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In vitro tissue culture technologies provide novel tools for improving plant production.
Organogenesis and somatic embryogenesis are the two pathways for plant regeneration,
and have been widely used for in vitro micropropagation and germplasm conservation
of horticultural crops [1–5]. This Special Issue collects eleven publications, including nine
research articles, one review and one essay article that address in vitro plant regeneration,
micropropagation and germplasm conservation of horticultural crops. They have already
attracted great interest as about 28,000 reads and more than 35 citations have been recorded.

In vitro tissue culture provides important approaches for both propagation and con-
servation of cultivated and wild species [6–10]. Working on a perennial herbaceous wild
species, Basiri et al. [11] established an efficient micropropagation system for indirect shoot
regeneration from root explants of Foxtail lily (Eremurus spectabilis). In vitro callus induc-
tion and indirect shoot regeneration were induced from root explants cultured on suitable
culture media. The shoot development from callus was highly dependent on the saline
formulation of the basal medium and the concentration of cytokinin. Regenerated plantlets
were successfully rooted in vitro and re-established following the acclimatization process.
The results of the present study are expected to contribute to in vitro propagation and ex
situ conservation of this species. Furthermore, due to the medicinal properties of this wild
species, this protocol has potential applications in the large-scale production of secondary
metabolites under laboratory conditions.

In a similar study of indirect organogenesis, Tang et al. [12] successfully established
a protocol for the propagation of Agapanthus praecox subsp. orientalis ‘Big Blue’. A callus
induction rate of 100% was achieved in root tips collected from tissue-cultured plants grown
in a medium containing picloram, kinetin and naphthalene acetic acid (NAA). Adventitious
shoots formed in the callus, and further developed into plantlets with roots in 90 days.
About 93% of the plants were re-established after acclimatization. The authors found that
the concentrations and types of plant growth regulators were crucial to enhance the process
of callus and shoot regeneration. This study provided an effective tissue culture system
for micropropagation of A. praecox, and would facilitate further practical applications for
germplasm conservation and genetic improvement of this species.

Using flower buds as explants for micropropagation of Rhododendron decorum, Wu
et al. [13] described a simple and efficient protocol for in vitro regeneration via indirect
organogenesis. Effects of basal medium and plant growth regulators on the formation and
proliferation of adventitious shoots and rooting were studied. The highest callus induction
(95%) and shoot differentiation (91%) rates were achieved from explants grown on Wood
Plant Medium (WPM) supplemented with thidiazuron and NAA. Shoots were successfully
rooted in an auxin-enriched medium and more than 90% of plants survived acclimatization.
The in vitro regeneration protocol optimized in this study has potential applications in the
genetic improvements of this species.
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Lee and Chang [14] reported an efficient micropropagation procedure for red-fleshed
‘Da Hong’ pitaya (Hylocereus polyrhizus). To efficiently reduce bacterial and fungal infections,
a common problem in traditional vegetative propagation, in vitro cultures were initiated
from disinfected pitaya seeds. Robust and healthy plantlets were produced within eight
weeks and successfully transplanted into the field without any signs of pathogenic infec-
tion. ‘Da Hong’ pitaya plantlets grown on media supplemented with activated charcoal
(AC) exhibited increased growth and development of plantlets. Shoots were efficiently
micropropagated when cultured on a culture medium supplemented with 200 mg/L AC
and 0.10 mg/L NAA. Although spontaneous rooting occurred during shoot development,
root density was almost two-fold higher in plantlets cultured in a medium supplemented
with 0.20 mg/L NAA. This protocol supported the production of healthy seedlings in
self-pollinating pitaya and should be tested for additional accessions.

The use of liquid media in bioreactors has potential applications to maximize mi-
cropropagation and facilitate automation [15–17]. The study of Gago et al. [18] used
commercial RITA© bioreactors for the micropropagation of two local plum varieties of
Prunus domestica from the northwest of Spain. The authors investigated the effect of light
intensity, supplementation of CO2-enriched air and sucrose on the proliferation, rooting
and acclimation of the shoots produced in bioreactors. They found that plum shoots cul-
tured in bioreactors under high light intensity and CO2 enrichment grew and proliferated
with 1 and 3% sucrose, but shoot growth was poor when cultured on the medium without
sucrose. Successful rooting and acclimation were achieved regardless of sucrose presence
in the culture medium in bioreactors, but a lower proportion of rootable shoots occurred
when shoots were multiplied without sucrose. Comparing micropropagation produced in
bioreactors with that in jars containing semisolid medium, the authors demonstrated that
shoot multiplication was much more efficient in bioreactors than in jars. Shoots of both
plums cultured in jars or bioreactors with 3% sucrose were successfully rooted irrespective
of the culture system. The results of this research provided a novel approach for the massive
propagation of plum trees and may provide new perspectives for the propagation of other
related plant species.

Also working on propagating plant material in liquid media by using temporal immer-
sion systems, Pérez-Caselles et al. [19] developed an effective micropropagation protocol
for the apricot cultivars ‘Canino’ and ‘Mirlo Rojo’. The authors also investigated the effect
of the application of silver nanoparticles (AgNPs) on the development of in vitro cultures
and their penetration into plant tissue. The addition of AgNPs enhanced the overall plant
growth of apricot cultivars. Moreover, the elimination of calcium chloride in the culture
medium increased (23-fold) the AgNPs’ penetration into the plant tissue without any detri-
mental effect on the micropropagation of apricot cultivars. Their focus on the increased
silver intake of plant tissues will facilitate further investigation on the virucidal activity of
AgNPs in plant disease management. Therefore, this study provided a basis for further
applications of AgNPs against pathogens in tissue-cultured apricot plants in bioreactors.

In addition to mass propagation and the production of healthy plant materials, tis-
sue culture technology facilitates the safe exchange of plant material within and across
countries [20–24]. Li et al. [25] proposed an interesting in vitro incubation system for
the long-distance shipping and exchange of plant germplasm based on slow growth in a
vacuum-sealed microplate. Potato and ginger were used as model crops to optimize the
protocol, which was later applied to sweet potato. The effects of light regime, temperature,
iron concentration, plant growth retardants and package types on plant viability were
assessed. Cultures were safely transported across thousands of kilometers within China
without package or sample damage. Plantlets were recovered and genetic fidelity was con-
firmed. This protocol is valuable for the safe movement and distribution of tissue-cultured
plant germplasm.

Genetic improvements in plant breeding are dependent upon the availability of and
easy access to plant genetic resources [6,21,26,27]. In vitro culture technologies have been
widely used to establish medium-term (in vitro conservation) and long-term (cryopreserva-
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tion) preservation methods for the germplasms of horticultural plants [28–31]. Effective
cryopreservation procedures have been identified for cryopreserving seeds, pollen, cell
cultures, dormant buds and shoot tips [32–36]. Ðordević et al. [37] reported a successful
conservation of plum pollen, in which pollen was harvested from flowers in the late balloon
stage, adjusted to a moisture content between 6.1 and 6.8% (dry weight basis), and stored
in darkness at 4, −20, −80 and −196 ◦C). Pollen that was stored in sub-zero temperatures
continued to have stable viability after 12 months, while a temperature of 4 ◦C was only
suitable for short-term storage of up to 3 months in all tested genotypes. This study pro-
vided an easy and practical method to conserve plum pollen for up to one year but also a
cheap alternative for short-term storage.

Aiming at the establishment of an efficient procedure for maintaining specific gene
combinations of citrus and pineapple cultivars, Ozkaya et al. [38] and Villalobos-Olivera
et al. [39] developed shoot tip cryopreservation methods using droplet-vitrification. Ozkaya
et al. [38] focused on critical points pre- (pretreatment of donor plants, preculture and de-
hydration conditions) and post-freeze (recovery medium) in cryogenic procedures for
enhancing shoot tip recovery of four citrus cultivars. They evaluated different strategies
for improving the cryotolerance of shoot tips to vitrification solutions and investigated
recovery media formulations to further increase post-cryopreservation recovery. Villalobos-
Olivera et al. [39] investigated the morpho-anatomical and physiological characteristics of
cryo-derived pineapple plants after acclimatization. Their study showed that acclimatized
pineapple plantlets obtained from cryopreservation had comparable development to con-
ventionally micropropagated and non-cryopreserved plants after 45 days of growth in the
greenhouse. These efficient procedures provide valuable information on the use of droplet-
vitrification cryopreservation for setting up cryobanks of citrus and pineapple plants.

Micrografting has been widely used to produce virus-free plants and for the formation
of whole plants, particularly when shoots (scions) have difficulty forming adventitious
roots [40–42]. In a comprehensive review, Wang et al. [43] addressed the application of
micrografting to improved micropropagation of horticultural species in the 21st century
and discussed factors affecting the success of micrografting. The practical aspects and
applications of in vitro micrografting discussed in this review paper should attract the
attention of readers and support basic and applied research, as well as the implementation
of in vitro micrografting within tissue culture laboratories.

In conclusion, the papers collected in this Special Issue provide a representative and
valuable collection of the applications of the in vitro tissue culture technologies used for
horticultural species. The Special Issue also prospects for future studies on the application
of developed technologies. We hope that the information described in this Special Issue
will promote further research and practical implementation of biotechnologies for crop
improvement and germplasm conservation.
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