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Abstract: In apple cultivation, the total nitrogen content is an important indicator of plant growth,
fruit quality, and yield. Timely monitoring of growth becomes imperative, since an imbalance, either
in deficiency or excess nitrogen, can result in physiological disorders, adversely impacting both the
quantity and quality of fruit. Leaf nitrogen content can be determined using simple chlorophyll meters
or destructive testing; however, these methods are time-consuming. However, by employing spectral
imaging technology, it is possible to swiftly predict leaf nitrogen content. This study estimated
the total nitrogen content in apple trees via hyperspectral imaging and machine learning-based
regression analysis (partial least-squares regression (PLSR), support vector regression (SVR), and
eXtreme gradient boosting regression (XGBoost). Additionally, to reduce computational costs and
improve reproducibility, spectral binning was divided into three stages (4, 8, and 16 bins), and models
were compared with a 2-binning estimation model. The analysis focused on green, red, red edge, and
near-infrared (NIR) spectra, with 5–10 selected wavelengths, and the SVR-based prediction model
showed a similar or greater performance to that of the full spectrum. At 4- and 8-binning, the selected
wavelengths were similar to those at 2-binning, maintaining similar prediction model performance.
However, at 16 bp, the performance of the prediction model decreased owing to spectral data loss,
leading to a significant reduction in wavelengths for nitrogen content estimation. These results can
support informed nitrogen fertilization decisions, enabling precise, real-time monitoring of nitrogen
content for enhanced plant growth, fruit quality, and yield in apple trees. Additionally, the selected
wavelengths can be considered in the development of new types of multispectral sensors.

Keywords: leaf nitrogen concentration; hyperspectral imaging; apple tree; machine learning; variable
selection

1. Introduction

Apple (Malus pumila Mill.) is a perennial crop belonging to the Rosaceae family, and
careful selection of suitable cultivation sites based on geographical and environmental
conditions is needed because of its long-term cultivation in a single location. Furthermore,
in the cultivation of fruit trees, it is crucial to supply the right amount of nutrients during key
stages. During these stages, nitrogen is the most critical factor influencing both vegetative
growth and the quality and quantity of fruit. Insufficient nitrogen weakens plant growth,
resulting in poor fruit development and a significant decrease in yield and quality [1].
In contrast, an excess of nitrogen causes assimilated nutrients to be consumed primarily
for the growth of stems and leaves, causing the plant to grow excessively and leading to
fruit disorders such as bitter pits or corky tissue [2]. As the fruit size increases, coloration
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becomes inadequate and maturation is delayed, resulting in rapid quality deterioration
during storage. Furthermore, prolonged vegetative growth leads to a decrease in nutrient
accumulation during storage and delays plant maturation, increasing susceptibility to frost
damage. Therefore, timely fertilization is crucial for effective cultivation management [3–6].

Remote sensing technology, which observes characteristics and phenomena using sen-
sors that are mounted on platforms such as satellites and aircraft without physical contact
with a target, is gaining attention. This technology utilizes reflected or radiated electro-
magnetic energy to observe desired subjects. Recently, advancements in drone technology,
satellites, and high-resolution sensor technology, coupled with the integration of big data
and AI, have been utilized in various fields, such as geology, marine science, defense, and
the environment, where on-site surveys are challenging, not only for urban and territorial
planning [7]. In agriculture, various methods, including real-time monitoring of crop nutri-
ents [8], monitoring of moisture levels [9,10], disease and pest diagnosis [11], crop yield
assessment [12–14], cultivation area estimation [15], early prediction of harvest timing, and
forecasting of harvest quantity and quality [16,17], are actively utilized. Such applications
signify a significant stride toward enhancing agricultural productivity, efficient resource
management, and sustainability. By enabling predictive modeling and precise agricultural
management, agriculture can progress toward more sustainable and efficient farming activ-
ities, contributing to income growth and environmental preservation. A typical RGB sensor
covering the visible spectrum represents information for only three to ten wavelengths,
whereas multispectral sensors, including near-infrared sensors, provide information for
the same range of wavelengths. In contrast, hyperspectral sensors can capture information
for as few as several dozen to several hundred wavelengths. However, the increasing size
of spectral data leads to higher costs, complex data processing, and challenges such as
signal-to-noise ratio (SNR) degradation [18]. Therefore, postacquisition preprocessing and
minimization of data loss are necessary for effective data handling. Regression analysis is
a technique that utilizes one or more independent variables (x) to explain the dependent
variable of interest using a mathematical function. The types of regression analysis include
linear regressions, such as simple and multiple linear regressions, and nonlinear regression
analyses, such as tree-based and polynomial regressions. Linear regression has the advan-
tages of simple computations, easy model interpretation, and rapid analysis [19]; however,
linear regression is sensitive to outliers and may result in decreased model accuracy when
the relationships between variables are not linear. Addressing this limitation increases
model accuracy by accounting for nonlinear relationships through higher-order terms,
compensating for the disadvantages of linear regression [20]. However, as the number of
interaction terms increases, the calculation becomes more complex and requires more time,
and a higher bias can lead to overfitting (bias–variance tradeoff). Therefore, it is challenging
to definitively state which regression analysis is better based on the independent variables
concerning the subject of analysis. Finally, it is important to compare the performance of
the models, calculated using both linear and nonlinear regression analyses and to select a
model with high reproducibility. This approach ensures the selection of a reliable model
through a performance comparison.

Based on the described developments, focused research is underway to apply similar
methodologies to orchard cultivation. Studies utilizing hyperspectral imaging have been
conducted to predict carbohydrate content, which is associated with fruit quality, achieving
a high prediction performance of over 75% [21]. Additionally, research focused on pre-
dicting potassium levels using a combination of various vegetation indices derived from
hyperspectral imaging has been carried out. Among the diverse vegetation indices, the
combination of red edge and blue wavelengths in the derived DVI (Difference Vegetation
Index) exhibited the highest performance, with an R2 value of 0.899 [22].

In this study, we developed a model to predict the leaf nitrogen content of apple
trees via hyperspectral imaging by (1) conducting regression analysis (partial least-squares
regression, support vector regression, and eXtreme gradient boosting regression) using
both the full spectrum and selected wavelengths, followed by a comparison of the eval-
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uation performances; and (2) reducing the spectral resolution through spectral binning
and performing regression analysis using both the full spectrum and selected wavelengths,
followed by a subsequent comparison of the evaluation performance.

2. Materials and Methods

This study was conducted over two years, from 2021 to 2022, at the experimental
field of the National Institute of Horticultural & Herbal Science located in Wanju-gun,
Jeollabuk-do, Republic of Korea (35◦49′42.8′′ N, 127◦01′52.9′′ E). Two-year-old nursery
stocks of ‘Hongro/M.9’ were used for the experiment, and they were subsequently grafted
onto potted rootstocks. The potting mixture was prepared by mixing horticultural soil,
loess soil, and perlite at a ratio of 5:4:1. The plants were planted at intervals of 3 m × 2 m,
with each treatment plot accommodating 38 trees. Nitrogen fertilization was carried out by
dividing ammonium nitrate (NH4NO3) into fertilizer amounts of 171 g/year, 43 g/year,
and 0 g/year for each plot, after which the fertilizer was diluted in 2 L of water.

2.1. Hyperspectral Data

The hyperspectral imaging system was composed of a hyperspectral sensor (Fx10,
Specim Spectral Imaging Ltd., Finland) that operates in the wavelength range of 400–1000 nm,
with 224 channels, a field of view of 38◦, and a spectral resolution of 5.5 nm based on the
2-binning line scan method. In addition, the system included a rotator mounted at the
bottom (RS10, Specim Spectral Imaging Ltd., Oulu, Finland) and a reference board with 99%
reflectance (Spectralon, Labsphere, Inc., North Sutton, NH, USA) to correct for variations
in sunlight. In addition, a rotator (RS10; Specim Spectral Imaging Ltd., Oulu, Finland)
attached to the bottom and a reference board (Spectralon, Labsphere, Inc., North Sutton,
NH, USA) with 99% reflectance to compensate for solar variability were used in the system
setup. To prevent image distortion during hyperspectral imaging, the rotation radius
of the rotator was set to 30◦. Prior to capturing the main image, a dark current image
was acquired to eliminate noise caused by the heat generated during sensor operation.
The reference board was then placed beside the subject, and images were acquired using
dedicated imaging software (Lumo Scanner, Specim Spectral Imaging Ltd., Oulu, Finland).
The acquired images were processed using hyperspectral image processing software (ENVI
5.3, Exelis Visual Information Solutions, Boulder, CO, USA). Before image processing, the
images were subjected to a preprocessing phase that included dark current correction and
radiometric correction. Normalized images were subsequently applied to a vegetation
index, specifically the NDVI-GNDVI, as described in Equation (1), to separate the canopy
area from the background.

NDVI−GNDVI =
(NIR− Red

NIR + Red

)
−

(NIR−Green
NIR + Green

)
(1)

The images were converted into vegetation indices utilizing density slices to separate
the canopy from the background based on a designated threshold. Subsequently, the canopy
section was designated as the region of interest, and the reflectance values were extracted
(Figure 1).

As depicted in Figure 2, in shadowed regions, where light absorption and reflection are
minimal, noise occurs. When comparing spectral curves between areas with shadows and
those without, reflectance values exhibit a difference of approximately 0.1 to 0.5 or more
depending on the wavelength. Since such differences can lead to data errors in predicting
nitrogen content, histograms were generated for each wavelength. Subsequently, threshold
values were set to minimize the impact of shadows and delineate the regions. To reduce
the spectral resolution of the extracted hyperspectral data, the original 2-binning images
were partitioned into 4-binning, 8-binning, and 16-binning.
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Figure 2. Comparison of spectral curves (Red line: 650 nm, Green line: 550 nm, Blue line: 450 nm) for
apple leaves with varying degrees of light.

2.2. Apple Leaf Nitrogen Content Measurement

At each time point, a total of 21 leaf samples were collected, with seven samples
from each treatment group. Nitrogen content data were acquired for the leaves, with a
focus on mature leaves, and a total of 10 leaves were collected. The leaf nitrogen content
was measured in accordance with the soil and plant analysis methods stipulated by the
National Institute of Agricultural Sciences (2000). The collected leaves were dried in a dryer
at 60 ◦C for 5 days (60 h). A 1 g sample of the dried material was digested with a mixture
of nitrogen and perchloric acid at a ratio of 85:15, amounting to 10 mL. Upon completion of
digestion, the solution was allowed to cool to room temperature. The residual liquid in
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the container was then rinsed with distilled water and filtered through a volumetric flask.
The leaf nitrogen content was subsequently measured using a carbon/nitrogen elemental
analyzer (NL/Primacs SNC-100, Skalar Analytical B.V., Breda, The Netherlands).

2.3. Hyperspectral Data Transformations

Various issues arise when capturing hyperspectral images in open fields owing to
differences in environmental factors. These include changes in atmospheric conditions,
uneven lighting sources [23,24], and noise caused by the heat of the sensor itself [25].
Therefore, accurate analysis of hyperspectral images obtained in open fields requires
preprocessing, which involves setting and optimizing the hyperspectral sensor and imaging
equipment according to the conditions. The first derivative method is a preprocessing
technique used to reduce the noise caused by light. This involves calculating the rate
of change between data points by differentiating the raw data. This method extracts
features through the gradient of the data rather than the raw reflectance values, thereby
reducing the noise caused by environmental fluctuations and improving the accuracy of
the data. Additionally, the Savitzky–Golay filter is a method for smoothing data at regular
intervals [26]. The output value at each data point is determined by finding, through least-
squares fitting, the polynomial of order k that best fits the surrounding points. This method
is commonly used, because it reduces noise due to various light conditions and atmospheric
states while maintaining spectral characteristics, making it an effective preprocessing
technique [27].

2.4. Variable Selection Method

Hyperspectral data, which contain abundant continuous spectral information, com-
plicate computational analysis [28] and can lead to overfitting owing to unnecessary vari-
ables [29], consequently diminishing the performance of regression models [30]. To address
these issues, methods have been developed to eliminate variables with little relevance to
the dependent variable among numerous independent variables or to find combinations of
predictive variables. These methods involve combining meaningful information to extract
new features, thereby removing unnecessary information or noise and extracting important
information for analysis. Among the variable selection methods, competitive adaptive
reweighted sampling (CARS) uses PLS-based regression coefficients as criteria to evaluate
the importance of variables. Subsets are randomly generated via Monte Carlo sampling,
and N variables are selected through competition, followed by wavelength selection based
on an exponentially decreasing function and adaptive reweighted sampling, with the low-
est root-mean-square error (RMSE) chosen through cross-validation [31]. The successive
projections algorithm (SPA) employs a forward selection approach, constructs subsets of
variables with minimal collinearity, calculates the distance between the variables and their
orthogonal projections, and selects those with the maximum orthogonal distance. Selection
was based on the lowest RMSECV in multiple linear regression (MLR) [32]. The random
frog (R-Frog) model, which is based on partial least-squares regression (PLSR), randomly
selects variable sets and calculates selection probabilities through repeated iterations us-
ing the reversible jump Markov chain Monte Carlo algorithm. Wavelengths with higher
selection probabilities were chosen as feature variables.

2.5. Regression Analysis Based on Machine Learning Models

PLSR develops models using least-squares regression between dependent variables
by creating latent variables that maximize the covariance between a linear combination of
independent and dependent variables. This approach addresses the issue of low regression
coefficient estimates owing to the high correlations among the independent variables.
Gradient boosting regression, an analysis method utilizing the boosting technique within
ensemble models, progressively adds three models that predict and calculate residuals
(the differences between predicted and actual values), thereby reducing errors. However,
this process can be time-consuming and can be mitigated by extreme gradient boosting
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(XGBoost) regression analysis. Unlike gradient boosting regression, XGBoost supports
parallel and distributed processing, allowing it to handle large datasets rapidly. It learns
efficiently and concisely through pruning and can use various objective functions to reduce
time. A support vector machine (SVM) is an algorithm that maps data to a high-dimensional
space and determines a decision boundary by maximizing the margin, which represents the
distance between the decision boundary and data points (MATLAB R2023a, MathWorks,
Natick, MA, USA). The performances of these regression models were validated using
10-fold cross-validation and evaluated based on the coefficient of determination (R2) and
RMSE. R2 is a statistical metric in regression analysis that indicates how effectively a model
explains the variability of the dependent variable. A value close to one suggests that the
model effectively explains the variability of the dependent variable, while a value close to
zero indicates that the model fails to adequately explain the variability of the dependent
variable. The RMSE is a metric used to measure the difference between predicted and actual
values. The method involves squaring the differences between each predicted value and its
corresponding actual value, calculating the mean of these squared differences, and then
taking the square root of that mean. A lower RMSE indicates that the model’s predictions
are closer to the actual values, signifying higher model performance. Figure 3 presents a
flowchart summarizing the processes, including image preprocessing and analysis methods,
conducted in this study.
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3. Results
3.1. Nitrogen Content

Table 1 presents a comparative analysis of the leaf nitrogen content based on nitrogen
application rates for 2021 and 2022. In 2021, the excessive treatment, adequate, and insuffi-
cient groups exhibited nitrogen content ranges of 2.58–3.67%, 1.48–2.77%, and 1.26–2.51%,
respectively. Except for the first period, statistically significant differences were observed
in the second to the seventh periods between the treatment groups. Although the eighth to
tenth periods did not significantly differ between the excessive and adequate groups, the
insufficient group exhibited notable differences. In 2022, the excessive treatment, adequate,
and insufficient groups exhibited nitrogen content ranges of 2.48–3.32%, 2.15–2.84%, and
1.85–2.51%, respectively. As the growth period progressed, there was a decrease, irre-
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spective of the treatment group. Except for the seventh period (16 August), statistically
significant differences were observed among the treatment groups. For the seventh period,
it was presumed that a significant amount of rainfall before conducting the growth assess-
ment did not affect nitrogen fertilization. A comparison of the nitrogen content between
2021 and 2022 revealed that these differences arose because of differences in growth year
and between the first and second years, which affected the root growth and consequently
inhibited nitrogen absorption [33].

Table 1. Analysis of variance (ANOVA) of the apple leaf nitrogen concentration according to growth
stage.

2021 (n = 147) 2022 (n = 196)

Excess
(%)

Sufficient
(%)

Deficiency
(%)

Excess
(%)

Sufficient
(%)

Deficiency
(%)

1st 2.62 ± 0.03 a 2.61 ± 0.15 a 2.51 ± 0.28 a 3.31 ± 0.27 a 2.48 ± 0.50 b 2.08 ± 0.20 c
2nd 2.95 ± 0.15 a 2.71 ± 0.08 b 2.41 ± 0.12 c 2.86 ± 0.15 a 2.38 ± 0.19 b 2.05 ± 0.13 c
3rd 2.58 ± 0.28 a 1.48 ± 0.04 b 1.26 ± 0.06 c 3.04 ± 0.14 a 2.45 ± 0.14 b 2.12 ± 0.43 c
4th 2.61 ± 0.26 a 1.71 ± 0.11 b 1.33 ± 0.12 c 3.02 ± 0.33 a 2.35 ± 0.22 b 2.04 ± 0.44 c
5th 3.11 ± 0.24 a 2.18 ± 0.19 b 1.50 ± 0.20 c 3.32 ± 0.24 a 2.84 ± 1.71 b 2.51 ± 0.18 c
6th 3.67 ± 0.43 a 2.48 ± 0.21 b 1.61 ± 0.23 c 2.99 ± 0.11 a 2.61 ± 0.09 b 2.29 ± 0.22 c
7th 3.45 ± 0.36 a 2.56 ± 0.37 b 1.84 ± 0.18 c 2.81 ± 0.24 a 2.52 ± 0.61 a 1.97 ± 0.18 b
8th 3.38 ± 0.45 a 2.54 ± 0.20 a 1.49 ± 0.20 b 2.62 ± 0.15 a 2.31 ± 0.17 b 1.99 ± 0.26 c
9th 3.54 ± 0.64 a 2.77 ± 0.16 a 1.61 ± 0.20 b 2.87 ± 0.40 a 2.17 ± 0.38 b 1.98 ± 0.17 b

10th 3.29 ± 0.70 a 2.65 ± 0.21 a 1.68 ± 0.28 b 2.48 ± 0.34 a 2.15 ± 0.15 b 1.85 ± 0.21 c

Lowercase letters indicate significant differences (p-value < 0.05) between different nitrogen fertilization.

3.2. Spectral Characteristics

Figure 4 shows the spectral curves of both the raw and first derivative postprocessing
data. A comparison of the raw data across treatment groups revealed that the reflectance
in the visible light spectrum was greater in the insufficient treatment group than in the
excessive treatment group. This culminated in a peak within the green wavelength range
of 530–570 nm. In the nonvisible spectrum, the reflectance was lower in the near-infrared
region after reaching 800 nm. These observations can be attributed to the predominant
absorption of chlorophyll in the visible spectrum, while the absorption at >700 nm in
the nonvisible spectrum tends to occur, resulting in significant differences in reflectance
depending on the vegetative state. For the first derivative, differences were detected at
green wavelengths of 520 nm and 560 nm, at a red edge wavelength of 750 nm, and at a
near-infrared wavelength of 800 nm.

3.3. The Development of a Leaf Nitrogen Content Prediction Model Based on a Full Spectrum

Table 2 presents the results of the leaf nitrogen content prediction model using both
the raw and preprocessed spectroscopic data. For the raw data prediction model, PLSR
exhibited an R2 of 0.619 and an RMSE of 0.261%, whereas SVR showed an R2 of 0.682 and
an RMSE of 0.245%. XGBoost demonstrated the best performance, with an R2 of 0.756 and
an RMSE of 0.216%. For the first derivative, the SVR exhibited the highest performance,
with an R2 of 0.739 and an RMSE of 0.224%. However, whereas the XGBoost calibration
model had an R2 value of 0.99, its prediction model had an R2 value of 0.59, indicating
potential overfitting.
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Figure 4. Reflectance curves (raw, 1st derivative) of the apple leaves, obtained via hyperspectral
imaging based on 2 (a,e), 4 (b,f), 8 (c,g), and 16 (d,h) binning.

Table 2. Estimation of regression model performance using the full spectrum.

Calibration Validation Prediction

R2 RMSE (%) R2 RMSE (%) R2 RMSE (%)

Raw
PLSR 0.639 0.267 0.607 0.278 0.619 0.261
SVR 0.79 0.21 0.706 0.245 0.682 0.245

XGBoost 0.892 0.151 0.715 0.24 0.756 0.215

1st dev
PLSR 0.688 0.248 0.587 0.289 0.696 0.24
SVR 0.699 0.248 0.638 0.271 0.739 0.224

XGBoost 0.999 0.003 0.65 0.268 0.596 0.288

Table 3 presents the results of the variable selection method for CARS, Rfrog, and
SPA. From the raw spectral data, CARS selected seven wavelengths, Rfrog selected ten
wavelengths, and SPA selected six wavelengths, primarily from the green, red edge, and
near-infrared (NIR) (800, 870 nm) regions. In the case of variable selection using the first
derivative, CARS, Rfrog, and SPA retained the same number of wavelengths as in the
raw data.

Table 3. Selection of wavelengths using the full-spectrum variable selection algorithm.

Variable Selection Method Spectral Band Channel Numbers

RAW
CARS 553, 556, 687, 748, 767, 845, 896
Rfrog 483, 505, 510, 553, 652, 668, 823, 839, 877
SPA 703, 727, 743, 847, 890, 898

1st dev
CARS 561, 572, 671, 673, 695, 735, 764
Rfrog 561, 572, 596, 671, 673, 697, 732, 735
SPA 507, 569, 676, 695, 730, 740

The results of a PLSR analysis using spectral data for predicting leaf nitrogen content
based on variable selection are presented in Table 4. With respect to the raw spectral data,
the CARS method achieved the highest prediction performance when seven wavelengths
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were selected. With four latent variables, the calibration model exhibited an R2 of 0.603
and an RMSE of 0.285%, the validation model exhibited an R2 of 0.566 and an RMSE of
0.296%, and the prediction model exhibited an R2 of 0.608 and an RMSE of 0.274%. In
the case of the first derivative, the Rfrog method showed the highest performance for the
calibration model, with an R2 of 0.674 and an RMSE of 0.256%; for the validation model,
with an R2 of 0.616 and an RMSE of 0.296%; and for the prediction model, with an R2

of 0.7 and an RMSE of 0.236%. According to the SVR analysis, the highest performance
of the model for the raw spectral data was observed for the SPA variable selection, for
which the calibration R2 was 0.797, the RMSE was 0.202%, the prediction R2 was 0.765, and
the RMSE was 0.208%. The first derivative showed the highest performance in the Rfrog
method (calibration: R2 = 0.674, RMSE = 0.256%; prediction: R2 = 0.678, RMSE = 0.248%).
Although the proposed model exhibited lower performance than the raw images did, the
prediction model’s performance was greater than that of PLSR. XGBoost regression analysis
showed the highest performance with CARS algorithm-based variable selection in the raw
data (calibration: R2 = 0.797, RMSE = 0.202%; prediction: R2 = 0.765, RMSE = 0.208%).
Other variable selection algorithms also showed good evaluation performance, with an R2

that was greater than 0.7. In the case of the first derivative, while all the variable selection
algorithms exhibited 90% performance in the calibration model, a lower performance below
60% in the validation model suggested the occurrence of overfitting.

Table 4. Estimation of regression model performance using selected wavelengths.

Calibration Validation Prediction

R2 RMSE R2 RMSE R2 RMSE

PLSR

Raw
CARS 0.603 0.285 0.566 0.296 0.608 0.274
Rfrog 0.629 0.274 0.599 0.284 0.575 0.284
SPA 0.467 0.358 0.345 0.376 0.356 0.395

1st Dev
CARS 0.597 0.285 0.563 0.296 0.538 0.305
Rfrog 0.608 0.281 0.565 0.295 0.585 0.291
SPA 0.608 0.281 0.575 0.292 0.594 0.283

SVR

Raw
CARS 0.754 0.226 0.729 0.236 0.754 0.213
Rfrog 0.758 0.236 0.707 0.243 0.742 0.217
SPA 0.797 0.202 0.687 0.251 0.765 0.208

1st Dev
CARS 0.671 0.258 0.614 0.278 0.662 0.264
Rfrog 0.674 0.256 0.616 0.278 0.678 0.248
SPA 0.669 0.259 0.623 0.276 0.666 0.258

XGBoost

Raw
CARS 0.846 0.177 0.705 0.244 0.756 0.218
Rfrog 0.892 0.148 0.731 0.233 0.732 0.222
SPA 0.844 0.178 0.729 0.233 0.7 0.236

1st Dev
CARS 0.889 0.154 0.539 0.304 0.708 0.231
Rfrog 0.999 0.005 0.611 0.28 0.753 0.212
SPA 0.999 0.002 0.565 0.28 0.575 0.286

3.4. The Development of a Leaf Nitrogen Content Prediction Model Based on a 4-Binning
Full Spectrum

Table 5 presents the results of the leaf nitrogen content prediction model using both
raw and first derivative wavelength data based on the spectral resolution of 4-binning. For
the raw data prediction model, the PLSR showed an R2 of 0.618 and an RMSE of 0.271%.
For SVR, the results had an R2 of 0.652 and an RMSE of 0.255%. XGBoost demonstrated an
R2 value of 0.755 and an RMSE of 0.216%. Compared with that of 2-binning, the prediction
model performance in terms of SVR decreased by 4%; however, there was no significant
decrease in performance for PLSR or XGBoost. For the first derivative, the PLSR showed R2

and RMSE values of 0.591 and 0.284%, respectively, which were notably lower than those
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of the 2-binning method. However, the performance of the prediction model improved for
both the SVR and XGBoost models.

Table 5. Estimation of regression model performance using the full spectrum based on spectral
4-binning.

Calibration Validation Prediction

R2 RMSE R2 RMSE R2 RMSE

Raw
PLSR 0.643 0.269 0.59 0.287 0.617 0.271
SVM 0.811 0.2 0.707 0.244 0.652 0.255

XGBoost 0.884 0.155 0.711 0.241 0.755 0.216

1st dev
PLSR 0.654 0.264 0.596 0.285 0.643 0.263
SVM 0.704 0.245 0.638 0.27 0.748 0.219

XGBoost 0.998 0.015 0.601 0.284 0.655 0.257

Table 6 presents the results of the variable selection method for the CARS, Rfrog, and
SPA algorithms based on spectral resolution 4-binning. For the raw data, eight wavelengths
were selected by CARS, and ten wavelengths were chosen by Rfrog. In the case of SPA, six
wavelengths were determined. These selections were primarily from the green, red edge,
and NIR (800, 870 nm) regions, similar to the 2-binning results. For the first derivative
variable selection, eight wavelengths were chosen by CARS, ten by Rfrog, and six by SPA.

Table 6. Selection of the wavelength for 4-binning using the variable selection algorithm.

Variable Selection Method Spectral Band Channel Numbers

RAW
CARS 555, 560, 695, 745, 795, 835, 845, 905
Rfrog 540, 555, 690, 695, 745, 770, 795, 825, 905
SPA 725, 740, 745, 845, 860, 890

1st dev
CARS 490, 680, 685, 690, 705, 735, 740, 885
Rfrog 560, 565, 570, 605, 680, 685, 700, 735, 740, 795
SPA 435, 505, 675, 705, 730

Based on the 4-binning for variable selection, PLSR analysis showed that the raw data
achieved the highest performance with Rfrog (calibration: R2 = 0.639, RMSE = 0.270%;
validation: R2 = 0.572, RMSE = 0.293%; prediction: R2 = 0.612, RMSE = 0.272%). On the
other hand, SPA-selected variables did not include wavelengths from the visible light
region, such as green and red, leading to the assumption that predictions using these
variables might exhibit a lower performance (Table 7). For the first derivative, the highest
performance was observed with CARS (calibration: R2 = 0.631, RMSE = 0.274%; validation:
R2 = 0.596, RMSE = 0.290%; prediction: R2 = 0.610, RMSE = 0.275), suggesting that the
performance of the prediction models varies depending on the selection of red edge and
NIR wavelengths compared to those of Rfrog and SPA. According to the SVR analysis, the
raw data exhibited the highest performance for CARS, the calibration model (R2 = 0.746,
RMSE = 0.229%), and the prediction model (R2 = 0.760, RMSE = 0.212%). This trend was
consistent with the first derivative, which exhibited the highest performance for CARS
(calibration: R2 = 0.690, RMSE = 0.254; prediction: R2 = 0.651, RMSE = 0.271%). For the
XGBoost prediction model results, both the raw data and the first derivative demonstrated
the highest performance when variable selection was conducted using CARS. However,
for the first derivative, overfitting was evident, consistent with the spectral resolution
of 2-binning.
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Table 7. Estimation of regression model performance using selected wavelengths based on spectral
4-binning.

Calibration Validation Prediction

R2 RMSE R2 RMSE R2 RMSE

PLSR

Raw
CARS 0.596 0.284 0.530 0.307 0.617 0.270
Rfrog 0.639 0.270 0.572 0.293 0.612 0.272
SPA 0.613 0.281 0.585 0.290 0.556 0.290

1st Dev
CARS 0.631 0.274 0.581 0.290 0.610 0.275
Rfrog 0.596 0.285 0.582 0.290 0.578 0.291
SPA 0.536 0.312 0.516 0.324 0.505 0.315

SVR

Raw
CARS 0.746 0.229 0.726 0.238 0.760 0.212
Rfrog 0.751 0.228 0.729 0.237 0.753 0.214
SPA 0.698 0.246 0.674 0.256 0.743 0.223

1st Dev
CARS 0.690 0.254 0.670 0.261 0.651 0.271
Rfrog 0.700 0.245 0.648 0.266 0.588 0.281
SPA 0.614 0.284 0.599 0.289 0.577 0.296

XGBoost

Raw
CARS 0.849 0.175 0.738 0.229 0.751 0.217
Rfrog 0.852 0.174 0.722 0.236 0.747 0.214
SPA 0.803 0.200 0.652 0.264 0.730 0.222

1st Dev
CARS 0.999 0.005 0.623 0.256 0.712 0.243
Rfrog 0.924 0.130 0.589 0.287 0.705 0.234
SPA 0.900 0.144 0.569 0.295 0.656 0.251

3.5. The Development of a Leaf Nitrogen Content Prediction Model Based on an 8-Binning
Full Spectrum

Table 8 presents the results of the leaf nitrogen content prediction models using raw
and first derivative full-spectrum data based on the 8-binning methods. The raw data
showed that PLSR at the 4-binning sites had an R2 of 0.617 and an RMSE of 0.271%, and
the highest performance was observed here, with an R2 of 0.657 and an RMSE of 0.243%.
XGBoost had an R2 of 0.752 and an RMSE of 0.218%, similar to the 4-binning methods
used in both PLSR and XGBoost, whereas SVR had a lower performance. In the case of the
first derivative, the SVR prediction model showed a decreased performance compared to
that of 2- and 4-binning, whereas PLSR improved (R2 = 0.626, RMSE = 0.267%). XGBoost
showed an improved performance compared to previous spectral resolutions but still
exhibited overfitting.

Table 8. Estimation of regression model performance using the full spectrum based on spectral 8-
binning.

Calibration Validation Prediction

R2 RMSE R2 RMSE R2 RMSE

Raw
PLSR 0.643 0.269 0.593 0.286 0.617 0.271
SVM 0.775 0.218 0.699 0.248 0.687 0.243

XGBoost 0.880 0.158 0.735 0.23 0.752 0.218

1st dev
PLSR 0.657 0.263 0.596 0.285 0.653 0.259
SVM 0.695 0.250 0.640 0.270 0.726 0.231

XGBoost 0.960 0.094 0.558 0.299 0.663 0.255

Table 9 presents the results for variable selection using methods such as CARS, Rfrog,
and SPA based on the 8-binning spectral resolution. In the raw data, CARS selected 8 wave-
lengths, Rfrog chose 10 wavelengths, and SPA identified 5 wavelengths. In the first deriva-
tive data, CARS was used for four wavelengths, Rfrog was used for ten wavelengths, and
SPA was used for four wavelengths.
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Table 9. Selection of the wavelength for 8-binning using a variable selection algorithm.

Variable Selection Method Spectral Band Channel Numbers

RAW
CARS 550, 560, 670, 680, 740, 760, 850, 900
Rfrog 520, 550, 570, 670, 680, 740, 760, 850, 900
SPA 580, 610, 730, 880, 900

1st dev
CARS 670, 680, 690, 730
Rfrog 470, 560, 610, 670, 680, 720, 730, 740, 790
SPA 660, 680, 730, 890

Based on the 8-binning, PLSR analysis using the raw data and variables selected by
CARS showed the highest performance for the latent variable 3. The calibration model
had an R2 of 0.612 and an RMSE of 0.281%, the validation model had an R2 of 0.577 and
an RMSE of 0.292%, and the prediction model had an R2 of 0.580 and an RMSE of 0.282%
(Table 10). In the case of the first derivative data, which are the same as those for 4-binning,
the highest performance was observed for Rfrog. The calibration model had an R2 of 0.663
and an RMSE of 0.261%, the validation model had an R2 of 0.631 and an RMSE of 0.273%,
and the prediction model had an R2 of 0.693 and an RMSE of 0.238%. However, as the
spectral resolution decreased, the performance of the prediction models also decreased.
According to the SVR analysis, regardless of whether the raw or first derivative data were
used, the performance of the prediction models was greater than 0.7. Among these models,
the best performance was observed with the raw data using variables that were selected by
CARS, a calibration model R2 of 0.745 and an RMSE of 0.232%, a validation model R2 of
0.722 and an RMSE of 0.241%, and a prediction model R2 of 0.754 and an RMSE of 0.238%.
For XGBoost, although Rfrog achieved the highest performance, the prediction results were
lower than those of SVR.

Table 10. Estimation of regression model performance using selected wavelengths based on spectral
8-binning.

Calibration Validation Prediction

R2 RMSE R2 RMSE R2 RMSE

PLSR

Raw
CARS 0.612 0.281 0.577 0.292 0.580 0.282
Rfrog 0.609 0.282 0.573 0.294 0.573 0.284
SPA 0.586 0.291 0.558 0.300 0.515 0.300

1st Dev
CARS 0.608 0.283 0.577 0.293 0.621 0.266
Rfrog 0.663 0.261 0.631 0.273 0.693 0.238
SPA 0.604 0.284 0.588 0.289 0.623 0.266

SVR

Raw
CARS 0.745 0.232 0.722 0.241 0.754 0.214
Rfrog 0.750 0.229 0.727 0.239 0.756 0.213
SPA 0.711 0.241 0.651 0.265 0.702 0.236

1st Dev
CARS 0.672 0.273 0.656 0.20 0.653 0.258
Rfrog 0.723 0.233 0.665 0.259 0.712 0.232
SPA 0.642 0.279 0.613 0.280 0.603 0.276

XGBoost

Raw
CARS 0.856 0.172 0.711 0.241 0.721 0.228
Rfrog 0.858 0.171 0.708 0.242 0.729 0.226
SPA 0.790 0.207 0.614 0.279 0.655 0.256

1st Dev
CARS 0.819 0.194 0.512 0.314 0.737 0.222
Rfrog 0.999 0.002 0.571 0.295 0.705 0.233
SPA 0.882 0.161 0.475 0.325 0.640 0.256

3.6. The Development of a Leaf Nitrogen Content Prediction Model Based on a 16-Binning Full
Spectrum Study

Table 11 presents the results of the leaf nitrogen content prediction model using
full-spectrum data with a spectral resolution of 16 bp. For the raw data, the prediction
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model results showed that R2 for PLSR was 0.598, and that for XGBoost, it was 0.728.
These values are approximately 2% and 3% lower than the spectral resolutions of 2-, 4-,
and 8-binning, indicating a decrease in the prediction model’s performance. However,
the results obtained using SVR exhibited the highest performance among the spectral
resolutions, with an R2 value of 0.709. With respect to the first derivative data, PLSR, SVR,
and XGBoost exhibited the lowest performances compared with those of the 2-, 4-, and
8-binning resolutions. Notably, XGBoost exhibited overfitting which was similar to the
previous 2-, 4-, and 8-binning results.

Table 11. Estimation of regression model performance using the full spectrum based on spectral 16-
binning.

Calibration Validation Prediction

R2 RMSE R2 RMSE R2 RMSE

Raw
PLSR 0.633 0.272 0.592 0.287 0.598 0.279
SVM 0.743 0.231 0.705 0.246 0.709 0.233

XGBoost 0.85 0.176 0.673 0.256 0.728 0.224

1st dev
PLSR 0.623 0.275 0.591 0.287 0.583 0.284
SVM 0.667 0.267 0.626 0.281 0.692 0.24

XGBoost 0.999 0.003 0.653 0.264 0.685 0.24

Table 12 presents the results of variable selection using CARS, Rfrog, and SPA based
on a spectral resolution of 16 bins. For the raw data, CARS selected 7 wavelengths, while
Rfrog selected 10 wavelengths. SPA identified 10 wavelengths. In the case of the first
derivative data, variable selection resulted in nine wavelengths for CARS, ten wavelengths
for Rfrog, and four wavelengths for SPA.

Table 12. Selection of the wavelength for 16-binning using the variable selection algorithm.

Variable Selection Method Spectral Band Channel Numbers

RAW
CARS 540, 560, 740, 760, 800, 840, 900
Rfrog 460, 480, 540, 560, 720, 740, 780, 800, 840, 900
SPA 540, 560, 700, 740, 760, 780, 800, 880

1st dev
CARS 500, 540, 560, 700, 720, 740, 760, 780, 900
Rfrog 480, 560, 580, 660, 680, 700, 740, 760, 800, 880
SPA 480, 500, 520, 740, 760, 800

Table 13 presents the results of the analysis conducted using PLSR, SVR, and XGBoost
based on the selected variables at a spectral resolution of 16 bins. For PLSR, using variables
selected by SPA, the calibration model had an R2 of 0.667 and an RMSE of 0.259, the
validation model had an R2 of 0.603 and an RMSE of 0.282, and the prediction model
demonstrated the highest performance, with an R2 of 0.704 and an RMSE of 0.236. In the
case of SVR, the prediction model using variables selected by Rfrog (random frog) from the
raw data demonstrated the highest performance (R2 = 0.748, RMSE = 0.215%). Finally, the
results of the XGBoost regression analysis showed that, for the raw data, the prediction
performance using variables selected by CARS was the highest (R2 = 0.746, RMSE = 0.216%).
For the first derivative data, although overfitting was resolved compared to previous
spectral resolutions, the overall performance was lower than that of the raw data.
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Table 13. Estimation of regression model performance using selected wavelengths based on spectral
16-binning.

Calibration Validation Prediction

R2 RMSE R2 RMSE R2 RMSE

PLSR

Raw
CARS 0.612 0.281 0.566 0.296 0.648 0.257
Rfrog 0.632 0.273 0.567 0.295 0.614 0.275
SPA 0.667 0.259 0.603 0.282 0.704 0.236

1st Dev
CARS 0.638 0.270 0.600 0.284 0.650 0.255
Rfrog 0.573 0.366 0.558 0.368 0.667 0.322
SPA 0.620 0.277 0.600 0.284 0.604 0.274

SVR

Raw
CARS 0.741 0.230 0.716 0.240 0.743 0.217
Rfrog 0.746 0.226 0.702 0.245 0.748 0.215
SPA 0.736 0.231 0.696 0.247 0.718 0.227

1st Dev
CARS 0.646 0.272 0.620 0.282 0.662 0.251
Rfrog 0.664 0.274 0.648 0.279 0.684 0.245
SPA 0.652 0.283 0.638 0.283 0.669 0.251

XGBoost

Raw
CARS 0.831 0.185 0.687 0.251 0.746 0.216
Rfrog 0.842 0.182 0.690 0.249 0.739 0.220
SPA 0.826 0.188 0.669 0.258 0.733 0.221

1st Dev
CARS 0.893 0.151 0.537 0.306 0.615 0.266
Rfrog 0.743 0.233 0.527 0.309 0.565 0.284
SPA 0.896 0.150 0.535 0.306 0.645 0.254

4. Discussion

This paper presents the results of a prediction model for apple tree leaf nitrogen
content using full-spectrum wavelengths. For the raw data, the R2 values for PLSR, SVR,
and XGB ranged from 0.633 to 0.643, 0.743 to 0.811, and 0.850 to 0.892, respectively. For
the first derivative, the R2 values for the PLSR and SVR ranged from 0.623 to 0.688 and
0.667 to 0.704, respectively, and overfitting was observed with XGB. When compared with
results from previous research, the raw data showed that PLSR had an R2 of 0.773 and the
first derivative data had an R2 of 0.774 [34]. The improvement in performance can, exactly,
be attributed to the higher spectral resolution. Despite maintaining the same wavelength
range, the increased spectral resolution introduces a greater number of wavelengths. This,
in turn, contributes to a higher count of independent variables in the prediction model,
ultimately leading to improved performance.

Hyperspectral data, represented as continuous curves, constitute a complex dataset
because of differences in reflectance values, even within adjacent wavelength bands in the
same spectral range. These results suggest that nonlinear regression analysis methods,
such as SVR and XGB, are more advantageous in terms of prediction performance and
interpretability than linear regression analyses, such as PLSR [35]. Additionally, Savitzky–
Golay filtering, a preprocessing method which is used to reduce the noise caused by light,
smooths the data by adjusting the polynomial order and window size. However, the first
derivative, which represents the rate of change in adjacent wavelengths rather than the
inherent value of the reflectance, is sensitive to spectral changes and peak enhancement [36].
This sensitivity is beneficial but can be problematic when noise is present, as it leads to
significant changes in the gradient. Such drawbacks are evident in the results of this
experiment, where a lower prediction performance was observed or overfitting occurred in
the tree-based boosting method, XGB, owing to the sensitivity of the first derivative data.

A comparison of the variable selection algorithms revealed that the primary selec-
tions were made at the blue (470–490 nm), green (550 nm), red edge (680–740 nm), and
NIR wavelengths. In the visible light spectrum, wavelengths that were closely associated
with chlorophyll were chosen. For chlorophyll a, the highest absorption occurred at the
boundary of the red and red edge wavelengths, approximately at 670 nm, whereas chloro-
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phyll b exhibited maximum absorption at 470 nm and reflection at the green wavelength.
Furthermore, in the nonvisible spectrum, specifically at the red edge and near-infrared
(NIR) wavelengths, differences in reflectance values reflect the nutritional status of leaves,
which typically increase in value when the nutritional state is favorable [37]. The structural
characteristics of leaves vary with nitrogen levels: a higher nitrogen content results in an
increase in the leaf surface area. Additionally, the leaf epidermis thickens, and cells in
the mesophyll tissue increase in size and become more densely arranged, leading to an
increase in the chlorophyll content [38,39]. Thickening of epidermal tissue facilitates active
gas exchange, resulting in enhanced photosynthesis. Based on the spectral characteristics
corresponding to the structural changes in the leaves, the analysis results considering the
full spectrum revealed that for the PLSR models, R2 = 0.619, which was lower than that of
CARS, Rfrog, and SPA. In contrast, for the SVR models, CARS had an R2 of 0.754, Rfrog
had an R2 of 0.742, and SPA had an R2 of 0.765, indicating a greater performance than those
of the models using the full spectrum. In the case of XGB, the performance across various
variable selection algorithms ranged from 0.7 to 0.756, showing effectiveness that is similar
to the results obtained using full-spectrum analysis. These results indicate differences
based on the variable selection algorithm. PLSR, which creates new variables through
linear combinations of independent variables, seems to lack an adequate explanation of
the selected variables. In contrast, the use of the radial basis function kernel that is based
on Gaussian functions in SVR, along with various loss functions (such as the mean square
error and mean absolute error) and gradient boosting in tree-based XGB, allows for the
interpretation of nonlinear relationships between independent and predicted variables,
unlike in PLSR. The improvement in predictive performance through the optimization of
prediction models, including hyperparameter tuning for each analysis method, suggested
that fewer variables can yield similar or better results in the prediction models. Another
method explored in previous research reduces variables that are involved in predicting
nitrogen content using various vegetation indices and the red edge wavelength. The results
showed that the R2 based on the BPNN model was 0.77 [40]. However, since vegetation
indices require a combination of multiple wavelengths, lowering the spectral resolution
might lead to changes in the values of these indices. Therefore, reducing spectral resolution
is considered inadequate as an alternative for variable reduction in this context.

When comparing the wavelengths that were selected based on the 2-binning criterion
with those selected through spectral binning at 4, 8, and 16 bp, it was observed that for the
number of wavelengths selected by CARS in the raw data, similar or adjacent wavelengths
were chosen regardless of the spectral resolution. When comparing the XGB prediction
models that exhibited the highest performance for each spectral resolution, the lowest value
was observed for the 16-binning model, with an R2 of 0.743, and the highest was observed
for the 4-binning model, with an R2 of 0.760, indicating a similar performance with a
difference of only 1.7%. In the case of Rfrog, unlike CARS, the selected wavelengths varied
slightly according to the spectral resolution. However, a 2% difference in the coefficient
of determination was observed based on the spectral resolution in the XGB prediction
model. For SPA, in the case of 2- and 4-binnings, only the red edge and NIR wavelength
regions were selected, which differed from the wavelengths chosen by CARS and Rfrog,
which showed a difference in evaluation performance of approximately 3% to 5% compared
with previous variable selection methods. Additionally, the lowest R2 value (0.65) was
observed after eight binning cycles, which seems to be due to the decrease in performance
attributed to whether the 680 nm wavelength, located between the red and red edge
wavelengths, was selected under the same binning criteria for CARS and Rfrog. When
the first derivative spectral data were used for variable selection through spectral binning,
there was no similarity in the wavelengths that were selected based on spectral resolution
in contrast to the raw data. Consequently, the regression analysis, particularly for SVR,
exhibited substantial deviations, with R2 values ranging from 0.577 to 0.712. This is because
as the spectral resolution decreases, leading to a reduction in the number of wavelengths,
continuous spectral data loss occurs. While the raw data retain the inherent spectroscopic
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characteristics of the canopy, the first derivative data, owing to data loss during spectral
binning, respond sensitively to even minor changes. As a result, the prediction performance
was unstable and varied with spectral resolution. Furthermore, a high spectral resolution
does not necessarily translate into an improved performance in predictive models.

Figure 5 presents the mapping of hyperspectral images using the wavelengths selected
based on CARS. The results are divided into red to green colors based on the nitrogen
content range, indicating that the leaf nitrogen content ranged from a minimum of 0% to
a maximum of 4%. Spectral binning, which combines wavelength bands, can reduce the
number of wavelength bands and lead to the loss of continuous spectral data, potentially
degrading the performance of the prediction models [41]. However, this process can also
reduce the costs associated with data processing and analysis. Additionally, by combining
adjacent wavelength bands, the SNR can be enhanced, and the inclusion of similar spectral
data can be minimized. Therefore, appropriate spectral binning may offer advantages such
as a reduced data processing speed owing to a reduction in high-dimensional spectral data
and enhanced predictive performance [42–44].
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5. Conclusions

In this study, various predictive models were developed and compared via regression
analysis with both the full spectrum and selected significant wavelengths to predict the
leaf nitrogen content in apple trees via hyperspectral imaging. In addition, spectral binning
was used to reduce the spectral resolution to 5, 10, or 20 nm, and regression analysis was
conducted using only the wavelengths identified through variable selection. The predictive
performance at these reduced spectral resolutions was compared to that at the original
spectral resolution to determine the optimal spectral resolution. The study showed that
reducing the spectral resolution reduces the number of wavelengths, leading to data loss.
However, the intrinsic shape of the spectral curve is maintained, suggesting that perfor-
mance can be preserved, even with a lower spectral resolution. However, hyperspectral
imaging has a narrow spectral resolution, allowing for detailed interpretation of physiolog-
ical responses in crops across numerous wavelengths. However, due to the high cost of
equipment and various constraints during image acquisition, to address these issues, the
spectral resolution was decreased to achieve satisfactory results. These results imply that
the development of a miniaturized multispectral sensor can be practical and cost-effective,
potentially serving as an alternative to hyperspectral sensors. Furthermore, utilizing geo-
graphic information systems, including sensors and drones, could enhance the precision
of monitoring apples that are cultivated in extensive orchards. Through stable cultivation
management, this approach could secure both quantity and quality, providing a reliable
means for ensuring stable crop yields and quality control.
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