile distilled water (three times). Unfortunately, all the
explants were contaminated due to the fact that the mother plant was already not healthy.
This could show the importance of mother plant material selection. Some explant photos
are shown in Figure 5.
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Evaluating the negative impacts of sterilizing agents on plant tissues is crucial, with
explant survival data serving as a key parameter. Rafiq et al. [131] and Rather et al. [132]
indicate that combined chemicals were more effective for the achievement of disinfection,
but the use of combined sterilants lead to a reduction in explant survival. Rafiq et al. [131]
experimented with diverse sterilization approaches, incorporating NaOCl (1%) and HgCl2
(0.1%) at varying durations (10 and 20 min), along with combinations involving 70% ethyl
alcohol and carbendazim (200 ppm). The explants were bulb scale-base and bulb scale-tip
from the oriental hybrid Lilium cv. Ravenna. The most effective surface sterilization method
entailed treating healthy bulb scales with carbendazim (200 ppm) for 30 min, followed by
0.1% HgCl2 for 10 min, and then 70% ethyl alcohol for 30 s. Farooq et al. [133] used bulb
scales and young leaves to initiate the culture of Lilium LA hybrids ‘Indian Summerset’
and ‘Nashville’. A pre-treatment of both explants has been made by washing the tissues
in a water solution containing Tween-20 and the fungicide carbendezim. Afterwards,
the surface sterilization of the explants was performed using carbendenzim, HgCl2, and
ethyl alcohol at different concentrations and durations. The highest surface sterilization
success for bulb scales (Indian Summerset: 85.41%, Nashwille: 89.58%) was higher in
the combinational sterilant. Chib et al. [84] also detailed an optimized two-step surface
sterilization method for C. sativus L. This involved separately employing 0.1% HgCl2 and
4% NaOCl, leading to effective asepsis and a noteworthy 86% survival rate of explants.
The disinfection of corms was successfully achieved through this process. Application of
antioxidants, such as ascorbic acid and citric acid, can effectively prevent browning caused
by oxidation. Furthermore, some additives, such as polyvinylpyrrolidone (PVP), charcoal,
and fungicides, can also prevent the browning of explants and endogenous contamination
risks. Appleton et al. [134] performed in vitro regeneration of Hypoxis colchicifolia. When
establishing in vitro cultures, they have experimented with PVP, activated charcoal, ascor-
bic acid, citric acid to inhibit browning, and benomyl solutions as fungicides to inhibit
contamination. They have solved the browning problem with PVP and partially solved
the contamination problem with benomyl. However, these applications do not create the
same response in every plant or plant part. This should be analyzed and optimized for
each plant. Devi et al. [135] have used charcoal and ascorbic acid to reduce the phenolic
exudates, but charcoal inhibited tissue growth, and ascorbic acid caused somatic embyo
death in saffron (C. sativus L.).

In general, young tissues and organs have a higher regeneration capacity than older
ones. Apical and axillary buds from tubers or bulbs can be used to initiate the in vitro
culture. Furthermore, adventitious buds are generally induced by bulb scales or flower
stems. Twin scales are useful explants, although the use of underground storage or-
gans leads to serious contamination problems during the initiation and further multi-
plication phases. Flower stems have the advantage of having low endogenous contam-
ination rates compared to other tissues [18,24,36]. Vegetative segments of plants often
regenerate more easily in vitro than generative ones. Rafiq et al. [131] used basal and
tip bulb scales to micropropagate the oriental hybrid Lilium cv. Ravenna. They also
found that the explant survival rate of basal scales was higher than that of tip bulb scales.
Lapiz-Culqui et al. [136] and Patil et al. [137] used the bulb scales to cultivate different Lil-
ium cultivars. Youssef et al. [138] used the leaf as an explant in their study to increase Lilium
bulb number and size. Ozel et al. [139] used a twin-scale bulb explant to micropropagate the
endemic Muscari muscarimi. Twin scales were also used by Santos et al. [140] to propagate
Narcissus asturiensis and Kukulczanka et al. [141] to propagate Fritilaria melagris through the
same system. Kumar et al. [142] used the bulb scales of the critically endangered Fritillaria
roylei for in vitro culture. Sevindik and Mendi [143], Taheri-Dehkordi et al. [144] used the
corms as explants to propagate the C. sativus L. Furthermore, Slimani et al. [145] informed
us that the vegetative apices, apical and axillary buds, meristematic zone, segments, leaves,
ovaries, protoplasts, corms, and roots are useful to induce the somatic embryogenesis of
C. sativus L.
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Success in this initiation stage can be influenced by environmental factors encompass-
ing nutrient composition, PGRs, light exposure, temperature, atmospheric composition,
and various culture methodologies [18]. Devi et al. [135] reported that the dark conditions
were effective for somatic embryo proliferation in saffron.

5.4.3. Stage 2: Multiplication

The process of multiplication, which is a continuation of in vitro initiation, constitutes
one of the most critical stages in micropropagation. As mentioned in previous stages, leaves,
inflorescences, and bulbous structures (such as bulbs, corms, tubers, etc.) are utilized for
multiplication [53,69]. The selection of the medium to be used (solid, liquid, semi-solid, or
media types MS, B5, WPM, etc.) is crucial for achieving successful responses, in addition to
the use of different explants. The optimization of factors such as salt mixtures (essential
macro-micro elements, carbon sources, vitamins), sugar derivatives, ratios, types, and
concentrations of PGRs, light, temperature, and inductive agents is necessary [69,70]. The
concentration of the PGRs (e.g., cytokinin) is critical, as it can simultaneously promote
multiplication and development while causing adverse effects [146–149]. Each step im-
plemented here will influence both multiplication and subsequent planting stages; hence,
optimal requirements need to be determined. Unfortunately, due to the variability in
results obtained for each species and even within varieties, specific optimization efforts
are required for each plant. This situation poses one of the challenges of tissue culture.
Additionally, high production costs add to these challenges [150].

To achieve effective results at this stage, understanding the plant’s physiology and
mimicking its natural requirements based on the choices made during this phase can be
impactful. The selections made during this stage lead to different differentiations according
to the meristematic zones that will be formed as a result of stimulations in explants (somatic
tissues) [69]. In the regeneration stage, unipolar meristems give rise to shoots or roots,
which is organogenesis. Bipolar meristems, on the other hand, lead to the development of
a complete plant or microcorm, representing somatic embryogenesis [151].

PGRs can stimulate or inhibit the in vitro development of geophytes. Sochacki et al. [152]
aimed at evaluating the influence of PGRs on in vitro shoot multiplication of Tulipa L. ‘Heart
of Warsaw’, and they yielded the best performance (9.14 shoots/clump) when MS medium
was supplemented with N6-(-isopentyl)adenine (2iP) 0.1 mg/L, 1-Naphthaleneacetic acid
(NAA) 0.1 mg/L, and meta-topolin (mT) 5.0 mg/L. Additionally, this study showed that
the type of carbohydrate added to the nutrient solution had a significant effect on the shoot
proliferation of the tulip cultivar; the highest multiplication of the shoots (number of shoots
for one starting clump) was achieved with sucrose (34.33 shoots/per clump) and glucose
(35.88 shoots/per clump) as carbohydrates. Lagram et al. [128], used excised mother corm
buds under different 6-benzyl aminopurine (BAP), 2,4-Dichlorophenoxy acetic acid (2.4-D)
and NAA concentrations in MS medium. The highest bud sprouting (96.67%) and shoot
growth (8.87 cm) were obtained from 1 mg/L BAP and 1 mg/L NAA. They also evaluated
adventitious shoot formation in the explants. The highest adventitious shoot regeneration
(80%) was obtained from 0.5 mg/L NAA and 2.75 mg/L BAP. Recently, micropropagation
via organogenesis has been on the rise. Successful adventitious bud regenerations were
obtained in Lilium, Narcissus, Sternbergia, Hippeastrum, Firttilaria, Muscari, Tulip, Iris, Lach-
enelia, and Hyacinthus [111,112,118,120,138,139,153–162]. As seen in Figure 6, organogenic
structures were obtained from bulb scales in P. maritimum.
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Slimani et al. [145] explained the importance of somatic embyrogenesis for C. sativus L.
to propagate healthy corms. MS, LS, and B5 media were supplemented with the growth
regulators BA, NAA, Kinetin (Kn), Thidiazuron (TDZ), and 2.4 D tested at different concen-
trations. Ebrahimzadeh et al. [163], obtained somatic embryos by using meristem explants
of C. sativus L. cultured in LS culture medium, which included 2 µM benzyladenine (BA)
and 2 µM NAA. Sheibani et al. [164] used corm explants in MS medium supplemented
with TDZ (0, 0.1, 0.25, and 0.5 mg/L), and they obtained somatic embryos from 0.5 mg/L
TDZ. Marković et al. [165] delved into the intricate world of somatic embryogenesis in
F. meleagris, emphasizing the crucial role of PGRs in this process. Their study illuminated
that the medium without PGRs exhibited exceptional efficiency throughout the experiment,
showcasing a robust somatic embryogenic response. Moreover, the medium with lower
concentrations of PGRs also proved to be conducive to somatic embryogenesis. The pinna-
cle of morphogenetic success was achieved in a BAP/2,4-D-containing medium with the
lowest PGR concentrations. This insight into the optimal conditions for somatic embryo-
genesis opens avenues for enhanced propagation strategies, potentially revolutionizing
the large-scale production of F. meleagris. Kocak et al. [166] investigated somatic embryo-
genesis potential in various explants (ovules, divided ovary parts, leaves, and petiole
segments) from 15 different genotypes of the wild species Cyclamen persicum Mill. The
explants were cultured on a medium with specific PGRs to induce embryogenic callus. The
study found significant variations in embryogenic potential among explants and genotypes.
While petiole explants produced the most callus, ovary explants were most efficient in
forming somatic embryos. Recently, an efficient method for tulip regeneration via SE was
developed [167,168]. Some reports on SE are also available by using leaf, petiole, ovary,
anther, roots, and aseptic seedling tissues as explants in cyclamen [166,169–174]. Aseptic
seedling tissues (cotyledons, petioles, tubers, and roots) have also been used as explants to
initiate SE culture in many medicinal and endemic geophytes (e.g., Crocus, Iris, Hypoxis,
Colchicum, etc.) [135,143,163,164,175–178]. Some embryo-like structures from P. maritimum
bulb explants are shown in Figure 7A–C. Moreover, embryogenic callus and regeneration
in R. asiaticus were shown in Figure 7D,E. Thalamus-derived calli in R. asiaticus L. have
been initiated on MS medium containing the growth regulator 2,4-D and cytokinins (BA
and kinetin), according to Beruto et al. [179].
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5.4.4. Stage 3: Bulb Growth

Following the multiplication phase, in non-bulbous plants, the optimization of media
plays a crucial role in enhancing the successful rooting of developed shoots. However, this
phenomenon is not uniformly applicable to geophytes, where the acquisition of storage
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organs proves to be challenging and time-intensive [152]. This phase in geophytes is
directed towards the acquisition of shoots, primordia, and bulbs (Figure 8).
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In some plant species, the sequence involves the initial rooting of shoots followed by
subsequent bulb formation, while in others, bulbs are generated directly [18]. The induction
of bulb formation occurs through diverse mechanisms. Investigations into bulb formation
have explored the influence of various sugar types and concentrations, PGRs, light quality,
temperature, and distinct tissue culture conditions (solid, liquid, medium, and bioreactor
utilization). Sochacki et al. [152] conducted an investigation on the bulb formation of
previously multiplied Tulipa L. ‘Heart of Warsaw’ plantlets, examining various carbohydrate
types, different phase media, and PGRs. The highest bulb formation (28.00 bulbs) and the
most mature bulbs (14.50 bulbs) were achieved in a two-phase (liquid) system with 1 mg/L
PBZ and glucose. Pałka et al. [111] utilized bulb scales of Lilium candidum as explants in
in vitro MS media and assessed the impact of different light qualities (spectral compositions
of red (100%), blue (100%), and red and blue light (RB ratio 7:3), RB light was mixed in
equal proportions (50%) with green (RBG), yellow (RBY), UV (RBUV), and far-red (RBfR)
light, white LED (Wled), fluorescent lamp light (Fl), and darkness (D)) on bulb formation
without the use of PGRs. The study resulted in a bulb formation rate of 79–100% across
all explants. The best results in terms of bulb number were obtained from Fl (16.3), RBY
(13.33), and RBfR (13.33), B (12.69), RB (12.63), and Wled (14.36) treatments. The lowest
rate (3.00) was observed in plants kept in darkness. The largest bulb diameter (5.41 mm)
and the highest photosynthetic pigment content were obtained from the RBG treatment.
Darkness and red light induced etiolation. Additionally, soluble sugars in bulbs were
stimulated by darkness and blue light. Lagram et al. [128] used different sucrose, IBA, and
NAA concentrations on corm production and root regeneration in 1

2 MS. Furthermore, they
considered the photoperiod effect (16 h/8 h and dark conditions) on the parameters. They
obtained the best results in 1

2 MS, 6% sucrose, 1 mg/L NAA, and dark conditions with
100% corm production, 7.9 g mini-corm weight, 93.8% root formation, and a root number
of 14.9 per mini-corm. In the realm of bulb growth in F. meleagris, Marković et al. [165]
unraveled key factors influencing the development of bulbs in vitro. Their investigation
revealed that bulbing ability remained relatively high in the absence of PGRs and, for
the most part, was unaffected by varying concentrations of the tested PGRs. Notably, the
study identified that the lowest cytokinin concentration, in combination with low auxin,
significantly enhanced bulb formation when the cultures were transferred to a higher
temperature. This finding underscores the importance of temperature modulation and
specific PGR combinations for optimizing bulb growth in F. meleagris. Understanding these
dynamics can contribute to refining propagation methods and accelerating the scale-up of
bulb production for this species. Azeri and Öztürk [180] investigated the most effective
hormone treatment to induce and produce Lilium monodelphum M. Bieb, var. Armenum in
tissue culture rapidly and efficiently. Optimal bud regeneration (11.67) was achieved in a
medium containing 3.0 mg/L TDZ, 0.25 mg/L NAA, and 0.1 mg/L GA3. Additionally, the
highest microbulb formation (15.83) was observed in a medium comprising 2.0 mg/L PAC,
0.2 mg/L NAA, and 0.1 mg/L GA3.

In recent years, the use of bioreactor systems has shown an increase in healthy plant re-
generation. Studies on the regeneration of bulbs, corms, rhizomes, microtubers, shoots, and
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subsequent rooting, as well as somatic embryogenesis, have been on the rise [181]. In their
published article, Murthy et al. [181] indicated the proliferation of Lilium hybrids and Allium
sativum bulbs, C. sativus and Alocasia amazonica corms, microtubers of Solanum tuberosum va-
rieties, and rhizomes of Cymbidium sinense using various bioreactor systems [110,182–194].
According to Murthy et al. [181] the selection of an appropriate bioreactor system is crucial
due to various factors (design, principle, inoculation density, aeration, temperature, light
intensity, etc.) that influence the regeneration of propagules. To minimize losses of small
bulblets and prevent dormancy, direct transplantation of plantlets is often preferred.

Rooting can be improved through various methods, such as adding auxin and/or
activated charcoal (AC) to the culture medium, adjusting the auxin-to-cytokinin ratio, and
using half-strength salts and sucrose. In the study by Azeri and Öztürk [180], microbulbs
were subjected to rooting media with indole 3-butyric acid (IBA 0.5 and 1.0 mg/L). Suc-
cessful plant development, with root numbers of 6.4 and 5.9, respectively, was observed in
media containing 0.5 and 1 mg/L IBA.

For successful acclimatization, hardening is essential. This process enhances tolerance
to moisture stress and prevents hyperhydricity [18]. In Rafiq et al. [131] study on Oriental
Lilium hybrid cv. Ravenna, varying combinations of IBA and NAA significantly influenced
microshoot rooting behavior. IBA outperformed NAA, with the highest rooting (92.71%)
and primary root characteristics observed in a medium supplemented with 1.50 mg/L
IBA. Explants showed differences, with basal scale segments exhibiting the highest rooting
(92.71%), percentage root number/shoot (10.02), and length of primary roots (2.17 cm),
while tip scale segments had the lowest (77.55%, 9.08, 1.65 cm). Notably, primary hardening
influenced plantlet survival, with the highest ex vitro survival (98.96%) in plantlets from
IBA (1.5 mg/L)-fortified media, particularly in basal scale segments. Rooted plantlets
were hardened in media containing perlite and vermiculite (1:1). This suggests that IBA-
treated cultures resulted in superior ex vitro survival, possibly due to enhanced rooting
characteristics such as root number and length.

Direct bulblet induction in certain genotypes can provide several advantages, includ-
ing the elimination of in vitro rooting, prevention of hyperhydricity, avoidance of the need
for hardening, increased survival rates, and a shortened bulb production period. Condi-
tions conducive to bulb formation involve high sucrose concentrations, the application of
plant growth retardants, exposure to low temperatures, and the utilization of aged shoots.
It’s worth noting that in vitro formed bulblets may experience spontaneous dormancy, as
reported by Kim and De Hertogh [18]. In the research conducted by Chib et al. [84], they
experimented with a high sucrose concentration combined with PGRs to enhance efficiency
over a 90-day timeframe. The most favorable outcomes were observed when using a combi-
nation of MS medium, TDZ, IAA, activated charcoal, and 4% sucrose, resulting in a notable
68% efficiency. Lower sucrose concentrations led to sluggish growth, while concentrations
exceeding 4% resulted in cell death, as evidenced by the blackening of the callus. Different
sucrose, BA, and 2,4D concentrations in MS media affected the growing bulbs in in vitro
conditions for P. maritimum [95].

5.4.5. Stage 4: Dormancy Breaking

Some geophytes produce new buds that enable vegetative propagation through their
underground storage organs [195,196]. After an active growth and flowering period, senes-
cence of aboveground tissues is followed by root senescence, leading the plant into a
dormant phase with no visible organogenesis. To survive under unfavorable environmen-
tal conditions that are not conducive to their development and proliferation, these organs
enter a state of dormancy. Seeds, apical and vegetative buds, floral buds, bulbs, corms, and
tubers can enter dormancy. Most geophytes show dormancy as an integral part of their life
cycle [197]. Dormancy is characterized by the inability to initiate growth from meristems
under favorable conditions. In geophytes, dormancy can manifest in three different types:
endodormancy (internal inability to grow), ecodormancy (environmental conditions), and
paradormancy (apical dominance, hormonal status, metabolite-sugar levels) [196,198–200].
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When evaluating the concepts of dormancy and true dormancy, it is important to note
that true dormancy persists until dormancy is completely terminated, even if favorable
environmental conditions are present. Unlike many other plants, geophytes do not exhibit
true dormancy, as activities continue even during dormant phases. Most bulbous structures
obtained through tissue culture display dormancy. During in vitro regeneration, bulbs and
other storage organs such as tubers and corms typically undergo dormancy, similar to their
behavior in natural conditions. The level of dormancy may vary depending on factors such
as sucrose concentration, age of the bulb, and environmental conditions [18,116,201]. The
growth and sprouting of geophytes in vitro are influenced by dormancy, bulb size, and ma-
turity [202]. Therefore, an efficient in vitro protocol, including dormancy release, is crucial
for the rapid, efficient, and valid commercial exploitation of all horticultural geophytes. To
overcome this constraint, in some Fritillaria species, different temperature regimes were
tested under in vitro conditions. Kizil and Khawar [158] found the bulblet diameter in-
creased on MS medium with 50 mg/L sucrose after 30 days at 4 ◦C. Successful rooting of
Fritillaria bulblets was achieved on MS medium with 0.5 mg/L NAA. Marković et al. [165]
carried out bulb-scale culture with different PGR combinations for four weeks at 7 ◦C in
F. meleagris. They found that in the control medium (PGR-free medium), shoots per explant
were higher and reached a maximum at the end of the chilling. In the study conducted
by Carasso and Mucciarelli [203], seeds of F. tubiformis Gren. & Godr were chilled at 4 ◦C
for 30, 60, and 90 days in 1% agar medium. At the end of cold stratification, seeds were
disinfected, and immature zygotic embryos were rescued from seed coats. The highest
number of somatic embryos occurred in zygotic embryos subjected to 30 days of cold
stratification on MS medium supplemented with 8.88 µM BA and 2.68 µM NAA. Successful
conversion of somatic embryos into bulblets necessitated transfer to a maturation medium
supplemented with 4% (w/v) sucrose. In the presence of 4.92 µM IBA, bulblets sprouted
and developed roots, leading to the establishment of newly formed plants suitable for pot
cultivation. Çakmak et al. [162] obtained the F. persica in vitro bulblets from MS medium
containing 20 g/L sucrose. They found major constraints during the acclimatization stage
unless a cold treatment (4 ◦C for 2 months) was applied for dormancy breaking of bulblets.

Bulblets and other storage organs produced in vitro are easily handled, transported,
and stored, which makes them preferable propagation plant material. The dormancy
period facilitates global commercial handling, and, consequently, the precise regulation of
geophyte dormancy and geophyte dormancy release becomes imperative for the efficient
management of their production, shipping, and utilization [199].

5.4.6. Stage 5: Ex Vitro Acclimatization and Growth

Transplanting ex vitro plantlets to greenhouse conditions requires specific care, a
gradual lowering in air humidity, and a progressive adaptation to high light levels [18].
However, bulblets and other storage organs produced in vitro do not require an extensive
acclimatization procedure after transfer to soil. In the last step of micropropagation, in vitro
bulblets are produced for many flower bulbs: Hippeastrum [157], Hyacinthus [204], Iris [205],
Lilium [138], Muscari [139], Narcissus [206], and Tulip [207]. In some cases, such as lily and
hyacinth, in vitro bulblets are formed under the normal tissue culture conditions used in the
final stage of micropropagation; in other cases, a specific bulb-inducing treatment should
be performed (e.g., in tulip and iris). The size and weight of the bulblets produced in vitro
greatly can affect their further performance under in vivo conditions [208]. In addition,
it was found that sufficiently large lily bulblets were able to sprout with a stem instead
of a rosette, enhancing in vivo growth [209]; this was related to a switch in ontogenetic
development from juvenile to adult vegetative status. The in vitro-developed bulblets of
F. persica were transplanted under in vivo conditions according to a two-step procedure.
Ex vitro bulblets were first transferred in trays containing compost and placed in growth
cabinets under a 16 h light photoperiod at 23 ◦C and 90% humidity over a 2-week period.
Following this, the bulbs were moved to in vivo conditions, where satisfactory survival
and noteworthy flowering were observed [162]. In the study by Azeri and Öztürk [180],
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microbulbs were subjected to rooting media with IBA (0.5 and 1.0 mg/L). Successful
plant development with root lengths of 6.4 and 5.9, respectively, was observed in media
containing 0.5 and 1 mg/L IBA. All plantlets obtained through tissue culture demonstrated
survival when transferred to the soil.

The different substrates and their mixtures used during the acclimatization could
affect the success of this stage. However, in the literature, we have several successful
examples. Yasemin et al. [95] transferred the P. maritimum plantlets into sand, sand:peat
(1:1), and peat, and the survival rates were more than 90%. Rafiq et al. [131] transferred
the rooted plantlets into media containing perlite and vermiculite (1:1). The survival
rates were more than 80%. Fritillaria ruthenica was acclimatized to a coconut fiber and
sand (3:1) mixture in a greenhouse. The survival rate was found to be 72% [118]. In
Cyclamen, İzgü et al. [169] obtained embryogenic-like structures (ELSs), which further
germinated on PGR-free culture initiation medium (CIM). Developed plantlets were trans-
planted to pots with peat and sand, and successful acclimatization was achieved, with
survival rates of 70%, 63%, 54%, and 25% for C. mirabile, C. pseudibericum, C. cilicium, and
C. parviflorum, respectively.

6. Somaclonal Variation

In vitro isolation and culture of explants often lead to callus formation, influenced
by species and a high auxin-to-cytokinin ratio. Continuous callus culture may result in
genetic variation and the loss of regeneration potential over generations. Callus cultures
in geophytes have been used for plant regeneration, cell suspension production, and
isolating somaclonal variants [18,210]. The evaluation of somaclonal variation is crucial
for ensuring the success of in vitro propagation to achieve true-to-type clones. While
somaclonal variations may pose challenges in clonal propagation, they can be advantageous
in breeding programs [211]. Van Harmelen et al. [212] determined somaclonal variations
from callus derived from bulb scales of L. longliflorum. The callus was kept for 3 years
at 20 ◦C in the dark, and after this period, regeneration was detected. Their findings
showed mutations in the regenerated plants, such as dwarf plants, malformation of the
leaves, and male sterility. The use of molecular markers is one of the most effective
strategies for monitoring somaclonal variations, and ISSR markers have been used in
many studies [213–215]. Memon et al. [216] detected somaclonal variation among in vitro
propagated cormels of gladiolus using RAPD and ISSR molecular markers. The observed
variations had varying degrees in the mother cormels and were evident across different
varieties of gladiolus. Asadi et al. [217] found that indirect embryogenesis resulted in
somaclonal variation, while direct embryogenesis produced uniform plants in Galanthus
transcaucasicus. Higher NAA concentrations increased somaclonal variation, with the
highest observed at the maximum NAA concentration. ISSR analysis showed no somaclonal
variation in plants at low BA and NAA concentrations, but significant variation occurred at
high NAA concentrations. Kritskaya et al. [146] investigated the somaclonal variations in
Tulipa suaveolens with ISSR markers. They obtained bulblets through direct organogenesis,
showing morphological similarities with intact plants. However, ISSR analysis detected a
notable level of somaclonal variability, ranging from 13.9% to 15.8%.

7. New Approaches and Future Perspectives for Flower Bulb Micropropagation

As presented in this chapter, all micropropagation stages of the flower bulbs need opti-
mization. Each stage depends on variable factors such as plant genotype, culture medium,
different types and concentrations of plant growth regulators (PGRs), etc. The optimization
of a tissue culture medium for specific purposes involves numerous components and com-
binations, requiring considerable time and expertise. Integrating artificial intelligence (AI)
into the micropropagation of plants proves to be a promising approach to overcoming the
challenges associated with in vitro culture. AI models and optimization algorithms have
emerged as effective tools for addressing this complexity [218,219]. AI models started to be
applied to increase the efficiency of tissue culture studies such as in vitro sterilization, callus
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induction, shoot multiplication, organogenesis, somatic embryogenesis, rooting, acclimati-
zation stages, and in vitro haploid production. By categorizing the diverse data derived
from plant tissue culture, including binary inputs (e.g., non-embryogenic/embryogenic
callus), discrete variables (e.g., the number of roots, shoots, and embryos), continuous
variables (e.g., length of shoots or roots, and callus weight), time-series data, temporal data,
fuzzy inputs (e.g., the degree of vitrification, callus color, and the developmental stages of
embryos), and categorical variables (e.g., the type of reaction, or the type of phytohormones
and carbohydrate sources), AI facilitates a comprehensive understanding of the interactive
nature of these variables [218]. These computational models have found application across
various plant species, and their potential efficacy extends to flower bulbs. Notably, an
investigation into the capacity of microshoots to form corms in Gladiolus hybridus employed
self-organizing mapping and artificial neural network (ANN) models [220]. The utilization
of these models underscores the versatility of AI in advancing micropropagation techniques
specific to flower bulbs, exemplifying its potential to contribute significantly to the opti-
mization and enhancement of bulbous plant propagation methodologies. However, despite
their potential, the use of AI and OA in plant tissue culture processes could be limited
due to complex definitions and computational algorithms [218]. Advances in biotechnol-
ogy should be coupled with advances in AI to reach the goal of new impacts in tissue
culture processes.

Like in other plants, gene editing studies are conducted in geophytes as well. In
the context of ongoing advancements in genetic engineering, the significance of tissue
culture in relation to gene editing is particularly evident [221] Particularly in geophytes of
economic importance with high medicinal and aromatic values, we can come across genetic
editing studies aimed at increasing the content of important compounds in storage organs
or plant parts. Ornamental geophytes, with large genomes, pose research complexities.
Kamo et al. [210] emphasized that the application of modern biotechnological approaches
to geophytes faces challenges in developing transgenic varieties. Issues include the lack of
efficient transformation systems and difficulties in gene integration into specific genome
regions. The initial phase in achieving the successful development of genetically modified
plants involves creating a straightforward, effective, and practical protocol for transferring
and integrating recombinant DNA molecules into host cells. The challenges associated
with genetic transformation in plants, such as the resistance of cells to in vitro culture and
the genotype-dependent nature of traditional methods, underscore the need for efficient
gene delivery systems. The utilization of advanced techniques like pollen transfection, as
demonstrated in a study by [222], represents a breakthrough in achieving large-scale, fast,
and efficient transfection in lilies. Subsequently, the second step involves regenerating the
recombinant cells into mature plants. Researchers have explored various modifications
in inoculation, co-cultivation, and regeneration media to devise an efficient gene trans-
formation protocol [223]. The integration of the CRISPR/Cas9 system further amplifies
the potential for precise gene editing, allowing for site-directed mutagenesis, sequence
insertion, and modulation of gene expression. Protoplasts, an essential component of plant
tissue culture, play a crucial role in studying various aspects of plant development, phys-
iology, and genetics. The integration of CRISPR/Cas9 technology into protoplast-based
systems highlights the convergence of molecular biology tools with tissue culture methods,
offering unprecedented opportunities for the study of molecular mechanisms and the
advancement of plant breeding techniques [221]. This approach also touches geophytes,
even though geophytes have a lot of challenges. For example, C. sativus contains numerous
aromatic and volatile compounds. Genetic editing has been targeted to enhance the content
of crocin, picrocrocin, and safranal apocarotenoids in this plant, as they are responsible for
color, bitter taste, and aroma. Preliminary CRISPR studies have been conducted for this
purpose [86]. Biotechnological research on geophytes contributes to expanding our under-
standing of plant biology. Using the CRISPR method, it is possible to enhance and replicate
many important medicinal and aromatical contents of geophytes, overcome difficulties in
their multiplication, and increase tolerance to biotic and abiotic stresses.
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8. Conclusions

Tissue culture techniques can reply to the requirements of present-day floriculture,
asking for novelties and good quality of the starting plant material to introduce in the
productive flow. Tissue culture has found great application in the flower bulb industry,
and many new methods of micropropagation have been developed over the last several
decades. Many research papers are aimed at describing micropropagation protocols for
specific species, but, as deduced from our review, there is a need for a multifunctional
approach able to face the important challenges that are still present. Aside from the insights
on biochemistry and physiology, molecular biology and artificial intelligence could be
of great help in advancing the establishment of valuable tissue culture protocols for new
genera/species.
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111. Pałka, P.; Cioć, M.; Hura, K.; Szewczyk-Taranek, B.; Pawłowska, B. Adventitious organogenesis and phytochemical composition
of Madonna lily (Lilium candidum L.) in vitro modeled by different light quality. Plant Cell Tissue Organ Cult. (PCTOC) 2023, 152,
99–114. [CrossRef]

112. Van Aartrijk, J.; Blom-Barnhoorn, G.J. Adventitious Bud Formation from Bulb-scale Explants of Lilium speciosum Thunb. in vitro
Interacting effects of NAA, TIBA, wounding, and temperature. J. Plant Physiol. 1984, 116, 409–416. [CrossRef]

113. Amaki, W.; Shinohara, Y.; Hayata, Y.; Sano, H.; Suzuki, Y. Effects of bulb desiccation and storage on the in vitro propagation of
hyacinth. Sci. Hortic. 1984, 23, 353–360. [CrossRef]

114. Gavinlertvatana, P.; Read, P.E.; Wilkins, H.; Heins, R. Influence of Photoperiod and Daminozide Stock Plant Pretreatments on
Ethylene and CO2 Levels and Callus Formation from Dahlia Leaf Segment Cultures1. J. Am. Soc. Hortic. Sci. 1979, 104, 849–852.
[CrossRef]

115. Hosoki, T.; Sagawa, Y. Clonal Propagation of Ginger (Zingiber officinale Roscoe) through Tissue Culture1. HortScience 1977, 12,
451–452. [CrossRef]

116. Stimart, D.P.; Ascher, P.D. Developmental Responses of Lilium longiflorum Bulblets to Constant or Alternating Temperatures in
Vitro1. J. Am. Soc. Hortic. Sci. 1981, 106, 450–454. [CrossRef]
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