
Citation: Chen, X.; Li, L.; Yang, H.;

Zhou, H. Effects of the Addition of

Dendrobium officinale on Beer Yeast

Fermentation. Fermentation 2022, 8,

595. https://doi.org/10.3390/

fermentation8110595

Academic Editors: Kristina
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Abstract: Dendrobium officinale is a precious Chinese medicinal plant that is rich in polysaccharides,
flavonoids, polyphenols, and other bioactive ingredients, and has a variety of biological activities. To
explore the effects of D. officinale on the growth and metabolism of Saccharomyces cerevisiae, different
concentrations (0, 10, 30, 50, and 100 g/L) of fresh D. officinale were added to the wort during the
fermentation. The amount of yeast, alcohol content, reducing sugars, total acidity, pH, CO2 loss, and
foam height were analyzed. Meanwhile, the glucose uptake, cell viability, key enzyme activity of
yeast, total phenolics, antioxidant activity, volatile compounds, and consumer acceptance of brewed
samples were also analyzed. The results showed that the growth and metabolism of yeast could
be promoted by a suitable dosage of D. officinale but were inhibited at high dosage (100 g/L). The
addition of D. officinale increased the activities of glucose-6-phosphate dehydrogenase and alcohol
dehydrogenase, while the highest concentration of D. officinale (100 g/L) decreased the glucose uptake
and cell activity of the yeast. The contents of total phenolics and esters, along with the scavenging
activity against ABTS radicals, were increased, indicating that the antioxidant activity and aromatic
characteristics of beer would be improved by the addition of D. officinale.

Keywords: Dendrobium officinale; beer; yeast; growth and metabolism; cell viability

1. Introduction

Beer is a low-strength alcoholic beverage consumed in large quantities worldwide,
and China ranks first in the world in beer production and consumption [1]. Generally, beer
is fermented from cereal materials (mainly barley malt), water, and hops by yeast, and lager
beers—which are produced via bottom-fermenting at low temperatures (3.3 to 13.0 ◦C)—
account for more than 90% of the beer produced worldwide [2]. However, more and more
drinkers are interested in beers with different flavors, aromas, etc., resulting in sales of craft
beer growing faster than those of industrial, lager-style beer in recent decades [3]. Since
the 1990s, craft beers have emerged in the US and have developed quickly in the Americas
and Europe [3]. In China, the consumption of craft beer has increased by 40% every year
since 2015 [4]. Craft beers are not only produced in classic beer styles, but also brewed
with new gustatory, olfactory, and visual stimuli through the addition of fruits, spices, and
other natural foods [1,5,6]. In particular, the phenolic contents and antioxidant activity of
the beer can be increased by the introduction of edible plant materials such as olive leaves,
green tea, chestnut, etc. [7–9].

Dendrobium officinale, a perennial herb belonging to the Orchidaceae family and the
Dendrobium genus, is a famous and precious medicinal plant in China. Traditionally,
it has been used in Chinese medicine to reduce fever, nourish the stomach, promote
the secretion of saliva, and prolong the life [10]. Modern pharmaceutical findings show
that it is rich in polysaccharides, alkaloids, flavonoids, polyphenols, and other bioactive
ingredients, and has a variety of biological activities, e.g., antioxidant, anti-fatigue, immune-
enhancing, anticancer, anti-inflammatory, hypoglycemic, hypolipidemic, etc. [11,12]. To
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date, D. officinale has been artificially planted in Zhejiang, Jiangxi, Guangdong, Yunnan,
Guizhou, and other provinces of China, and has been used as a health food approved by
the China Food and Drug Administration (CFDA) [13]. Considering the high health value
and the successful artificial planting of D. officinale, the objective of this work was to explore
the use of D. officinale in the preparation of beer. For this purpose, fresh D. officinale was
added to boiling wort, and the physicochemical characteristics and antioxidant activity of
the obtained beer were analyzed. Furthermore, the effects of D. officinale on the growth and
metabolism of yeast were also preliminarily investigated.

2. Materials and Methods
2.1. Materials and Reagents

Fresh D. officinale (moisture content 65.09%) was purchased from LvFeng Tiepishihu
Planting Cooperatives in Yueqing, Zhejiang Province, China. Barley malt and Saccharomyces
cerevisiae CICC 1921 were obtained from Shuanglu Beer Co. (Wenzhou, China). 2,2′-
Azino-bis (2-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), 2-octanol,
fluorescein diacetate (FDA), and 2,3,5-triphenyltetrazolium chloride were purchased from
Merck (Shanghai, China) Co., Ltd. Folin–Ciocâlteu reagent, dimethyl sulfoxide, glucose,
peptone, and other chemicals were obtained from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China).

2.2. Brewing Process

The flowchart of the brewing process is outlined in Figure 1. The malt was mashed and
saccharified. Spent gains were removed by filtration, and the filtered wort was divided into
5 batches of 1000 mL and individually boiled with different concentrations of D. officinale
(0, 10, 30, 50, and 100 g/L) for one hour. The wort concentration was adjusted to 12 Brix,
cooled, and fermented at 11 ◦C for 7 d after inoculation with 1× 107 yeast/mL. Accordingly,
the samples were designated as T0 (control), T1, T3, T5, and T10, respectively, and the
experiments were repeated in triplicate.
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2.3. Measurements of pH, Total Acidity, CO2 Loss, Foam Height, Yeast Number and Reducing
Sugar and Alcohol Concentrations

The pH was determined using a FiveEasy Plus pH meter (Mettler Toledo (Shanghai)
Co., Ltd., Shanghai, China). Total acidity was determined by titration to pH 8.2 with
0.05 mol/L NaOH, and the results were expressed as grams of lactic acid per 100 mL of
sample. CO2 loss was determined by measuring the weight of the samples before and after
fermentation, and reported as grams per 100 mL of sample. For determination of the yeast
number, the sample was diluted and the yeasts were counted using a hemocytometer. The
reducing sugar content was estimated by a 3,5-dinitryl-salicylic acid (DNS) colorimetry
assay using glucose as the standard. The alcohol concentration was determined using an
alcoholmeter (Huangjiapu Glass Instrument Factory, Yuyao, China) after distillation.

For the determination of foam height, the fermentation was performed in tubes
(15 × 150 mm) and the foam height was monitored every 12 h. The highest foam height
was reported for each sample.

2.4. Volatile Compounds

The volatile compounds were analyzed using headspace–solid-phase microextraction–
gas chromatography–mass spectrometry (HS–SPME–GC–MS), as described previously [14,15],
with some modifications. Briefly, 8 mL of sample and 50 µL of internal standard (2-octanol,
100 mg/L) were added to a 15 mL SPME glass vial with 2.5 g of sodium chloride, which
was tightly capped and kept at 80 ◦C for 15 min to equilibrate. The volatile compounds
were extracted and adsorbed using an SPME fiber coated with divinylbenzene/carbonex/
polydimethylsiloxane (DVB/CAR/PDMS, 50/30 µm) (Supelco, Bellefonte, PA, USA) for
40 min at the same temperature. Afterwards, the fiber was retracted and immediately in-
serted into the injection port of an Agilent GC–MS system equipped with a DB-WAX column
(30 m × 250 µm × 0.25 µm; Agilent J&W Scientific, Folsom, CA, USA) and desorbed for
5 min at 250 ◦C. The GC was carried out using helium as a carrier gas at a flow rate of
1 mL/min, and the oven temperature was programmed as follows: 40 ◦C at the beginning,
increased at 5 ◦C/min to 90 ◦C, and then to 230 ◦C at 10 ◦C/min, and finally maintained
at 230 ◦C for 10 min. For the MS system, the electron energy was 70 eV and the temper-
atures of the transfer line, quadrupole, and ionization source were 230, 150, and 230 ◦C,
respectively. The mass spectra were obtained using the full scan mode with a scan range of
20–500 m/z. The volatile compounds were identified by comparing their mass spectra with
those in the NIST11 database.

2.5. Consumer Test

For the consumer acceptance test, samples were matured at 4 ◦C for 1 month. The
sensory evaluation was carried out by the scoring method described previously [16,17],
with some modifications. In brief, the samples were served in random coded plastic cups,
and 30 participants (19 to 35 years old) evaluated the attributes of color, aroma, taste, and
overall acceptance of each sample on a nine-point hedonic scale (from 1 = highly disliked
to 9 = highly liked).

2.6. Determination of Glucose Uptake by Yeast

The glucose uptake by yeast was determined as described by Somnath et al. [18], with
some modifications. Firstly, beer yeast was cultured in YPD medium at 28 ◦C for 7 d,
collected by centrifugation (4000 rpm, 5 min), and repeatedly washed using normal saline
until no glucose was determined in the supernatant. Afterwards, a 10% yeast suspension
was prepared in normal saline. The extracts of D. officinale were added to glucose solution
(8%, 5 mL), incubated at 30 ◦C for 10 min, and then 0.5 mL of yeast suspension was added,
mixed, and further incubated at 30 ◦C for 30 min. After that, the supernatant was collected
by centrifugation, and the glucose concentration was determined by 3,5-dinitryl-salicylic
acid (DNS) colorimetry assay. The glucose uptake by yeast was calculated from the glucose
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concentrations before and after incubation, and expressed as milligrams of glucose per
gram of fresh yeast biomass per minute (mg/g/min).

2.7. Determination of the Cell Viability of Yeast

The yeast viability assay was performed as described by Shi et al. [19], with some
modifications. Samples (0.06 g of fresh yeast) were homogenized in the dark with 1.5 mL
of 2,3,5-triphenyltetrazolium chloride (1% in 0.1 mol/L phosphate buffer) using an IKA
T10 basic homogenizer (IKA, Staufen, Germany) for 5 min. Afterwards, the precipitate was
collected by centrifugation, mixed with 2 mL of dimethyl sulfoxide, and centrifuged, and
the optical densities of the supernatants were recorded at 485 nm.

To visualize the yeast’s viability, samples (0.2 g of fresh yeast) were washed twice with
normal saline and stained with FDA (300 µL, 100 µmol/L) for 10 min at room temperature.
The samples were then examined using a fluorescence microscope (excitation 488 nm;
emission 525 nm).

2.8. Determination of Glucose-6-Phosphate Dehydrogenase and Alcohol Dehydrogenase Activities

Yeasts were collected by centrifugation, washed twice with normal saline, and ul-
trasonically extracted with Tris-HCl buffer (100 mmol/L, pH 7.0, containing 1 mmol/L
dithiothreitol, 10 mmol/L MgCl2, and 1 mmol/L EDTA) in an ice bath for 10 min. After
centrifugation (12,000 rpm, 4 ◦C), the supernatant was collected and used for enzyme anal-
ysis. Glucose-6-phosphate dehydrogenase analysis (G6PDH) was performed as described
by Yuan et al. [20], with some modifications. Briefly, 2.7 mL of reaction solution contained
100 mmol/L Tris-HCl buffer (pH 7.0), 5 mmol/L glucose-6-phosphate, 5 mmol/L MgCl2,
and 5 mmol/L NADP. The reaction was started by the addition of 0.3 mL of crude enzyme.
One unit of G6PDH activity was defined as the amount of enzyme catalyzing the reduction
of 1 µmol of NADP/min, and the result was expressed as units per gram of fresh yeast.
Alcohol dehydrogenase (ADH) activity was determined as described by van Rijswijck
et al. [21], with some modifications. Briefly, 40 µL of NAD + (50 mmol/L) and 40 µL of
ethanol were added to 3 mL of Tris-HCl buffer (100 mmol/L, pH 8.5) and mixed, and the
reaction was started by the addition of 0.3 mL of crude enzyme. One unit of ADH activity
was defined as the amount of enzyme catalyzing the production of 1 µmol of NADH/min,
and the result was expressed as units per gram of fresh yeast.

2.9. Determination of Total Phenolics and Antioxidant Activity

The total phenolic content was analyzed colorimetrically by the Folin–Ciocâlteu
method using gallic acid as a standard, as described by Nardini and Foddai [8], and
the results were expressed as milligrams of gallic acid equivalents per liter of sample.

The antioxidant activity of the samples was determined according to the scavenging
ability against ABTS radicals, as described by Nardini and Foddai [8]. The percentage
inhibition of absorbance was calculated with reference to an ascorbic acid calibration curve,
and the results were expressed as micrograms of ascorbic acid equivalents per liter of
sample.

2.10. Statistical Analysis

The experimental results are presented as means± standard deviations (SD). Duncan’s
multiple range test was performed to compare the differences using one-way ANOVA in
STATISTICA 6.0, and p < 0.05 was considered statistically significant.

3. Results
3.1. Effects of D. officinale on the Growth and Metabolism of S. cerevisiae

First, 0, 10, 30, 50, and 100 g/L of D. officinale were added to the wort, and the analysis
was performed after 7 days of fermentation. Compared with the control group, the amount
of yeast, alcohol content, and CO2 loss were increased in samples T1, T3, and T5; particularly
significant (p < 0.05) differences in these indices were determined in samples T3 and T5.
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Accordingly, the contents of residual reducing sugars were decreased in these samples.
However, no significant (p > 0.05) differences in the amount of yeast, alcohol content, or
CO2 loss were observed between the control (T0) and T10 (Table 1). These results indicate
the promoting effect of D. officinale at suitable concentrations (10–50 g/L) on the growth
and metabolism of beer yeast, but inhibitory effects at the higher concentration (>100 g/L).
In addition, the foam height was increased with the increase in the concentration of added
D. officinale, due to the rich polysaccharides therein.

Table 1. Effects of D. officinale concentration on the growth and metabolism of Saccharomyces cerevisiae *.

Parameters
Samples

Control (T0) T1 T3 T5 T10

Reducing sugars (g/L) 10.47 ± 3.63 a 9.56 ± 0.70 b 8.87 ± 0.21 b 7.15 ± 0.20 bc 9.14 ± 1.25 c

The number of yeasts (×107 yeast/mL) 5.01 ± 0.83 c 7.75 ± 0.88 ab 9.83 ± 0.65 a 9.12 ± 1.33 a 5.49 ± 0.10 bc

Total acidity (g/100 mL) 2.71 ± 0.07 a 1.74 ± 0.12 c 1.60 ± 0.04 cd 1.50 ± 0.07 d 2.01 ± 0.11 b

pH 4.54 ± 0.02 b 4.40 ± 0.01 d 4.41 ± 0.02 d 4.46 ± 0.02 c 4.67 ± 0.02 a

Alcohol (%) 4.70 ± 0.12 bc 5.87 ± 0.31 ab 6.27 ± 0.12 a 6.30 ± 0.10 a 4.10 ± 1.25 c

CO2 loss (g/100 mL) 3.49 ± 0.25 cd 4.22 ± 0.04 bc 4.65 ± 0.05 ab 5.41 ± 0.75 a 2.95 ± 0.10 d

Foam height (mm) 1.50 ± 0.50 d 3.67 ± 0.42 c 5.43 ± 0.49 b 5.83 ± 0.35 b 9.10 ± 0.10 a

* T0, T1, T3, T5, and T10 were the samples with 0, 10, 30, 50, and 100 g/L of D. officinale, respectively. Different
letters in a row indicate significant differences between different groups at p < 0.05.

3.2. Effects of D. officinale on the Glucose Uptake and Cell Viability of S. cerevisiae

D. officinale was ultrasonically extracted with deionized water, and the extracts equiv-
alent to 30 and 100 g/L of fresh materials were used for the experiment. As shown in
Figure 2, the glucose uptake ability of S. cerevisiae was decreased by the addition of D.
officinale, and the decrease was insignificant (p > 0.05) at 30 g/L but significant (p < 0.05)
at 100 g/L, indicating that high concentrations of D. officinale would inhibit the glucose
uptake of S. cerevisiae.
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Figure 2. Effects of D. officinale on the glucose uptake of S. cerevisiae. T0, T3, and T10 were the samples
with 0, 30, and 100 g/L of D. officinale, respectively. Different letters indicate significant differences at
p < 0.05.

The effects of D. officinale on the cell viability of S. cerevisiae are presented in Figure 3.
Similar to the results of glucose uptake, there was no significant difference between the
viability values of T0 and T3, while the viability value of T10 was significantly (p < 0.05)
decreased by 48.70% as compared with that of the control (T0) (Figure 3A).
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Figure 3. Effects of D. officinale on the cell viability of S. cerevisiae. T0, T3, and T10 were the samples
with 0, 30, and 100 g/L of D. officinale, respectively. Different letters indicate significant differences at
p < 0.05. (A): value of cell viability; (B): T0; (C): T3; (D): T10.

To visually demonstrate the effects of D. officinale on the cell viability of S. cerevisiae,
cells were stained with FDA and observed using a fluorescence microscope. As shown
in Figure 3B–D, the fluorescence intensity (green pots) was strong in the T0 and T3 sam-
ples, while only slight fluorescence was observed in T10. This result is consistent with
the viability values, revealing the inhibitory effect of D. officinale on S. cerevisiae at high
concentrations.

3.3. Effects of D. officinale on the ADH and G6PDH Activities of S. cerevisiae

As shown in Figure 4, the ADH and G6PDH activities of S. cerevisiae were increased
by the addition of D. officinale. Compared with the control (T0), the ADH activity was
increased 1.84- and 2.25-fold, and the G6PDH activity was increased 1.74- and 1.76-fold, in
samples T3 and T10, respectively.
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Figure 4. Effects of D. officinale on the activities of alcohol dehydrogenase (ADH) and glucose-6-
phosphate dehydrogenase (G6PDH) in S. cerevisiae. Different letters indicate significant differences
between different samples at p < 0.05.
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3.4. Total Phenolic Content and Antioxidant Activity

As shown in Figure 5, the total phenolic content of beer samples was increased by
the addition of D. officinale. Among them, no significant (p > 0.05) difference in the total
phenolic content was determined between T3 (0.62 mg/mL) and T0 (control, 0.60 mg/mL),
while the total phenolic content in T10 (0.68 mg/mL) was significantly (p < 0.05) higher
than that of the control—by 12.65%. The antioxidant activity evaluated by the ABTS radical
cation decolorization assay showed higher values in the samples with added D. officinale
(T3 and T10) as compared with the control (T0, 1.91 µg AsA/mL). As with the total phenolic
content, the increase in ABTS radical scavenging ability was significant (p < 0.05) in T10
(2.62 µg AsA/mL), while it was insignificant (p > 0.05) in T3 (2.04 µg AsA/mL).
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3.5. Consumer Acceptance

Figure 6 demonstrates the sensory evaluation of beer samples fermented with different
concentrations of D. officinale. T3 showed the highest sensory score (75.33), while the use
of higher concentrations of D. officinale led to higher polyphenol extraction, resulting in
lower acceptance. Therefore, the addition of 30 g/L D. officinale is suitable for craft beer
production.
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were the samples with 0, 10, 30, 50, and 100 g/L of D. officinale, respectively. Different letters indicate
significant differences at p < 0.05.

3.6. Volatile Compounds

As shown in Table 2, in addition to ethanol, 28 volatile compounds were identified
in T0, including alcohols (6 compounds), esters (7 compounds), acids (8 compounds),
aldehydes (3 compounds), and others (4 compounds). The addition of D. officinale increased
the components of volatile compounds, and 38 volatile compounds were identified in T3,
including alcohols (8 compounds), esters (11 compounds), acids (9 compounds), aldehydes
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(4 compounds), and others (6 compounds). Compared with the control (T0), the contents
of esters were increased, while those of alcohols, acids, and aldehydes were decreased.
Among them, the concentrations of 3-methyl-1-butanol acetate and octanoic acid ethyl ester
in T3 were 5.43- and 3.70-fold higher, respectively, while the concentrations of 3-methyl-1-
butanol, phenylethyl alcohol, hexanoic acid, and octanoic acid in T3 were 3.71-, 4.26-, 4.09-,
and 2.70-fold lower than those in the control, respectively.

Table 2. Effects of the addition of D. officinale on the contents of individual volatile components of
beer samples (mg/L) *.

Number Compound Molecular Weight CAS Number
Samples

T0 T3

Alcohols
1 1-Propanol 60.06 000071-23-8 0.051 0.010
2 1-Propanol, 2-methyl- 74.07 000078-83-1 0.147 0.042
3 1-Butanol, 3-methyl- 88.09 000123-51-3 4.403 1.188
4 1,6-Octadien-3-ol, 3,7-dimethyl- 154.14 000078-70-6 - 0.006
5 1-Octanol 130.14 000111-87-5 - 0.010
6 2-Furanmethanol 98.04 000098-00-0 0.144 0.028
7 3-Methoxybenzyl alcohol 138.07 006971-51-3 - 0.011
8 Benzyl alcohol 108.06 000100-51-6 0.005 -
9 Phenylethyl alcohol 122.07 000060-12-8 1.829 0.429

Esters
10 1-Butanol, 3-methyl-, acetate 130.1 000123-92-2 0.042 0.228
11 Hexanoic acid, ethyl ester 144.12 000123-66-0 0.016 0.036
12 Octanoic acid, ethyl ester 130.14 006169-06-8 0.090 0.333
13 Undecanoic acid, ethyl ester 172.15 000106-32-1 - 0.005
14 2-Furanmethanol, acetate 140.05 000623-17-6 0.024 0.008
15 Decanoic acid, ethyl ester 200.18 000110-38-3 - 0.003
16 Acetic acid, 2-phenylethyl ester 164.08 000103-45-7 - 0.155
17 Acetic acid, phenyl ester 136.05 000122-79-2 0.007 -
18 Tributyl phosphate 266.17 000126-73-8 - 0.004
19 9,12-Octadecadienoic acid, methyl ester 294.26 002566-97-4 0.009 -
20 1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester 278.15 000084-69-5 - 0.007
21 Dibutyl phthalate 278.15 000084-74-2 0.037 0.015
22 Hexanedioic acid, bis(2-ethylhexyl) ester 370.31 000103-23-1 - 0.007

Acids
23 Acetic acid 60.02 000064-19-7 - 0.029
24 Butanoic acid 88.05 000107-92-6 0.012 -
25 Hexanoic acid 116.08 000142-62-1 0.319 0.078
26 Octanoic acid 144.12 000124-07-2 1.979 0.733
27 Nonanoic acid 158.13 000112-05-0 0.041 0.017
28 n-Decanoic acid 172.15 000334-48-5 0.258 0.020
29 Benzoic acid 122.04 000065-85-0 0.027 0.007
30 9-Decenoic acid 170.13 014436-32-9 0.084 0.019
31 Dodecanoic acid 200.18 000143-07-7 0.037 0.003
32 n-Hexadecanoic acid 256.24 000057-10-3 - 0.015

Aldehydes
33 Furfural 96.02 000098-01-1 0.024 -
34 Benzaldehyde 106.04 000100-52-7 0.035 0.002
35 Benzeneacetaldehyde 120.06 000122-78-1 0.051 0.014
36 Benzaldehyde, 2,4-dimethyl- 134.07 015764-16-6 - 0.014
37 Benzaldehyde, 2,4,6-trimethyl- 148.09 000487-68-3 - 0.016

Others
38 Isomaltol 126.03 003420-59-5 0.069 0.010
39 1-Propanol, 3-(methylthio)- 106.05 000505-10-2 0.005 -
40 Ethanone, 1-(1H-pyrrol-2-yl)- 109.05 001072-83-9 - 0.003
41 2(3H)-Furanone, dihydro-5-pentyl- 156.12 000104-61-0 - 0.003
42 2-Methoxy-4-vinylphenol 150.07 007786-61-0 0.178 0.056
43 Phenol, 2,4-bis(1,1-dimethylethyl)- 206.17 000096-76-4 - 0.06
44 Benzofuran, 2,3-dihydro- 120.06 000496-16-2 - 0.009
45 Indole 117.06 000120-72-9 0.016 -

* T0 and T3 were the samples with 0 and 30 g/L of D. officinale, respectively.
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4. Discussion

Craft beer is often brewed with the addition of suitable adjuncts with unique flavors
and/or functional components, and the adjuncts may affect the growth and metabolism of
beer yeast when added in the wort-boiling or fermentation stages [9]. As reported previ-
ously, the addition of goji berries at 50 g/L [5] and okra at 1 g/L [22] promoted the ethanol
production of beer yeast; there were no effects on ethanol content caused by the addition
of mango at 20% [14] and Parastrephia lucida leaves at 0.1–5% [23], while the addition of
hawthorn juice or fruits at 10% resulted in the opposite effect [16]. In this work, D. officinale
was added in the wort-boiling stage and showed promoting effects on yeast growth and
ethanol production at suitable doses; however, a decreased promoting effect—or even
an inhibitory effect—was demonstrated at higher doses (Table 1), due to the existence of
secondary metabolites such as phenolics, anthraquinones, and alkaloids [12]. The main bio-
chemical process of beer brewing is that yeast absorbs fermentable sugars, converting them
into ethanol through glycolysis, and produces other metabolites concomitantly. Glucose
uptake and cell viability experiments also showed non-significant effects of the addition of
D. officinale at low dosages but inhibitory effects at high dosages (Figures 2 and 3).

Beer contains a variety of phenolic compounds originating from barley and hops, and
it shows antioxidant activity [6,24]. The addition of plant adjuncts for craft beer brewing
may increase the phenolic contents and antioxidant activity [9]. Thyme, juniper, and
lemon balm were added to beer samples, and the total phenolic contents were increased
by 37.09%, 30.36%, and 29.55%, respectively [25]. Gasiński et al. [16] reported that the
contents of polyphenolic compounds and the ABTS and DPPH radical scavenging abilities
were increased by more than 2.0-fold, 2.0-fold, and about 6.0-fold, respectively, in beers
brewed with the addition of dotted hawthorn (Crataegus punctata) juice. Results from
another work by Gasiński et al. [14] showed that the total polyphenol contents and the
ABTS and DPPH radical scavenging activities in beer were increased by 42.8%, 44.3%, and
42.4%, respectively, with the addition of mango juice. Recently, Lazzari et al. [17] reported
that high levels of total phenolic compounds and antioxidant activity were achieved by
the replacement of hops with rubim (Leonurus sibiricus L.) and mastruz (Chenopodium
ambrosioides L.). As a medicinal plant, D. officinale contains a variety of phenolic compounds
and shows antioxidant activity [12]. Similarly, the increased total phenolic contents and
antioxidant activity were also observed in the beer brewed with the addition of D. officinale
in this work (Figure 5).

G6PDH is the first enzyme of the pentose phosphate pathway, which is important for
the biosynthesis of erythrose 4-phosphate and ribose 5-phosphate; therefore, it is related
to the proliferation of yeast [26]. The production of G6PDH by S. cerevisiae [27] could also
be improved by the addition of D. officinale extract at suitable dosages. ADH catalyzes the
conversion of pyruvate to ethanol; therefore, its activity directly affects the conversion rate
of ethanol [26]. Choi et al. [28] reported that Schizandrae fructus extract could increase the
ADH activity of S. cerevisiae. A similar result was also observed with the addition of D.
officinale extract.

Beer contains a variety of volatile chemicals, the main ones of which are ethanol and
carbon dioxide. However, other volatile compounds—including higher alcohols, esters,
ketones, aldehydes, organic acids, phenols, and sulfur compounds—play a vital role in the
taste and aroma despite being present at very low concentrations [16,29]. The individual
volatile chemicals and their contents in beers are affected by the yeast strains, fermentation
substrates, brewing conditions, and other factors [30]. Yin et al. [31] compared the effects
of amino acids on the production of volatile compounds by beer yeast and found that
glutamic acid, aromatic amino acids, and branched-chain amino acids can promote the
production of higher alcohols, while leucine, valine, phenylalanine, serine, and lysine can
increase the production of esters. Cioch-Skoneczny et al. [32] reported that adding brewing
triticale to wort can promote the production of acids by beer yeast. The additives for craft
beer can also change the volatile components of beer samples. As reported by Zapata
et al. [33], the concentrations of methyl benzoate and ethyl hexanoate were increased, while
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the concentrations of 4-ethyl guaiacol, ethyl dodecanoate, and isoamyl octanoate were
decreased in beer samples brewed with the addition of quince (Cydonia oblonga) fruits.
Gasiński et al. [16] also found that the formation of hexyl acetate, 2-methyl butyl ester,
5-methyl ethyl caproate, methyl caproate, and isoamyl caproate was increased in craft
beer brewed with the addition of 10% dotted hawthorn (Crataegus punctata), resulting
in the increase in volatile component contents from 0.359 mg/L to 2.879 mg/L. In this
work, the contents of 3-methyl-1-butanol acetate, hexanoic acid ethyl ester, octanoic acid
ethyl ester, and acetic acid 2-phenylethyl ester were remarkably increased, leading to an
increase in esters, which was similar to the results of [22], who reported that the ester
contents in beers were increased by the addition of okra (Abelmoschus esculentus). In
addition, D. officinale contains a series of volatile compounds, among which 22 alcohols
and 23 esters were identified [34]. Some components—such as tributyl phosphate, 2,4-di
(1,1-dimethylethyl) phenol, and other volatile chemicals—could enter the beer sample
during brewing, enriching the flavor of craft beers brewed with D. officinale.

5. Conclusions

The addition of D. officinale could affect the growth and metabolism of beer yeast, and
the total phenolic contents and antioxidant activity were increased with the increase in
the dosage. Compared with the control, the sample brewed with 30 g/L of D. officinale
had a higher content of esters, while also receiving the highest scores in the consumer test.
In summary, craft beer with good flavor and health functions could be brewed with the
addition of D. officinale at a suitable dosage.
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