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Abstract: Non-Saccharomyces wine yeasts are not only proposed to improve the sensory profile of wine
but also for several distinctive promising features. Among them, biocontrol action at different steps
of the wine production chain could be a suitable strategy to reduce the use of sulfur dioxide. In this
work, the activity of a selected strain of Metschnikowia pulcherrima was evaluated as inoculum in cold
clarification with the aim to reduce SO2 and improve the aromatic profile of the wine. Fermentation
processes were carried out at the winery level for two consecutive vintages using a pied de cuve as the
starter inoculum coming from indigenous Saccharomyces cerevisiae strains. M. pulcherrima revealed an
effective bio-protectant action during the pre-fermentative stage even if the timely and appropriate
starter inoculum in the two years permitted the effective control of wild yeasts during the fermentation
also in the control trials. In general, the main oenological characters did not show differences if
compared with an un-inoculated trial, while the inoculum of M. pucherrima in cold clarification
determined an enhancement of ethyl hexanoate, isobutanol, acetaldehyde, and geraniol even if they
are considered in different amounts for each year. Indeed, the analytical and sensory profiles of wines
were also influenced by the vintage and variation pied the cuve population. Nonetheless, the overall
results indicated that M. pulcherrima led to biocontrol action and an improvement of the aromatic and
sensory profile of the wine.
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1. Introduction

Wine consumers are increasingly attentive to the diversification of distinctive styles
but also to the negative impact that chemical preservatives have on human health [1]. In
the wine industry, the most common chemical additive is sulphur dioxide (SO2). This
additive is considered an essential tool for winemakers due to its low-cost and its combined
antioxidant and antimicrobial properties against a wide spectrum of microorganisms [2].
SO2 is used to decrease undesirable microorganisms, reduce the oxidation of phenolic
compounds, and improve the quality and the shelf life of wine during the various stages
of the wine production [3]. Sulfites pose a problem for human health, especially for
sensitive consumers [4]. Sulphur dioxide is related to headaches, allergic reactions, and
breathing difficulties in asthma patients. For these reasons, the use of this additive is
strictly controlled by European Union legislation and reductions in all food and beverages
products are required.

Several technological approaches were proposed to control wine spoilage microorgan-
isms [5], even if a definitive substitute for SO2 has not been proposed, especially for wines
stored for a long time. In recent years, the use of microorganisms as bioprotective agents or
their antimicrobial products was extensively investigated particularly at the prefermenta-
tive stage [6–8]. Currently, species such as Metschnikowia pulcherrima, Torulaspora delbrueckii,
and Lachancea thermotolerans are the most applied in wine protection [9]. This strategy is
based on the inoculum of viable antagonist microorganisms or their antimicrobial products
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during, at the end, or after the wine fermentation [10–12]. In wine making, bio-protectant
strains can be a useful tool to reduce or replace sulfite addition [8,13,14].

In recent years, the increased number of studies has led to a better understanding of
the impact of mixed fermentation on overall wine quality. Among non-Saccharomyces yeast,
M. pulcherrima was one of the most investigated species for its positive contribution to wine
making, both as a bio-protectant agent and owing to its effect on analytical and sensory
wine traits [15–17]. M. pulcherrima is a well-characterized species for several positive
aspects of wine making. Indeed, its metabolic characteristics are the synthesis of secondary
metabolites to improve the volatile profile of the wine and act as a biocontrol agent. In
mixed fermentation, M. pulcherrima led to a reduction of ethyl acetate compound, favoring
the formation of 2-phenylethyl acetate, an increase of acetate esters, β-damascenone, and
higher alcohols, particularly isobutanol and 2-phenyl ethanol [18,19]. The action of M.
pulcherrima manifests as a biocontrol agent due to the production of pulcherrimin, a red
pigment with antifungal activity [14] that exhibited wide antimicrobial activity against
yeasts such as the Candida, Brettanomyces/Dekkera, Hanseniaspora, and Pichia genera as well
as filamentous fungi such as the Botrytis, Penicillium, Alternaria, and Monilia genera [20–23].

In this work a selected M. pulcherrima strain previously characterized for its antimi-
crobial activity [24] was inoculated at cold clarification stage under winery condition for
two consecutive vintages. The impact of M. pulcherrima toward the wild yeasts and the
contribution on the aroma and sensory profile of wine was evaluated.

2. Materials and Methods
2.1. Fermentation Trials at the Winery Level
2.1.1. M. pulcherrima Biomass Production

The biomass of the M. pulcherrima selected strain was obtained from pre-cultures in
a modified YPD medium (0.5% yeast extract, 0.1% peptone and 2% glucose) and grown
for 48 h at 25 ◦C in an orbital shaker (150 rpm). After this, each pre-culture was used
to inoculate a 2 L bench-top bioreactor (Biostat® C; B. Braun Biotech Int., Goettingen,
Germany) containing 25 L of modified YPD medium with airflow (1 L/L/min). A feed
batch process was used for biomass production. Biomass was collected by centrifugation,
washed three times with sterile distilled water, and inoculated at a 1 × 106 cell/mL initial
concentration on grape juice in cold clarification. This value was determined using the
Thoma-Zeiss counting chamber.

2.1.2. Preparation of Pied de Cuve

In total, 100 kg of undamaged grapes were harvested and soft pneumatic pressed.
Thus, the grape juice obtained was subjected to a clarification (10 ◦C for 24 h) with the
addition of enzymes and bentonite (MICROCOL® ALPHA, Laffort) without the addition
of SO2. The clarified grape juice was then separated and left to ferment for two days. After
this period, 15 mL/L SO2 was added and the pied de cuve was thus prepared and used to
inoculate the steel vessel of the trials.

2.1.3. Inoculation at Cold Clarification Stage and Fermentation

The fermentation trials were carried out for two consecutive vintages (2021–2022).
The main analytical parameters of the Verdicchio grape juice used in 2021 were the initial
sugar content 265 g/L, pH 3.09, total acidity 5.17 g/L, and yeast assimilable nitrogen
(YAN) content 9 mgN/L. In 2022, the main analytical parameters were initial sugar content
270 g/L, pH 3.11, total acidity 5.17 g/L, and yeast assimilable nitrogen (YAN) content
2 mgN/L.

In each vintage, a lot of grape juice (26 hL) was divided into two lots of Verdicchio
grape juice to fill two vats of 15 hL. One steel vessel was inoculated with 1 × 106 cell/mL
of M. pulcherrima and maintained at 10 ◦C for 24 h in cold static clarification. The other
batch was maintained at the same condition without the inoculum of M. pulcherrima as a
controlled trial. After 24 h of cold static clarification, the YAN was adjusted to 250 mgN/L
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by the addition of diammonium phosphate and yeast derivative (Genesis Lift® Oenofrance,
Bordeaux, France). After this time, the two batches were inoculated with the same pied de
cuve previously prepared.

2.2. Biomass Evolution

Samples during fermentation were collected to evaluate biomass evolution. A viable
cell count was carried out using lysine agar medium (Oxoid, Hampshire, UK) as a selective
medium and WL nutrient agar medium (Oxoid, Hampshire, UK) for the detection of colony
diversity. The plates were incubated at 25 ◦C for 48–72 h. The detection and enumeration
of inoculated and wild yeasts were evaluated to combine the results of lysine agar, and the
analysis of macro- and micro-morphological colonies in WL nutrient agar medium.

2.3. Saccharomyces cerevisiae Typing

Based on the micro- and macro-morphology of the colonies, presumptive S. cere-
visiae pure cultures derived from pied de cuves and samples from 2/3 of respective inoc-
ulated fermentations were isolated. DNA was extracted at 95 ◦C for 10 min, and then it
was amplified by PCR using the primers ITS1 (5′-TCCGTAGGTGAACCTCGCG-3′) and
ITS4 (5′-TCCTCCGCTTTATTGATATGC-3′) following the procedure reported by Agar-
bati et al. [25]. A total of 74 strains obtained from the two years were then subjected to
genotyping using pairs delta12/21 (delta12: 5′-TCAACAATGGAATCCCAAC-3′; delta21:
5′-CATCTTAACACCGTATATGA-3′) and were used for interdelta sequence analyses, as
described by Legras and Karst [26]. The amplification was performed as per the following
program: 3 min at 95 ◦C; followed by 25 s at 94 ◦C, 30 s at 45 ◦C, and 90 s at 72 ◦C for
9 cycles; and 25 s at 94 ◦C, 30 s at 50 ◦C, and 90 s at 72 ◦C for 21 cycles and a final extension
at 72 ◦C for 10 min.

2.4. Analytical Procedures

The Official European Union Methods (2000) were used to determine the total acidity,
volatile acidity, pH, and ethanol content. Enzymatic kits (Megazyme International Ireland)
were utilized to determine glucose and fructose (K-FRUGL) and malic acid (K-DMAL)
following the manufacturer procedures, while the ammonium content was determined
using a specific enzymatic kit (kit no. 112732; Roche Diagnostics, Germany) and the free α-
amino acids were evaluated following Dukes and Butzke protocol [27]. Acetaldehyde, ethyl
acetate, n-propanol, isobutanol, amyl and isoamyl alcohols, and acetoin were quantified by
direct injection into a gas chromatography system (GC-2014; Shimadzu, Kyoto, Japan). Each
sample was prepared and analyzed as reported by Canonico et al. [28]. The volatile com-
pounds were determined by the solid phase microextraction (HS-SPME) method, preparing
the sample as follows: 5 mL of wine was placed into a vial, 1 g of NaCl and 3-octanol as
the internal standard (1.6 mg/L) were added, and the vial was closed with a septum-type
cap and placed on a magnetic stirrer for 10 min at 25 ◦C. Then, the sample was heated
to 40 ◦C and extracted with a fiber Divinylbenzene/Carboxen/Polydimethylsiloxane
(DVB/CAR/PDMS) for 30 min by insertion into the vial headspace. The compounds
were desorbed by inserting the fiber into a Shimadzu gas chromatograph GC injector, in
split–splitless modes following the procedure reported by Canonico et al. [29]. The glass
capillary column used was 0.25 µm Supelcowax 10, length 60 m, and internal diameter
0.32 mm.

2.5. Sensory Analysis

At the end of the fermentation, the wines were decanted and after three months, were
transferred into filled 750 mL bottles, closed with the crown cap, and maintained at 4 ◦C
until sensory analysis. After this period of refinement, they were subjected to sensory
evaluation. A group of 15 testers, 10 males and 5 females aged 25–45 years (80% expert and
20% non-expert), used a score scale of 1 to 10, where 10 was the score that quantitatively
represented the best judgment (maximum satisfaction) and 1 was the score to be attributed
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in case of poor satisfaction. The expert testers were composed of oenologists, sommeliers,
and wine producers.

2.6. Data Analyses

The analysis of variance (ANOVA) using the statistical software package JMP 11®

(statistical discovery from SAS, New York, NY, USA) was used to process all experimental
data. The averages obtained were processed significant differences between the averaged
data and were determined using the Duncan test. The experimental data were significant
with associated p-values < 0.05. The results of the sensory analysis were also subjected to
Fisher ANOVA to determine the significant differences with a p-value < 0.05.

3. Results
3.1. Effect of M. pulcherrima Addition in Cold Clarification

The results of the viable wild yeasts (WY) population before and after cold clarification
with and without M. pulcherrima are reported in Figure 1a,b. Vintages from 2021 (a) and
2022 (b) were considered. In the first year, the initial wild yeast population in grape juice
was about 105 CFU/mL in both trials. Without the use of M. pulcherrima there was an
increase of about one log CFU/mL, while the inoculated trial showed a containment of the
wild yeast population, which remained almost constant.
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During the 2022 vintage (Figure 1b), although the wild population was quantita-
tively comparable to that of the first year, a significant reduction of WY was shown in
both trials with and without the inoculation of M. pulcherrima (a reduction of WY of c.a.
0.6 Log CFU/mL and 0.3 Log CFU/mL, respectively). The major containment of WY in
the 2022 vintage could also be explained by the presence of wild M. pulcherrima (about
104 cell/mL) in grape juice.

3.2. Pied de Cuve Inoculum and S. cerevisiae Strains Typing

The two lots of clarified grape juice in both vintages (2021–2022) were inoculated with
pied de cuves coming from spontaneous fermentation described in the material and methods
section. Both pied de cuves before the inoculum of vats showed the exclusive presence of
S. cerevisiae with a viable cell count of 5 × 108 cell/mL. The results of the characterization at
the strain level of S. cerevisiae population are reported in Table 1. Biotyping results revealed
the presence of a total of nine different profiles. The biotypes present in the pied de cuves
almost dominated the fermentation processes with 90% and 58.3% in the 2021 vintage
control and inoculated M. pulcherrima trials, respectively, (biotypes I, II, III, and IV) and
60% and 50% in the 2022 vintage control and inoculated M. pulcherrima trials, respectively
(biotypes II, III, and VIII). Interestingly, 65% of the S. cerevisiae population showed the same
biotype profile (biotypes I, II, and III) contributing to both 2021 and 2022 vintages.

Table 1. S. cerevisiae biotypes found in the spontaneous fermentation of pied de cuves and in the
fermentation processes.

2021 2022

Pied de cuve

Byotype % n. Strains Byotype % Strains

I 12.5 2 II 67.0 12
II 37.5 6 III 11.0 2
III 12.5 2 VII 11.0 2
IV 12.5 2 VIII 11.0 2
V 25.0 4 - - -

Fermentation
control

VI 10.0 1 II 40.0 4
I 20.0 2 III - -
II 30.0 3 VIII 20.0 2
III - - I 20.0 2
IV 40.0 4 IX 20.0 2

M.
pulcherrima
in cold clar-

ification

VI 42.0 5 I 50.0 4
I 17.0 2 II 50.0 4
II 17.0 2 III - -
III 8.0 1 - - -
IV 17.0 2 - -

3.3. Biomass Evolution and Saccharomyces cerevisiae Characterization

The biomass evolution after 24 h of cold clarification and the inoculum of pied de
cuve in the vintage 2021 is reported in Figure 2a. The S. cerevisiae evolution in the two
fermentations showed a similar trend, therefore the presence of M. pulcherrima did not affect
the development of S. cerevisiae. The initial cell concentration was 106 cell/mL, achieving
the maximum of growth kinetics at the 5th day of fermentation to remain constant until
the end of fermentation. WY in both fermentations exhibited a similar trend: they started
with the different amounts found in Figure 1 and disappeared at the 4th of fermentation.
After cold clarification, the inoculated M. pulcherrima maintained a cell concentration of
103 cell/mL until the 8th day and then disappeared on the 12th day. The growth kinetics of
trials of the vintage 2022 are reported in Figure 2b. The biomass evolution of S. cerevisiae
also showed a similar trend to the vintage 2022, although there was a more abundant
inoculum (107 cell/mL) achieving the maximum biomass on the 3rd day of fermentation
(108 cell/mL) to remain constant at the end of fermentation. Regarding wild yeast evolution,
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the two fermentations did not show differences in terms of the cell concentration. The
overall results indicated that an adequate starter inoculum is also relevant in the control of
WY with and without M. pulcherrima.
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M. pulcherrima
biomass in the trial with M. pulcherrima cold clarification.

3.4. Main Oenological Characters of Wine

The results of the main analytical characters of wines obtained in 2021 and 2022 are
shown in Table 2. The presence of M. pulcherrima during cold clarification did not generally
significantly affect the main parameters analyzed in both vintages 2021 and 2022. Indeed,
the resulting wines coming from the two vintages exhibited a similar analytical profile. The
only exception was the residual sugar content: the vintage 2021 was significantly higher in
the control trial, while in 2022 the data showed an opposite result. Even comparing the
wines in the two vintages, the results did not show any differences, except for the higher
volatile acidity value in both fermentations in the 2021 vintage.
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Table 2. The main analytical characteristics of resulting wine coming from 2021 and 2022 vintages.

M. pulcherrima in Cold
Clarification (2021) Control Trial (2021) M. pulcherrima in Cold

Clarification (2022) Control Trial (2022)

Ethanol %v/v 15.05 ± 0.02 a 14.49 ± 0.01 b 14.81 ± 0.15 a 15.08 ± 0.02 a

Total acidity (g/L
tartaric acid) 6.26 ± 0.09 a 6.52 ± 0.01 a 7.56 ± 0.12 a 7.84 ± 0.14 a

Sugar residue (g/L) 3.7 ± 0.02 b 14.0 ± 0.03 a 6.6 ± 0.7 a 1.5 ± 0.1 b

pH 3.28 ± 0.02 a 3.25 ± 0.00 a 3.08 ± 0.00 a 3.09 ± 0.00 a

Volatile acidity (g/L
acetic acid) 0.64 ± 0.01 a 0.56 ± 0.02 b 0.34 ± 0.02 a 0.36 ± 0.03 a

Total SO2 (mg/L) 25 ± 0.9 a 26 ± 0.8 a 21 ± 0.9 a 21 ± 0.9 a

Malic acid (g/L) 0.55 ± 0.03 a 0.49 ± 0.02 a 0.54 ± 0.05 a 0.55 ± 0.05 a

Ethanol yield (g/g) 0.45 ± 0.07 a 0.45 ± 0.06 a 0.44 ± 0.09 a 0.44 ± 0.09 a

Data (n = 3) are the means ± standard deviation. Data with different superscript letters (a,b) within each row and
vintage are significantly different (Duncan tests; p < 0.05).

3.5. Volatile Compounds of Wine

The resulting volatile compounds of vintage wines coming from 2021 and 2022 are
reported in Table 3. The inoculation of M. pulcherrima at the start of cold clarification
generally led to wine with a different volatile profile. Indeed, a significant increase in ethyl
hexanoate with relevant high OAV values in comparison with the control was observed.
Moreover, the trials with M. pulcherrima exhibited a significant increase in monoterpenes
content, in particular with respect to geraniol and nerol (1.5 OAV), and two higher alcohols
(n-propanol and isobutanol) in comparison with control trials. The results showed a
significant increase in the acetaldehyde content with M. pulcherrima but within the limits of
the negative threshold. On the contrary, the control trial exhibited a significant increase in
the isoamyl acetate and β-phenyl ethanol.

Table 3. The main by-products and volatile compounds in final wines during two vintages 2021–2022.

M. pulcherrima
in Cold

Clarification
2021

OAV
(Odor

Activity
Value)

Control Trial
2021

OAV
(Odor Activity

Value)

M. pulcherrima
in Cold

Clarification
2022

OAV
(Odor

Activity
Value)

Control Trial
2022

OAV
(Odor

Activity
Value)

Esters (mg/L)

Ethyl butyrate 0.13 ± 0.014 a 0.325 0.13 ± 0.00 a 0.325 0.187 ± 0.007 a 0.467 0.148 ± 0.006 b 0.445

Ethyl acetate 35.75 ± 0.41 a 2.97 35.55 ± 0.36 a 2.96 30.12 ± 0.18 b 2.51 31.91 ± 0.35 a 2.65

Phenyl ethyl
acetate

0.89 ± 0.042 a 12.19 0.88 ± 0.034 a 12.05 0.821 ± 0.032 a 11.24 0.773 ± 0.045 a 10.58

Ethyl
hexanoate

1.80 ± 0.121 a 22.5 0.63 ± 0.142 b 7.87 1.470 ± 0.050 a 18.37 0.612 ± 0.043 b 7.65

Ethyl
octanoate

0.00 ± 0.00 a 0 0.00 ± 0.00 a 0 0.002 ± 0.000 a 0.003 0.003 ± 0.001 a 0.005

Isoamyl
acetate

1.27 ± 0.026 b 7.93 2.22 ± 0.147 a 13.87 1.484 ± 0.112 a 9.27 1.404 ± 0.024 a 8.77

Alcohols
(mg/L)

n- propanol 30.88 ± 0.36 a 0.100 26.08 ± 0.13 b 0.08 36.44 ± 4.92 a 0.119 31.64 ± 0.05 a 0.103

Isobutanol 20.48 ± 0.29 a 0.512 18.30 ± 0.10 b 0.45 14.09 ± 0.34 a 2.83 11.41 ± 0.24 b 0.285

Amyl alcohol 13.00 ± 0.55 a 0.203 11.69 ± 0.41 a 0.18 10.03 ± 0.29 a 0.156 8.64 ± 0.48 a 0.135

Isoamyl
alcohol

113.94 ± 0.05 a 1.89 114.16 ± 0.24 a 1.90 89.94 ± 0.12 a 1.49 80.95 ± 0.52 b 1.34

β-Phenyl
Ethanol

55.9 ± 0.130 b 3.99 64.5 ± 0.152 a 4.60 14.01 ± 0.022 a 1 13.32 ± 0.045 a 0.951
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Table 3. Cont.

M. pulcherrima
in Cold

Clarification
2021

OAV
(Odor

Activity
Value)

Control Trial
2021

OAV
(Odor Activity

Value)

M. pulcherrima
in Cold

Clarification
2022

OAV
(Odor

Activity
Value)

Control Trial
2022

OAV
(Odor

Activity
Value)

Carbonyl
Compounds

(mg/L)

Acetaldehyde 63.16 ± 0.28 a 126.32 25.35 ± 0.37 b 70 22.39 ± 0.59 a 44.78 16.57 ± 0.1 b 33.14

Monoterpenes
(mg/L)

Linalool 0.015 ± 0.001 a 0.60 0.012 ± 0.002 a 0.48 0.010 ± 0.00 a 0.40 0.009 ± 0.00 a 0.36

Geraniol 0.010 ± 0.002 a 0.33 0.002 ± 0.000 b 0.06 0.016 ± 0.00 a 0.53 0.005 ± 0.001 b 0.17

Nerol 0.023 ± 0.001 a 1.53 0.005 ± 0.000 b 0.33 0.001 ± 0.000 a 0.06 0.001 ± 0.00 a 0.06

Data (n = 3) are the means ± standard deviation. Data with different superscript letters (a,b) within each row and
vintage are significantly different (Duncan tests; p < 0.05).

The other volatile compounds did not show significant differences. The results of the
wines coming from 2022 vintages showed an enhancement of ethyl butyrate and ethyl
hexanoate content in the presence of M. pulcherrima, while control trials showed a significant
increase in the ethyl acetate content.

Considering the two vintages, the results confirmed that the use of M. pulcherrima in
cold clarification affected the volatile compounds in terms of the terpens, alcohols, and
some esters compounds.

The main volatile compounds of the vintage wines obtained from 2021 and 2022 with
and without the inoculum of M. pulcherrima were elaborated using the Principal Component
Analysis (PCA). The total variance explained was 86.6% (PC1 = 66.0%;
PC 2 = 26.6%). Figure 3 reports the distribution of fermentations to assess the effect
of the yeast and the vintage in the function of the volatile compounds. The fermentation
trials were in four different quadrants: PC1 distinguished the trials on the base of the
vintage while PC 2 separated the trials in the function of the presence of M. pulcherrima
during the cold clarification stage. The production of ethyl hexanoate and geraniol is
characterized more specifically by the M. pulcherrima metabolism of volatile compounds
imparting a specific aromatic imprint to the wine.
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(Figure 4b), the use of M. pulcherrima led to wine characterized by distinctive descriptors 
as structure, persistence, herbs, and tropical fruits, in comparison with the control wine. 
The sensory analysis highlighted the influence of the use of M. Pulcherrima in cold clarifi-
cation on the sensory profile of aroma wine. 

Figure 3. Principal component analysis of the main volatile compounds in wine coming from two
consecutive vintages. The variance explained by principal component analysis (PCA) is PC 1 66%
X-axis and PC 2 26.6% Y-axis.
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3.6. Sensory Analysis

To evaluate the impact of M. pulcherrima inoculated in cold clarification on the aroma
complexity, the final wines were subjected to sensory analysis. The sensory analysis of
wines obtained by the 2021vintage are reported in Figure 4a. The results highlighted a
positive judgement of testers regarding each wine, characterized by specific aromatic notes
and without defects. The final wine from the control trial exhibited a more pronounced
persistence and bitterness. The use of M. pulcherrima led to wines with emphasized notes
of tropical fruits, sweetness, and more structure. No significant differences were shown
regarding the other aromatic descriptors. As for the wines of 2022 (Figure 4b), the use of M.
pulcherrima led to wine characterized by distinctive descriptors as structure, persistence,
herbs, and tropical fruits, in comparison with the control wine. The sensory analysis
highlighted the influence of the use of M. Pulcherrima in cold clarification on the sensory
profile of aroma wine.
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4. Discussion

The term “biocontrol” related to the use of microorganisms as biocontrol agents
was defined by Baker and Cook [30] as the reduction of a pathogen or disease activities
through an organism. In agri-food, this concept is related to an alternative strategy to
the use of chemical products and the use of a microorganism with antagonist action
against other microorganisms reducing the use of pesticides and boosting food quality and
safety [19,30–32]. The increased consumer demands for safe food and beverages invigorated
research on the development of safe and ecofriendly wine, where the protection against
undesirable microorganisms before, during, after, or at the end of the fermentation process
is required [6,7,14]. Effectively, the use of non-Saccharomyces yeasts could be a valid strategy
as potential antagonists against phytopathogenic fungi of the genera due to their ability
to produce a wide spectrum of secondary metabolites. One of the yeast species best
known for its biocontrol potential is M. pulcherrima. This characteristic is also linked to
the production of the pulcherrimin pigment, which in turn is linked to the availability
of iron in the medium which would lead to the deprivation of different yeast species as
Brettanomyces/Dekkera, Pichia, Hanseniaspora, spp. Saccharomycodes ludwigii, and Candida
spp. [33]. M. pulcherrima can be compatible with the main yeast used for wine production,
for example in mixed fermentations, thus resulting in a reduction in the SO2 dose and
hence were usually used as an antimicrobial agent [34]. Moreover, recent investigations
conducted using M. pulcherrima strains or a mix of M. pulcherrima and T. delbrueckii in the
red wine making process at the prefermentative stage [7,8,14].
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In this work carried out at winery conditions, the efficacy of M. pulcherrima to control
the wild yeast population was found in cold clarification. On the other hand, the timely
and appropriate starter inoculum in the two years determined an effective control of wild
yeast during fermentation with and without M. pulcherrima inoculum. The WY control was
particularly evident in the 2022 vintage, where a high concentration of wild M. pulcherrima
was already present in grape juice before the clarification stage, influencing the control trial.
These data corroborate the results reported by other recent studies regarding the use of M.
pulcherrima in wine making as a bioprotectant agent [6–8]. In particular, the inoculum of a
selected M. pulcherrima strain would ensure the biocontrol activity and attempt to impart
specific aromatic traits to the final wine.

The bioprotectant action of M. pulcherrima used in cold clarification was displayed
without the addition of SO2 in Verdicchio grape juice with an inoculum of a pied de cuve
with indigenous S. cerevisiae strains.

The molecular monitoring of biotype profiles that led to the fermentation, including
those present in the pied de cuve, revealed a rather stable yeast strain consortium in the pres-
ence and absence of M. pulcherrima (80 %) as well as from a vintage to another (50%), even
if same differences can be found. This reflected the results of the PCA analysis indicating
that the impact on volatile profile was related not only to the effect of M. pulcherrima but
also to the different vintages and S. cerevisiae yeast strain variation. The presence of M.
pulcherrima increased ethyl hexanoate, isobutanol, acetaldehyde, and geraniol although
with different concentrations in both vintages.

Generally, the use of M. pulcherrima affected the esters, alcohol, and monoterpens
compounds that contribute to defining the overall sensory characteristics of wines and
increasing the perception of the varietal aroma of grapes [1]. Indeed, M. pulcherrima was
indicated in several works to improve the concentration of volatile compounds [35–37].
This species positively contributes to volatile thiol release in wines, especially during the
pre-fermentation stage in wine making [36]. The sensory analysis confirmed the results of
main analytical characters and volatile compounds, particularly regarding the descriptors
of tropical fruit and structure.

In this work, the multifactorial role of M. pulcherrima in wine making was highlighted
again. As recently reported [38,39], mixed fermentation with M. pulcherrima enhanced the
ester profile and increased the final quality of the wine, such as the sensory characteristics
and color parameters.

In conclusion, the results obtained indicate that the use of M. pulcherrima in the cold
clarification stage plays an effective biocontrol action against the wild yeast population.
This effect could be a strategy to reduce the use of sulfur dioxide in wine fermentation.
Moreover, M. pulcherrima was able to enhance the aromatic and sensory profile of the wine.
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