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Abstract: Lignocellulose consists of cellulose, hemicellulose, and lignin and is a sustainable feedstock
for a biorefinery to generate marketable biomaterials like biofuels and platform chemicals. Enormous
tons of lignocellulose are obtained from agricultural waste, but a few tons are utilized due to a lack
of awareness of the biotechnological importance of lignocellulose. Underutilizing lignocellulose
could also be linked to the incomplete use of cellulose and hemicellulose in biotransformation into
new products. Utilizing lignocellulose in producing value-added products alleviates agricultural
waste disposal management challenges. It also reduces the emission of toxic substances into the
environment, which promotes a sustainable development goal and contributes to circular economy
development and economic growth. This review broadly focused on lignocellulose in the production
of high-value products. The aspects that were discussed included: (i) sources of lignocellulosic
biomass; (ii) conversion of lignocellulosic biomass into value-added products; and (iii) various
bio-based products obtained from lignocellulose. Additionally, several challenges in upcycling
lignocellulose and alleviation strategies were discussed. This review also suggested prospects using
lignocellulose to replace polystyrene packaging with lignin-based packaging products, the production
of crafts and interior decorations using lignin, nanolignin in producing environmental biosensors
and biomimetic sensors, and processing cellulose and hemicellulose with the addition of nutritional
supplements to meet dietary requirements in animal feeding.
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1. Introduction

Lignocellulose is a plant biomass available in large amounts, and it is a renewable
resource. It is a complex structure primarily composed of the polymers cellulose and
hemicellulose (polysaccharides), lignin (a phenolic macromolecule), as shown in Figure 1,
and other components, such as proteins, lipids, and inorganic compounds [1–3]. These
polymers contain cellulose ranging from 35 to 55%, hemicellulose from 20 to 40%, lignin
(10–25%) by mass, and other polar and non-polar compounds [4]. The elemental composi-
tions of most lignocellulosic biomass are classified as major elements (e.g., C, H, O, N, K,
and Ca), minor elements (Mg, Al, Si, P, Cl, Na, S, and Fe), and trace elements (e.g., Mn and
Ti) [5,6].

The cellulose in lignocellulose is a homopolysaccharide with chains of D-glucose
monomers linked together via β-1-4 glycosyl units, stabilized by hydrogen bonds and van
der Waals forces [1]. Cellulose comprises the repetitive structural unit called cellobiose
(D-glucopyranosyl-β-1,4-D-glucopyranose) [7], and it is linked to lignin by hemicellulose
via hydrogen and covalent bonds [8] (Figure 1). Hemicellulose is a branched heteropolysac-
charide with two or more free monosaccharides, such as xylose and arabinose (five-carbon
sugars), mannose, glucose, galactose (six-carbon sugars), and carboxylic acids (e.g., man-
nuronic acid and galacturonic acid) [8,9]. Moreover, hemicellulose bridges the deposition
of lignin monomers in the secondary cell wall [9,10]. Meanwhile, lignin is a complex amor-
phous polymer that contains various monolignols, such as p-coumaryl alcohol, sinapyl
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alcohol, and coniferyl, and it is a crosslinked macromolecule formed via the polymerization
of phenylpropanoid monomers (p-coumaryl alcohol, sinapyl alcohol, and coniferyl) [8,10].
Lignin is hydrophobic and highly resistant to hydrolysis; it binds hemicellulose to cellulose
in the cell wall and acts as a barrier that limits cellulose accessibility [11].
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Extensive studies on the physicochemical properties of lignocellulose have yet to be
conducted; however, literature searches have indicated that lignocellulose physicochemical
properties are assessed based on its particle size, density, flowability, moisture sorption,
grindability, and thermal properties (physical properties), along with ash, volatile matter,
moisture, and fixed carbon (chemical properties) [12].

The world’s food-producing countries are China, the USA, India, Brazil, and Turkey,
and they are the largest producers of agricultural waste [13,14]. Although large volumes of
lignocellulose are obtained from agricultural waste, a few tons of lignocellulose are utilized.
For instance, the recent global annual lignocellulose production is about 181.5 billion tons,
and only 8.2 billion tons were used for distinct applications [15]. Noticeably, agricultural
waste is burned in some countries with no sustainable management practices, resulting in
excessive emissions of gases and aerosols, which causes air pollution that could adversely
affect health [16]. In addition, the burning of agricultural waste results in soil fertility
deterioration, while frequent burning reduces the soil’s carbon and nitrogen and kills the
in-situ microflora and fauna [17].

Stringent measures like government intervention towards regulating crop waste man-
agement and adequate awareness of the biotechnological importance of agricultural waste
to mitigate the improper management and underutilization of agricultural waste should be
implemented. Conversion of lignocellulose into a broad spectrum of marketable bio-based
products, such as chemicals and biofuels, aligns with the United Nations Climate Change
Conference of the Parties [18] mission, and such a conversion aims at a Sustainable Devel-
opment Goal (SDG 13) using alternative materials for energy production. The concept of
reusing lignocellulose, recycling, and converting it into bio-based products reduces the
emission of toxic substances into the environment and contributes to circular economy
development [19] and economic growth.
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As such, this review paper aimed to raise more awareness of the biotechnological
importance of lignocellulose by focusing on lignocellulose sources, steps and processes in
utilizing lignocellulose for high-value product production, various bio-based products ob-
tained from lignocellulose, challenges and alleviation strategies in upcycling lignocellulose,
and prospects.

2. Lignocellulosic Biomass Sources

Lignocellulosic biomass resources are widely available, and they are agricultural and
forestry residues from plant wastes [20]. Industrial and food wastes are also sources of
lignocellulose [21]. A number of examples of lignocellulose sources are listed in Table 1.
Several harvests from a single planting that reduce the average annual cost of managing
energy crops compared to conventional crops make lignocellulosic biomass resources
the most promising future resources to generate value-added products [22]. Rice, wheat,
sugarcane, and maize are the major crops that generate a large amount of lignocellulosic
biomass. The world’s first most important cereal crop is corn. In 2022/2023, around
1.2 billion metric tons of corn and nearly 783.8 million metric tons of wheat were produced,
followed by 510 million metric tons of milled rice (the second-most important cereal
crop) [23]. Approximately 177.3 million metric tons of sugarcane were also produced in
2022/2023 [23]. China and the United States of America account for more than half of
worldwide corn production, while China is the world’s leading rice producer, followed
by India and Bangladesh [23]. Similarly, China, followed by India, Russia, and the United
States of America are the four largest wheat producers in the world, while India and Brazil
are the world’s top two sugar producers [24].

Vast waste, such as rice straw, wheat straw, sugarcane bagasse, corn stover, etc., is
generated annually via agricultural crop production. Rice straw (stems, leaf blades, and
sheets) is generated from the rice harvest [25,26], and wheat straw is the waste obtained
from wheat grain production [22]. Sugarcane waste or bagasse is obtained after sugarcane
stalks are crushed for sugar [27], while corn stover (consisting of leaves, cobs, husks, and
stalks) is the waste product obtained from corn kernel processing [28] from the maize plants.
These wastes constitute a major portion of lignocellulosic biomass. Other agricultural
wastes that contribute to a small amount of the total agricultural waste production include
barley straw, cotton stalks, sweet sorghum straws, potato haulms (the tops, stems, and
foliage of potato plants), and others [22].

Table 1. Sources and selected examples of lignocellulosic materials.

Sources Examples References

Agricultural residues

Sugarcane bagasse, corn and rice
straw, cotton stalk, corn cobs and
leaves, wheat straw, barley straw,
sweet sorghum straw, potato
haulms, and cocoa pods.

[25,29–38]

Forestry residues Spruce chips, willow, cedars, poplar,
and eucalyptus. [12,39–44]

Industrial wastes

Brewer’s spent grains, chemical
pulps (e.g., waste sulfite liquor from
pulp), and waste papers from
paper mills.

[22,45–48]

Food wastes The kitchen remains, such
as vegetable peels and fruit waste. [49]

Agro-wastes Animal manure (e.g., solid cattle,
cow, and pig manure). [50,51]



Fermentation 2023, 9, 990 4 of 25

3. Conversion of Lignocellulosic Biomass into Value-Added Products

The production of biofuels and platform chemicals (i.e., value-added products) using
lignocellulose is a sustainable option that can alleviate challenges associated with agricul-
tural waste management [31]. Lignocellulose undergoes different biorefinery processing
stages before it is converted into value-added products. These processing stages include
pretreatment, hydrolysis, fermentation, and product purification/recovery [52,53].

3.1. Pretreatment Methods of Lignocellulose

The pretreatment of lignocellulose is a delignification process that makes lignocellu-
losic materials accessible to generate sugars. In many cases, lignocellulose was reported to
be recalcitrant due to the complexity of the cell wall, lignin components, and crystalline
structure of cellulose [20]. As such, selecting a suitable pretreatment method to generate
sugars for the downstream application is essential. Lignocellulose can be pretreated using
physical, chemical, physicochemical, biological, or nanotechnology methods [54–56]. As
shown in Figure 2, these pretreatment methods have been reported, and specific experi-
mental procedures have been developed to disrupt the lignocellulose structure to liberate
sugars for value-added product production [55]. For instance, in physical pretreatments,
lignocellulose is ground, milled, chipped, shredded (mechanical comminution), frozen,
or pyrolyzed to produce various material sizes, thereby elevating the surface area and
decreasing cellulose crystallinity and polymerization [57]. In physical pretreatment meth-
ods, lignocellulose can also be thermally degraded at an elevated temperature under
non-oxidizing conditions (slow, fast, or flash pyrolysis) [58].
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Different processes used in chemical pretreatment methods include dilute acid, alka-
line, ionic liquid, organosolv process, ozonolysis, and deep eutectic solvents [60]. In the di-
lute acid pretreatments, inorganic or organic acids, such as HCl, H2SO4, HNO3, and formic
acid, break down the hydrogen and glycosidic bonds in cellulose/hemicellulose [61,62].
Bases such as NaOH, NH4OH, Ca(OH)2, and KOH are always used in alkaline pretreatment
methods to solubilize lignin [3].
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Physicochemical pretreatment methods such as ammonia fiber explosion (AFEX) or
carbon dioxide explosion are employed where the milled or ground lignocellulose is treated
with ammonia under a high temperature (e.g., 90 ◦C) or carbon dioxide pressure is released
to disrupt the structure of cellulose [57,63]. The disruption of the structure of cellulose
reduces cellulose crystallinity, enhances cellulose permeability, and increases its surface
area, thereby increasing the accessibility of enzymes [64].

Biological pretreatments also offer capable commercially available microbial enzymes
or crude enzymes in the delignification of lignocellulose. The different enzymes used in
biological pretreatment include ligninolytic enzymes such as phenol oxidase (e.g., laccase)
and heme peroxidase (e.g., lignin peroxidase). Additionally, fungi, such as white rot (e.g.,
Irpex lacteus, Ceriporiopsis subvermispora, and Lentinus edodes) [65–67], red rot (e.g., Fomitopsis
annosa) [68], and brown rot (e.g., Neolentinus lepideus and Gloeophyllum trabeum) [69], have
been used to attack lignin, hemicellulose and cellulose, lignin and hemicellulose, or cellulose
and hemicellulose directly due to the lignolytic enzymes they produce [66,70]. Most of
these fungi are Ascomycetes, Deuteromycetes, or Basidiomycetes; they live on wood and
degrade the wood components, thereby causing wood rots [71,72]. Brown rot fungi, for
instance, constitute around 6–10% of wood decay fungi, and they not only degrade cellulose
and hemicellulose but also modify lignin through a demethylation reaction [72–74]. It was
reported that lignocellulose degradation occurs in the S2 layer of the cell wall via oxidation
and hydrolysis mechanisms [75]. White rots are the most effective fungi in degrading the
main components of the cell wall (e.g., lignin, hemicellulose, and cellulose) [72–74].

Previous studies that had used white rot fungi in lignocellulose pretreatment estab-
lished that: (i) two strains of Ceriporiopsis subvermispora used to pretreat wheat straw for
seven weeks revealed that Ceriporiopsis subvermispora (CS), mostly CS1, showed a higher
selectivity in lignin degradation than CS2, with higher laccase activity but lower manganese
peroxide than C2 [76]; (ii) there was a selective degradation of lignin wheat straw and
lignin oak wood chips when incubated with Ceriporiopsis subvermispora and Lentinus edodes,
and alkylitaconic acids for delignification were produced by Ceriporiopsis subvermispora and
Lentinus edodes [67]; (iii) there was degradation of 265 g·kg−1 of lignin and 320 g·kg−1 of
neutral detergent soluble when eight different cultivars of wheat straw were incubated with
Irpex lacteus for 56 days at 28 ◦C [77]; and (iv) the lignin content of wheat straw pretreated
with Ceriporiopsis subvermispora, CS1 (CBS 347.63), at 24 ◦C reduced by 48.5% [78].

Lastly, the pretreatment method based on nanotechnology employs the ability of
nanoparticles to penetrate the cell membrane of lignocellulose [55]. Recycling and reusing
magnetic nanoparticles for subsequent cycles in lignocellulose pretreatment reduces the over-
all processing cost [20]. Examples of nanotechnology pretreatments are acid-functionalized
magnetic nanoparticles and nano-scale shear hybrid alkaline methods. Acid-functionalized
magnetic nanoparticles are strong acid nanocatalysts that effectively degrade lignocellu-
lose [59]. In the nano-scale shear hybrid alkaline method, lignocellulose is degraded by com-
bining chemical catalysts and the high-speed shear force [79]. Recent advances in processing
lignocellulose for value-added products have been reported. The nanotechnology-based ap-
proach in pretreating lignocellulose is a promising application in biorefineries, though there
is limited information on using nanoparticles for lignocellulose pretreatment. Recently,
nanotechnology applications were reported to enhance the effectiveness of lignocellulose
pretreatment, resulting in a cost-effective process. Integration of lignocellulose pretreatment
and hydrolysis in one step using enzyme-immobilized functionalized magnetic nanomate-
rials (nanocatalysts) could present a path-breaking alternative to pretreatment methods.
For instance, a cost-effective simultaneous pretreatment and saccharification of lignocel-
lulose using cerium-doped iron oxide nanoparticles (CeFe3O4-NPs) with cellulase and
hemicellulase enzymes was reported to effectively generate 20.3 ± 1.01 g·L−1 of glucose
and 22.0 ± 2.22 g·L−1 of xylose within 24 h [80]. Sugarcane bagasse pretreated with alkyl
sulfonic acid and butyl carboxylic acid functionalized magnetic nanoparticles also yielded
18.83 g·L−1 and 18.67 g·L−1 of sugar concentrations, which were higher than the acid pre-
treatment (15.40 g·L−1) [81]. Due to nanotechnology prospects in biorefinery sustainability,
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there should be more focus on using the nanotechnology-based approach in lignocellulose
conversion to produce value-added products, such as biohydrogen, biomethane, etc.

Meanwhile, each pretreatment method has its pros and cons. For instance, physical
methods do not generate inhibitory compounds. They can offer green pretreatments, in
which the product (hydrolyzate) can be directly utilized to generate sugars. Still, physical
methods, such as mechanical comminution and pyrolysis, have been considered to be too
expensive for a full-scale process due to their high energy consumption; however, the main
disadvantage of physical pretreatment methods is their inability to degrade the structure
of lignin [56,82].

In chemical pretreatments, the hydrolysis of lignocellulose by acid alters the structure
of lignin, thus resulting in high glucose yields and solubilizing hemicellulose to xylose and
other sugars. The drawbacks of acid hydrolysis include the high cost of corrosive-resistant
equipment and the generation of inhibitors, such as levulinic, formic, and acetic acids.
Low inhibitors are produced under alkaline hydrolysis, but this process requires a long
residence time and a high cost of alkaline catalysts [83].

Furthermore, steam explosion and carbon dioxide explosion methods are examples
of cost-effective physicochemical pretreatments. No inhibitory compounds are generated
during carbon dioxide explosion, but the main drawback of this method is that lignin and
hemicellulose cannot be modified. Thus, steam explosion is unsuitable for lignocellulosic
biomass with high lignin content, and it produces inhibitors such as acetic acid and furan
aldehyde [84].

The biological pretreatment method is eco-friendly and cost-effective, as it requires
low energy [85,86] and does not generate inhibitors [75]. The main drawbacks of biological
pretreatment include its low hydrolysis rate [86], bacterial (e.g., Bacillus sp.) and fungal
(e.g., mold) contamination (that can affect lignin degradation) [87–90], and microbial
mutation [88].

Nanotechnology pretreatment methods have been considered the best option for
delignification, as these pretreatment methods are cost-effective because the immobilized
enzymes are easily retrievable and reusable [91,92]. Depending on the type of nanomaterial
used, a few drawbacks of nanotechnology pretreatment methods include their potential
poor dispersion abilities of some nanoparticles (due to the difficulty of dispersing in the
aqueous solution, where hydronium ions are not effective) [93], and biocatalyst desorption
could arise due to the weak bonds [94].

3.2. Hydrolysis of Lignocellulose

The pretreated lignocellulose is then subjected to hydrolysis. Hydrolysis is the process
that liberates monomeric sugar molecules, viz. glucose, mannose, galactose, xylose, or
arabinose, from structural polysaccharides, such as cellulose and hemicellulose in ligno-
cellulose [95,96]. Cellulose hydrolysis using acids or enzymes has been reported. The first
acid hydrolysis technology was developed in 1923, when a sulfuric acid solution was used
to hydrolyze white spruce wood; the sugars obtained were glucose, mannose, galactose,
xylose, and arabinose [97]. Inorganic acids (e.g., hydrochloric acid and hydrogen fluo-
ride) and organic acids (e.g., citric, oxalic, and maleic acids) were also used in cellulose
hydrolysis [44,98,99].

The hydrolysis of cellulose under room temperature using ca. 12 mol·L−1 of hydrochlo-
ric acid yielded approximately 32 percent of volume-reducing sugar [100], and cellulose
hydrolysis with 6–7 mol·L−1 of hydrochloric acid at 90 ◦C in the presence of CaCl2 and LiCl
as additives resulted in an 85% glucose yield [101]. When cellulose was hydrolyzed using
hydrogen fluoride, the sugar yield was approximately 45% at 0 ◦C [99]. The most notable
drawbacks of acid hydrolysis include problems in product/catalyst separation, catalyst
recycling, corrosion of reactors, and waste effluent treatment that makes it environmentally
unfriendly. In addition, acid hydrolysis necessitates relatively higher temperatures and
produces levulinic acid, formic acid, acetic acid, furfural, and other by-products, along
with sugars [97], thus reducing sugar yield.
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In contrast, enzymatic hydrolysis of cellulose and hemicelluloses (e.g., xylan, galac-
tomannan, and xyloglucan) for producing sugars offers a greater scope of advancement
than acid hydrolysis, as it promotes a higher conversion efficiency with no substrate loss.
Furthermore, enzymatic hydrolysis employs a non-corrosive operating mode with low
process energy [102]. Different enzymes capable of hydrolyzing cellulose and hemicel-
lulose include cellulase and hemicellulase, and they are under the carbohydrate-active
enzymes (CAZy) glucoside hydrolase (G.H.) classification system [103] (Table 2). For
an effective degradation of cellulose, the cocktail of cellulases, β-1,4-endoglucanase, en-
doglucanase/cellobiohydrolases, and β-glucosidase are used [104,105]. While xylan is
mostly hydrolyzed by β-1,4-endoxylanase and β-1,4-xylosidase, xyloglucan-active β-1,4-
endoglucanase and β-1,4-glucosidase hydrolyze xyloglucan, and galactomannan is hy-
drolyzed by β-1,4-endomannanase and β-1,4-mannosidase [105].

Table 2. Enzyme families and their lignocellulosic substrates [96,103,105–109].

Substrate Enzyme Name CAZy Families

Cellulose
β-1,4-endoglucanase GH5, GH7, GH9, and GH12,

GH45 and GH48
β-1,4-glucosidase GH1, GH3, and GH9
Cellobiohydrolase GH4, GH6, GH7, GH9, and GH48

Xylan (hemicellulose)

β-1,4-endoxylanase GH8, GH9, GH10, and GH11
β-1,4-xylosidase GH3 and GH43
α-glucuronidase GH67 and GH115
Acetylxylan esterase CE1, CE4, CE5, and CE16
Feruloyl esterase CE1
Arabinoxylan
α-arabinofuranohydrolase GH62

Xyloglucan
(hemicellulose)

Xyloglucan β-1,4-endoglucanase GH12 and GH74
β-1,4-galactosidase GH2 and GH35
α-xylosidase GH31
α-fucosidase GH29 and GH95
α-arabinofuranosidase GH51 and GH54

Galactomannan
(hemicellulose)

α-1,4-galactosidase GH4, 27, 36, GH57, GH97,
and GH110

β-1,4-endomannanase GH5 and GH26
β-1,4-mannosidase GH2

CAZy: carbohydrate-active enzymes; CE: carbohydrate esterase; and GH: glucoside hydrolase.

3.3. Fermentation of Sugars

Fermentation is an enzyme-catalyzed biochemical process in which capable microor-
ganisms convert sugars into new products [110], especially value-added products. Several
fermentation products include biofuels like alcohol (e.g., ethanol), gases (such as methane
and biogas), and organic acids (e.g., lactic, citric, succinic, and acetic acids) [22,111–116].
Producing these new products depends on the selected microorganisms and fermentation
conditions. Different fermentation modes and methods have been employed in producing
value-added products. These modes include batch fermentation, fed-batch fermentation,
repeated-batch fermentation, and continuous fermentation [117].

Importantly, the systems are closed in batch mode, and all the required ingredients
and microorganisms are added prior to fermentation. The pH is usually regulated during
fermentation via an attached acid or alkaline system [117]. The fed-batch system contains
the same required components as in the batch system, but during the fed-batch fermentation
process, the depleted required components (e.g., carbon and nitrogen) are sequentially
added at regular intervals to actively control microbial growth [118]. In repeated-batch
fermentation, microbial cells are increased through repeated re-inoculation of microbial cells
from one batch fermentation into the next batch [113,119]. Continuous fermentation is an
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open system with a continuous influx of fresh media and a continuous efflux of spent media
at a constant rate while maintaining a constant internal environment of fermentation [120].

Fermentation methods, such as separate hydrolysis and fermentation (SHF), simulta-
neous saccharification and fermentation (SSF), separate hydrolysis and co-fermentation
(SHcoF), simultaneous saccharification and co-fermentation (SScoF), and consolidated
bioprocessing (CBP), have been described in the literature [21,121] as methods that can be
used during fermentation tasks. In SHF, lignocellulose is first pretreated, and following the
degradation of lignin, the pretreated lignocellulose (hydrolyzate) is subjected to saccharifi-
cation, followed by fermentation of the simple sugar. In SSF, the pretreated lignocellulose
(hydrolyzate) is subjected to simultaneous saccharification and fermentation [21]. Separate
hydrolysis and co-fermentation (SHcoF) is similar to SHF; the difference is the presence
of at least two sugars for fermentation in SHcoF [122]. Simultaneous saccharification and
co-fermentation (SScoF) involves concurrent substrate saccharification and fermentation of
at least two sugars in a system [123]. Consolidated bioprocessing consists of a reactor with
ligninolytic enzyme production via microorganisms, substrate saccharification, and sugar
fermentation in a single process [124].

Numerous capable microorganisms are used to ferment fermentable sugars, and there
is an ongoing search for more critical biotechnological microorganisms. The selection of
microorganisms for sugar fermentation depends on the product of interest. Microorgan-
isms for sugar fermentation are selected based on their metabolic pathways and optimal
environmental conditions, such as pH and temperature. These microorganisms used in
fermentation to produce high-value products are divided into three categories: (i) natu-
rally fermenting, (ii) prokaryotic genetically engineered, and (iii) eukaryotic genetically
engineered microorganisms [125]. A number of microorganisms have been genetically
modified to improve the yield of fermentation products [126,127].

Edible food crops, lignocellulose (non-edible), and algae are the three generations of
feedstock sources used to generate sugars for fermentation [128]. However, using edible
food crops as feedstock affects the food supply, thus shifting the focus to using non-edible
lignocellulose for producing value-added products, as lignocellulose is ubiquitous.

3.4. Purification of Value-Added Product

Purification is one of the most essential stages in value-added product production.
Factors that elevate the difficulties of product recovery include, but are not limited to,
the low concentration of the product, the presence of impurities, the product produced
intracellularly, and heat-labile products. The extraction and purification of fermentation
products depend on the specific product. The choice of purification process is based on the
concentration of the product, intracellular or extracellular location of the product, physic-
ochemical properties of the product, the impurities in the fermentation broth, acceptable
standard of purity, and the product’s intended use.

The stages in the recovery/purification of products, such as organic acids (e.g., citric,
lactic, and succinic acids) from fermentation broth (extracellular product), involve the
removal of solid particles and microbial cells using filtration and centrifugation followed
by broth extraction into different fractions [129]. Ultrafiltration, adsorption, precipitation,
distillation, liquid–liquid extraction, supercritical fluid extraction, ion exchange, dialysis,
electrodialysis, or membrane separation can be employed for broth extraction [129–133].

Moreover, biofuels can be recovered/purified using different methods. For instance,
the conventional distillation process is the first step of ethanol recovery, followed by
dehydration using azeotropic distillation, adsorption, pervaporation, or membrane pro-
cesses [134]. Different methods like equilibrium-based separation (e.g., distillation, liquid–
liquid extraction, and supercritical fluid extraction), affinity-based separation (adsorption
and ion exchange), solid–liquid separation, and membrane-based separation have been
employed in biodiesel purification [135]. Generally, the biodiesel purification process is
wet washing using water and dry washing using adsorption, ion exchange, and mem-
brane separation [136]. Membrane separation techniques, pressure swing adsorption, and
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cryogenic distillation can, therefore, be used for biohydrogen purification [137], while the
methods currently used in purifying biogas include biofiltration, adsorption pressurized
water scrubbing, and refrigeration [138].

4. Value-Added Products from Lignocellulosic Biomass

A value-added product is obtained by transforming a raw material from its original
form into a valuable product. Lignocellulose, considered second-generation feedstock,
is a promising raw material for producing a number of value-added products. Recently,
the focus has been on efficiently converting lignocellulose into value-added products, as
polysaccharides, such as cellulose and hemicellulose, in lignocellulose bio-transformed into
new products may be underutilized, resulting in the incomplete use of lignocellulose [46].
Bioconversion strategies that have been intensively used to consume these polysaccharides
completely include biochemical and thermochemical approaches [6].

Using lignocellulose as a second-generation producer of bioproducts constitutes a
marked improvement over using fossil fuels as sustainable resources. For instance, as
an efficient feedstock in producing biomaterials and second-generation biofuel, lignocel-
lulose makes fuel production more sustainable, as it does not compromise global food
security [11]. The literature has indicated that lignocellulose, a second-generation producer
of biomaterials, has been in existence since 1964, when it was used in textiles [139] and
to produce paper from the bleached bark of mulberry in China [140]. Mass production
of paper from lignocellulose became cost-effective with the development of pulping and
bleaching technologies [141]; lately, its by-products are being used to generate sugars to
produce high-value products. Lignocellulose has been used to generate biofuels [22,23]
and high-value chemicals [116,142–145].

4.1. Biofuels

Biofuels are an inexhaustible and biodegradable class of renewable energy obtained
from living materials [146]. Biofuels are primarily used as transportation fuels and can be
used to generate electricity and heat [147]. The three different generations of biofuel are:
(i) first-generation biofuels (produced from edible crops); (ii) second-generation biofuels
(produced from lignocellulose); and (iii) third-generation biofuels (produced from algae
and microorganisms) [128]. In 2021, the United States of America produced 643,000 barrels
of oil equivalent per day, followed by Brazil and Indonesia (which produced 376,000 and
140,000 barrels of oil equivalent per day, respectively) [148,149]. Additionally, biofuels are
eco-friendly and capable of eliminating the emission of hazardous gases such as sulfur
oxide and carbon monoxide, thereby maintaining a cleaner environment [150]. The most
common biofuels include alcohols, biodiesel, biohydrogen, and biogas [22].

4.1.1. Alcohols

Alcohol is often used to denote ethanol or methanol. Since the development of the
internal combustion engine, ethanol has been used as a motor fuel [151]. Bioethanol is
produced from lignocellulose via pretreatment to break the recalcitrant structure of ligno-
cellulose, followed by the enzymatic saccharification of cellulose and hemicellulose into
simple sugars, and, lastly, fermentation of the generated simple sugars by microorganisms
such as Saccharomyces cerevisiae, Zymomonas mobilis, and several genetically engineered
microorganisms [152–154]. Notably, several recombinant microorganisms were developed
to ferment hexose and pentose into ethanol [155–157]. The concentration and productivity
of bioethanol depend on the lignocellulose source, the selected pretreatment method, and
the microorganism(s) used in fermentation [157]. Several studies on the production of
bioethanol from lignocellulose have been reported. For instance, bioethanol (214.5 g·L−1)
was produced from alkali-pretreated rice straw within seven days [158], while 25.3 g·L−1

of ethanol was produced from rice straw [159]. Table 3 presents several studies on the
concentrations, yield, and productivity of bioethanol from lignocellulose. Simple sugars
are fermented into ethanol in the same or separate reactor. For instance, the production of
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ethanol in the same reactor takes place in a single step where there is concurrent saccharifi-
cation of the pretreated lignocellulose and fermentation (SSF) of the generated glucose or
xylose, or where there is simultaneous saccharification and co-fermentation (SSCo-F) of
sugars (e.g., glucose and xylose). In a separate reactor, ethanol is produced in two steps:
saccharification of the pretreated lignocellulose, followed by fermentation of the generated
sugar (separate hydrolysis and fermentation) [8,160].

4.1.2. Biodiesel Production

Biodiesel or fatty acid methyl ester (FAME) with lower alkyl esters and long-chain
fatty acids [161]. Biodiesel is a clean-burning, renewable substitute for petroleum diesel,
and like petroleum diesel, it is used in diesel engines (e.g., generators and vehicles) and
heating oil [162–164]. Pure biodiesel is called B100, and the most common blend is B20,
which contains 20% biodiesel and 80% petroleum diesel [163]. Biodiesel increases energy
security and improves air quality [162]. It was reported that a gallon of biodiesel (B100)
produces 74% less carbon dioxide than petroleum diesel [163].

Biodiesel can be produced from second-generation biological materials, such as veg-
etable waste oil, non-edible vegetables, oleaginous microbes, and jatropha [161,165,166].
In biodiesel synthesis using lignocellulose, the pretreated hydrolyzate is saccharified,
and oleaginous microbes such as Rhodosporidium toruloides, Gordonia sp., Yarrowia sp.,
Rhodotorula sp., etc., convert the generated simple sugar into pyruvate that will be further
converted to lipids in the microbes [166,167]. The lipids are extracted via cell disruption
using various methods that have been described by Khot (2020) [167]. The extracted lipids
are then converted into biodiesel via transesterification, in which the lipid reacts with
short-chain alcohols, such as methanol and ethanol, in the presence of a catalyst [161,166].
Different biodiesel production processes have been described [161,166]. Still, supercritical
non-catalytic and enzymatic biodiesel production technologies are the best, as these tech-
nologies can process low-quality feedstock without pretreatment [168]. The production
of biodiesel using second-generation feedstock is underdeveloped; as such, limited infor-
mation on biodiesel production from lignocellulose is available. Biodiesel production was
reported when single-cell oil was grown over sugarcane bagasse using oleaginous Yarrowia
lipolytical [169]. It was also established that of six lignocellulosic materials, bagasse had the
highest lipid (biodiesel) accumulation using Fusarium oxysporum NRC2017 [170].

4.1.3. Biohydrogen Production

Biohydrogen is an elementary substrate for ammonia, methane, methanol, synthesis
gas, and olefin hydrogenation synthesis [38]. Commercial-scale biohydrogen production
technologies are yet to be established; as such, more research focus should be directed
towards biohydrogen production. Generally, biohydrogen can be produced using thermo-
chemical, photoelectrochemical, electrolysis, and biological technologies, among which the
biological method (dark fermentation) is eco-friendly and sustainable [171].

In dark fermentation using pretreated lignocellulose, the cellulose and hemicellulose
are saccharified, and the generated sugars are subjected to anaerobic fermentation where
hydrogen, carbon dioxide, volatile fatty acids, and alcohols are generated via various path-
ways. During biohydrogen production, glucose is catabolized to pyruvate, and pyruvate
formate lyase or pyruvate ferredoxin oxidoreductase converts pyruvate into acetyl-CoA
and formate or reduced ferredoxin [20,171]. Moreover, biohydrogen can be generated from
formate and reduced ferredoxin (catalyzed by formate lyase and hydrogenase) [20,171].
Microorganisms involved in biohydrogen production include Caloranaerobacter azorensis,
Clostridium butyricum, Clostridium Beijerinckii, Clostridium thermocellum, Escherichia coli
WDHL, Enterobacter ludwigii, and Enterobacter aerogenes [172–177]. Different studies have
been conducted to improve biohydrogen production levels. For instance, levels of biohy-
drogen production were assessed using different nanomaterials, and a study found that
the inclusion of metal oxide nanoparticles (e.g., iron, copper, nickel, silver, etc.) improved
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biohydrogen production levels using Clostridium sp. during dark fermentation [20]. Table 3
includes selected studies conducted for biohydrogen production.

4.1.4. Biogas Production

Biogas (or biomethane) is a renewable pure energy source generated through biodi-
gestion. Biogas has various applications in cooking, drying, cooling, and generating heat
and electricity [178]. Biogas is produced through anaerobic digestion under a naturally
occurring biological process that involves five steps. The steps are: (i) pretreatment of
lignocellulose for easy accessibility to cellulose and hemicellulose to produce hydrolyzates;
(ii) saccharification of hydrolyzate, resulting in monomers such as sugars, amino acids,
and fatty acids; (iii) conversion of these monomers by acidogens into short-chain volatile
fatty acids (acidogenesis); (iv) conversion of volatile fatty acids by acetogens into acetate,
carbon dioxide, and hydrogen (acetogenesis); and (v) acetate, carbon dioxide, and hydro-
gen are converted into biomethane by methanogens (methanogenesis) [179]. Meanwhile,
several studies on biomethane production have been reported (Table 3). The production of
biomethane using an alkaline hydrogen peroxide-pretreated organic fraction of municipal
solid waste, where 463.7 mL·g−1 of biomethane was produced, was reported [180]. A study
on biomethane production using anaerobic co-digestion of sewage sludge and cocoa pod
husks was conducted, and the result showed 555.7 mL·L−1 of biomethane production [181].

Table 3. Biofuel production from selected lignocellulosic hydrolyzates.

Substrate Microorganism Concentration Productivity Yield Reference

Teak wood hydrolyzate E. coli MSO4 32.90 BioEtOH(a) 0.45 BioEtOH(b) 0.96 BioEtOH(c) [157]

Oil palm empty fruit
bunches hydrolyzate Klyveromyces marxinus 28.10 BioEtOH(a) 0.58 BioEtOH(b) 0.28 BioEtOH(c) [182]

Cellulose-rich corncob
hydrolyzate Saccharomyces cerevisiae TC-5 31.96 BioEtOH(a) 0.22 BioEtOH(b) 0.40 BioEtOH(c) [183]

Xylose-rich Paulownia
hydrolyzate

Saccharomyces cerevisiae MEC1133 12.50 BioEtOH(a) 0.51 BioEtOH(b) 0.26 BioEtOH(c)
[184]

Scheffersomyces stipitis CECT1922 14.20 BioEtOH(a) 0.53 BioEtOH(b) 0.31 BioEtOH(c)

Shorea robusta
hydrolyzate Saccharomyces cerevisiae 9.43 BioEtOH(a) 0.39 BioEtOH(b) 0.97 BioEtOH(c) [122]

Cornstalk hydrolyzate Rhodobacter capsulator JL1601 (cheR2−) - - 224.85 BioH(d) [185]

Corncob hydrolyzate Clostridium acetobutylicum - - 132.00 BioH(d) [186]

Agave hydrolyzate Clostridium acetobutylicum - - 150.00 BioH(d) [187]

Wheat straw Anaerobic sludge - - 250.50 BioMeth(e) [188]

Rice straw Bovine rumen fluid - - 165.00 BioMeth(e) [189]

Corn stover leaf blade Co-culture of Pecoramyces sp. and
Methanobrevibacter sp. - - 42.4 ± 1.00 BioMeth(e)

[190]
Corn stover stem pith Co-culture of Pecoramyces sp. and

Methanobrevibacter sp. - - 40.9 ± 1.35 BioMeth(e)

Wood waste

Anaerobic activated sludge

- - 175.81 BioMeth(e)

[191]Pig manure - - 245.09 BioMeth(e)

Co-digestion of wood
waste and pig manure - - 234.88 BioMeth(e)

BioEtOH(a): bioethanol (g·L−1); BioEtOH(b): bioethanol (g·L−1·h−1); BioEtOH(c): bioethanol (g·g−1); BioH(d): biohydro-
gen (mL·g−1); and BioMeth(e): biomethane (mL·g−1).

4.2. Platform Chemicals

Several platform chemicals, such as dicarboxylic acids (e.g., succinic, fumaric, glutamic,
aspartic, and levulinic acids), organic acids (lactic, citric, and acetic acids), ABE (acetone,
butanol, and ethanol), polyol (sorbitol, xylitol, and glycerol), and furan (furfural and
5-hydroxymethylfurfural) [192,193], have been extensively produced on laboratory scales.
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4.2.1. Fermentative Production of the Platform Chemicals from Lignocellulose

The traditional fermentative production of lactic, succinic, citric, and acetic acids from
lignocellulose is completed through sequential pretreatment steps (to make cellulose and
hemicellulose accessible to subsequent enzymatic hydrolysis), followed by enzymatic sac-
charification or hydrolysis (for the generation of simple sugars), and, finally, fermentation
of the simple sugars by capable microorganisms. The microorganisms involved in simple
sugar (hexose and pentose) fermentation to lactic acid include bacteria (LAB), Enterococcus
faecalis, and Rhizopus sp. (for lactic acid production) [113,114,194]. Actinobaccilus succino-
genes, Saccharomyces cerevisiae, and other engineered microorganisms were used to produce
succinic acid [146,195]. The fungal and bacterial strains that have been found to produce
citric acid include: Aspergillus niger, Candida sp., Bacillus sp. and Pseudomonas sp. [196],
and acetic acid bacteria (AAB) such as Acetobacter sp. and Gluconacetobacter sp., and are
involved in acetic acid production [116].

Fermentable sugars (hexose and pentose) are metabolized to lactic, succinic, citric,
and acetic acids through various microbial metabolic pathways. For instance, lactic acid
can be produced via the (i) glycolytic, (ii) phosphoketolase, and (iii) pentose phosphate
pathways [197]. In the glycolytic pathway, lactic acid bacteria, under anaerobic conditions,
use glucose (a carbon source) to produce pyruvate, and lactate dehydrogenase catalyzes
the conversion of pyruvate into lactate [197]. In the phosphoketolase pathway, glucose is
converted into lactate, ethanol, and carbon dioxide, while bacteria, such as Leuconostoc sp.,
metabolize pentose to form lactate and acetate [197,198].

Succinic acid is biosynthesized from simple sugars via (i) reductive tricarboxylic acid
(rTCA), (ii) the tricarboxylic acid (TCA) oxidation cycle; or (iii) glyoxylic pathways [125].
The rTCA pathway (the main succinic acid production pathway under anaerobic conditions)
occurs by converting the simple sugar (e.g., glucose) into phosphoenolpyruvic (PEP) acid
and PEP to oxaloacetic acid by PEP carboxykinase. Oxaloacetic acid is then reduced to
succinic acid by malate dehydrogenase, fumarase, and fumarate reductase [111,112]. In
the TCA cycle, glucose is converted into acetyl-CoA, citrate, isocitrate, and succinate by
succinate dehydrogenase under aerobic conditions. The theoretical succinic acid yield of
1 mol mol−1 glucose with the release of 2 mol carbon dioxide is obtained in the TCA cycle,
while in the glyoxylic pathway, the succinic acid yield is 1.71 mol mol−1 glucose due to
carbon loss during the oxidative carboxylation reaction [111,112].

Citrate is produced from the aldol condensation of oxaloacetate and acetyl CoA in
the Krebs cycle (known as the TCA cycle) by citrate synthase. Acetyl CoA may be derived
from oxidative decarboxylation of pyruvate from glycolysis (where there is β-oxidation of
fatty acids in the mitochondrial matrix) or by oxidative degradation of certain amino acids
(e.g., leucine, isoleucine and threonine) [199].

Acetate can be generated from pyruvate via decarboxylation (catalyzed by pyruvate
oxidase) or from acetyl CoA through acetyl phosphate (catalyzed by acetate kinase and
phosphotransacetylase) [200]. The platform chemicals meet the global demand, as they are
used in making various high-value derivatives. Additionally, they contribute to the global
economy and promote innovation.

4.2.2. Global Production and Market Values of the Platform Chemicals

The commercial production of lactic, succinic, citric, and acetic acids from lignocel-
lulose has gained enormous attention. The demand for lactic acid (LA) in the past years
has mainly increased due to polylactic acid (PLA) production, as LA serves as a building
block for PLA production. Polylactic acid is used for drug delivery systems, prostheses,
biodegradable packaging materials, and surgical suture production [201]. Furthermore,
lactic acid is also used in the cosmetics, food, pharmaceutical, and chemical industries.
For instance, LA is used in producing: (i) parenteral dialysis solutions, (ii) moisturizing
and anti-acne creams, (iii) flavoring and preservatives, and (iv) acidulants and pH regula-
tors [201]. In 2022, the lactic acid market volume was approximately 1.5 million metric tons,
and its market value reached about USD 1.46 billion [202]. Meanwhile, the global lactic acid
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market was valued at USD 1.6 billion in 2023, and it is anticipated to grow at a compound
annual growth rate (CAGR) of 12.4% between 2023 and 2028 [203]. It is projected to grow to
almost 2.8 million metric tons in 2030 [202]. The USA is North America’s largest producer
and consumer of lactic acid, with a total consumption of over 800,000 tons/year [204]. Coun-
tries such as the U.S., Netherlands, Belgium, Japan, Switzerland, China, India, Switzerland,
and Austria are the key players in the global lactic acid market [204].

The demand for succinic acid (a dicarboxylic acid) is due to the global movement
towards sustainability. In the organic and natural food industry, succinic acid is frequently
used as a taste enhancer and food additive due to its ability to increase flavor and improve
shelf life [205]. Succinic acid is also extensively used in the pharmaceutical industry as an
excipient medicine formulation, and it is a precursor in the chemical industry to produce
resins, polymers, solvents, plastics, fumaric acids, and glyoxylic acids [205–207]. In 2022,
the succinic acid market value was USD 0.13 billion, and it is projected to grow from USD
0.15 billion in 2023 to USD 0.30 billion by 2030, with a CAGR of 6% in this forecasted
period of 2023–2030 [208]. The Asia–Pacific region (China, Japan, and India) has the largest
market share of the succinic acid market, and the growth of the succinic acid market in
the Asia–Pacific region is due to the increasing demand for bio-based chemicals. Similarly,
North America’s (the USA and Canada) succinic acid accounts for the second-largest
market share, followed by Europe (the UK, Germany, Italy, France, and Spain) [208].

Citric acid is a weak organic acid commonly found in lemon juice and other citrus
fruits. It is one of the most widely used organic acids in the food industries as an acidulant,
a flavoring, a coloring agent, and a preservative agent owing to its long shelf life [209].
Citric acid is also used in personal care products, detergents, sealants, pharmaceutical
products, plastics, polymers, and animal nutrition [196,209]. The global citric acid market
reached approximately 2.59 million tons in 2022 and is expected to reach 3.29 million tons
in 2028 from 2023 to 2028 [210]. Relatedly, the global citric acid market size was evaluated
at USD 3.52 billion in 2022 and is projected to grow to about USD 5.12 billion in 2032, with
a CAGR of 3.82% from 2023 to 2032 [211]. Specifically, China is the highest producer of
citric acid, followed by the USA and Europe [212].

Acetate is an anion form of acetic acid, and salts are formed by combining acetic
acid with alkaline or other bases. Acetate is a vital building block in various industry
applications [213]. Acetate is a coating solvent for paints and varnishes, printing inks, and
nail polish [214]. It is used in the food industries as a food preservative (e.g., sodium acetate
and potassium acetate) and a synthetic flavor enhancer (e.g., ethyl acetate, the ester of
ethanol and acetic acid) [213]. Ethyl acetate is also used as a solvent for stains, fat, and
dry cleaning [214,215], while vinyl acetate monomer (produced from the combination of
acetic acid and ethene in the presence of oxygen), a building block of polyvinyl alcohol and
polyvinyl acetate, is used to make packaging materials [216]. The increase in acetic acid
demand results from its end-use applications, including vinyl acetate monomer and ethyl
acetate. Vinyl acetate monomer accounts for 35% of global acetic acid consumption, and
polyvinyl alcohol, polyvinyl acetate, and ethene vinyl acetate are the main downstream
markets for vinyl acetate monomer [215]. Meanwhile, the top vinyl acetate monomer-
producing countries are China, the USA, Taiwan, Japan, and Germany, and the major ethyl
acetate-producing countries are China, India, the United Kingdom, Japan, and Brazil [215].

5. Challenges and Alleviation Strategies in Upcycling Lignocellulose

Several difficulties must be mitigated to be able to fully utilize lignocellulose for eco-
nomically feasible value-added product production. These difficulties include the high
cost of pretreatment technology, production of inhibitors after delignification (which ad-
versely affects the quality of the hydrolyzed sugars for fermentation), feedback inhibition,
substrate inhibition, end-product inhibition, the high cost of hydrolytic enzymes, and
challenges in developing efficient enzyme cocktails for the effective hydrolysis of cellulose
and hemicellulose [15,117].
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By-products (inhibitors) such as coumaric acid, acetic acid, formic acid, furfural, le-
vulinic acid, and aldehyde formed during the chemical pretreatment of lignocellulose
have been reported to affect microbial growth, substrate utilization, and fermentation
adversely [217–219]. In saccharification of lignocellulose hydrolyzates, increased cellobiose
and glucose concentrations could inhibit cellulase in breaking cellulose to cellobiose and glu-
cose, thereby resulting in feedback inhibition [21]. In fermentation, challenges of substrate
and end-product inhibition could occur. Substrate inhibition occurs when the fermentative
microorganisms’ growth is inhibited due to a high feedstock concentration (glucose or
pentose). Growth inhibition occurs due to low water activity, high osmotic pressure, and
cell lysis [21]. Likewise, end-product inhibition occurs when overexposure to the product
formed causes the product to penetrate the microbial cell membrane, which results in
increased intracellular activity that disrupts the cell, thereby leading to cell death [21].

The cost-effective operation of lignocellulose biorefinery will incline if these challenges
are abated and all three constituents (cellulose, hemicellulose, and lignin) of lignocellu-
lose are efficiently converted into value-added products. Nanotechnology, where enzyme
immobilization is used in delignification, could be the best pretreatment technology for
solving the bottlenecks of by-product inhibition [94]. Reports have shown that feedback
inhibition can be minimized by removing sugars during saccharification using electro-
dialysis, avoiding cellobiose accumulation, and optimizing enzymatic activities during
hydrolysis [220,221]. Methods used to reduce substrate inhibition include continuous
and semi-continuous fermentation [222], and end-product inhibition can be overcome via
fermentation product removal using nanofiltration, ion exchange resin, electrodialysis, or
ultrafiltration [21,223–225].

Essentially, crude enzymes produced directly from microorganisms can be used in
cellulose and hemicellulose saccharification to reduce the cost of hydrolytic enzymes.
Efficient enzyme cocktails for effective cellulose and hemicellulose hydrolysis can, therefore,
be developed using computer-generated models or simulations [226] before hydrolysis.
Process systems engineering is a computer-generated simulation that can offer an efficient
and cost-effective approach for designing and optimizing efficient enzyme cocktails for the
effective hydrolysis of cellulose and hemicellulose.

6. Prospects of Lignocellulose

Lignocellulose can be used in these ways: (i) directly as raw materials in several
chemical and biological treatments, and (ii) in producing value-added products [227].
Barley lignocellulose components, such as straw and hulls, could be applied directly
in biological and chemical conversions, such as phytoremediation, composting-based
processes [228], and algae growth inhibition [229].

Value-added products are mostly produced from cellulose and hemicellulose, while
lignin is underutilized and can be used for various applications. The typical commercial ap-
plication of lignin includes using lignosulfonate to produce value-added products such as
concrete additives, dust control, animal feed pelleting aid, and phenol formaldehyde [10].
Also, lignin has been used to synthesize adsorbents to remove toxic dyes and organic
molecules [230]. Furthermore, lignin has been extensively employed in preparing fluores-
cent probes owing to its aromatic structures and optical properties [231]. It was reported
that lignin-based polyurethanes doped with multiwall carbon nanotubes at concentrations
above the percolation threshold are suitable for sensor applications [232]. The emerging
developments in nanotechnology have led to exploring lignocellulosic bionanomaterials,
specifically nanolignin, in developing highly sensitive biosensors [233]. For instance, in
a study, gold bare electrodes were modified with organosolv and kraft lignin nanopar-
ticles synthesized from sulfur-free and sulfur lignin, and the modified electrodes were
assembled with concanavalin A and glucose oxidase for biosensing glucose. The modified
electrode with the gold kraft lignin nanoparticles concanavalin A and glucose oxidase was
highly sensitive to glucose [234]. Using lignin as a nanomaterial in developing zinc oxide



Fermentation 2023, 9, 990 15 of 25

nanocomposites also showed nanolignin as an excellent antioxidant, UV-blocking, and
antimicrobial agent that can be used as a body cream additive [235].

There are more prospects for using lignin to produce value-added products. For
instance, lignin can be processed for electronic and other device packaging. Using lignin-
based packaging products may likewise reduce the use of polystyrene in the packaging
industry, since polystyrene contains styrene that can cause injury to the nervous system after
long-term exposure [236]. Lignin can also be used in crafts and interior decorations where
natural textures or surfaces must be imitated. Due to lignin’s optical properties, nanolignin
can be used in developing environmental biosensors (to monitor actual environmental
conditions and detect contaminants) and biomimetic sensors (to simulate the biological
organs’ function and performance). Another prospect of lignocellulose is the development
of cellulose and hemicellulose in animal feeding. Cellulose and hemicellulose can be
processed with nutritional supplements to meet dietary requirements.

7. Conclusions

Lignocellulose is a vital, cheap, and abundantly available biomass feedstock that
includes agricultural and forestry residues from plant, industrial, and food wastes. The
concept of reusing, recycling, and converting lignocellulose into bio-based products reduces
environmental pollution in terms of agricultural waste disposal and the emission of toxic
substances into the environment, and it contributes to circular economy development.

Lignocellulose undergoes different biorefinery processing stages, namely pretreatment,
hydrolysis, fermentation, and product purification/recovery, before being converted into
value-added products. Nanotechnology, physical, chemical, physicochemical, and biologi-
cal pretreatment methods could be utilized to access cellulose and hemicellulose for sugar
generation. Furthermore, cellulose and hemicellulose saccharification is carried out using
enzymatic hydrolysis, and batch fermentation, fed-batch fermentation, repeated-batch
fermentation, and continuous fermentation modes are deployed to produce value-added
products. The fermentation methods include separate hydrolysis and fermentation, si-
multaneous saccharification and fermentation, separate hydrolysis and co-fermentation,
simultaneous saccharification and co-fermentation, and consolidated bioprocessing. The
microorganisms that are used to produce high-value products are naturally fermenting,
prokaryotic genetically engineered, and eukaryotic genetically engineered microorgan-
isms. It should also be noted that the purification methods depend on the value-added
products. The purification methods include, but are not limited to, distillation and dehy-
dration, liquid–liquid extraction, supercritical fluid extraction, adsorption, biofiltration, ion
exchange, dialysis, electrodialysis, and membrane separation.

The value-added products from lignocellulose include biofuels and platform chemicals.
Challenges in upcycling lignocellulose include the high cost of pretreatment technology,
generation of by-product inhibitors after pretreatment, feedback-, substrate-, and end-
product inhibition, high cost of hydrolytic enzymes, and development of efficient enzyme
cocktails for effective hydrolysis of cellulose and hemicellulose. Nanotechnology could,
therefore, be the best pretreatment technology for solving by-product inhibition, and
feedback inhibition can be alleviated by optimizing enzymatic activities during hydrolysis
and using electrodialysis to remove sugars during saccharification to prevent cellobiose
accumulation. Substrate inhibition can be prevented using continuous and semi-continuous
fermentation, and end-product inhibition can be overcome by removing fermentation
products using nanofiltration, ion exchange resin, or ultrafiltration. Using crude enzymes
produced directly from microorganisms in saccharification could reduce hydrolytic enzyme
costs. Additionally, efficient enzyme cocktails can be developed using computer-generated
models or simulations for effective cellulose and hemicellulose hydrolysis before laboratory
or industrial hydrolysis.

Lignocellulose has many prospects. For instance, cellulose and hemicellulose can
be used in animal feeding, where they can be processed with nutritional supplements
to meet dietary requirements. The lignin obtained can be processed for electronic and
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other device packaging and used in crafts and interior decorations. Nanolignin can be
used to develop environmental biosensors (for environmental monitoring) and biomimetic
sensors (for simulation of the biological organs’ function and performance). The integration
process that involves the use of cellulose, hemicellulose, and the generated lignin could
thereby result in the production of value-added products with the zero-waste concept. This
review has the potential to raise more awareness of the biotechnological importance of
lignocellulose and its prospects in producing high-value products. It also contributes to
alleviating the challenges of lignocellulose conversion into value-added products.
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