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Abstract: This study aims to create a quantitative polymerase chain reaction (q-PCR) methodol-
ogy for monitoring the hydrogen-producing mixed cultures enriched from elephant dung using
alpha-cellulose as a carbon source through five generations of repetitive sub-culture. The enriched
thermophilic mixed cultures from the fifth cultivation cycle gave the highest hydrogen yield of
170.3 mL H2/g cellulose and were used to generate hydrogen from sawdust. Clostridium sp. and
Thermoanaerobacterium sp. were the dominant bacteria in thermophilic mixed cultures with high
hydrogen yield, according to polymerase chain reaction-denatured gradient gel electrophoresis
(PCR-DGGE). q-PCR primers Chis150F and ClostIR, TherF and TherR, and BacdF and BacdR were
developed to amplify the 16S rRNA genes of Clostridium sp., Thermoanaerobacterium sp., and Bacillus
sp., respectively, for the quantification of hydrogen-producing bacteria in biohydrogen fermentation.
Similar q-PCR analysis of Clostridium sp., Thermoanaerobacterium sp., and Bacillus sp. 16S rRNA gene
amplification during hydrogen production from cellulose and sawdust revealed increasing gene
copy number with time. The molecular approaches developed in this study can be used to monitor
microbial communities in hydrogen fermentation processes efficiently.

Keywords: PCR-DGGE; microbial community; thermophilic hydrogen production; sawdust;
lignocellulosic biomass

1. Introduction

Recent years have seen a greater focus of research efforts on the production and uti-
lization of alternative fuels to reduce dependency on fossil fuels. Hydrogen production via
biological processes that utilize organic materials is a sustainable alternative source of re-
newable energy that is cost-effective [1] and environment-friendly [2]. Biological hydrogen
production processes are broadly classified into biophotolysis, photo fermentation, and
dark fermentation processes. The latter process produces hydrogen from organic waste
and thus has the double advantage of potentially reducing waste disposal problems and
decreasing the cost of raw materials [3]. Thus, biological hydrogen production promotes the
waste-to-energy concept, rapidly increasing commercial hydrogen applications as biofuels
globally [1]. Organic waste materials such as lignocellulosic waste are potential low-cost
renewable raw material sources for biological hydrogen production [4]. Lignocellulosic
biomass contains a high content of cellulose, hemicellulose, and lignin, which serve as
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carbon sources for the release of hydrogen by microorganisms. Various lignocellulosic
waste has been widely used as feedstock for hydrogen production via dark fermentation.
These include barley hulls, rice straw, corn stalks, and oil palm residues with hydrogen
yields of 27.8 mL H2/gsubstrate [5], 24.8 mL H2/gsubstrate [6], 142.9 mL H2/gsubstrate [7] and
59.2 mL H2/gsubstrate [8], respectively. However, the recalcitrance of lignocellulosic biomass
is a major challenge in its conversion to bio-hydrogen by microorganisms. Consequently,
the successful use of lignocellulosic biomass as a substrate for bio-hydrogen production
requires the utilization of microorganisms with enhanced digestive abilities. In this study,
elephant dung was used as a source of microorganisms capable of utilizing lignocellulosic
biomass to produce hydrogen. In general, elephants consume lignocellulosic biomass as
their primary diet; thus, the microorganisms in the digestive tract may contain the enzyme
for lignocellulosic biomass digestion.

Many microbial species, including Clostridia and Thermoanaerobacterium species, are
efficient hydrogen producers under thermophilic conditions via the degradation of various
types of carbohydrates. Clostridium sp. is the most researched bacterial genera in dark
fermentative hydrogen production [3]. Thermoanaerobacterium sp. has been established
as a highly efficient hydrogen producer in thermophilic hydrogen production [9–11]. In
addition, various studies have reported using mixed microorganism cultures from anaero-
bic sludge, hot spring sediment, compost, and animal dung as inoculum for fermentative
hydrogen production [12,13]. These approaches are more practical than the utilization
of pure cultures since they result in more efficient substrate degradation [14]. However,
properly comprehending the microbial community and its various functions is essential
to improving the efficiency and stability of the hydrogen production process. To this
end, numerous approaches, including molecular approaches, have been developed and
applied [15].

Several molecular approaches based on 16S rRNA genes, including fluorescence in
situ hybridization (FISH) [16], denaturing gradient gel electrophoresis (DGGE) [17], and
shotgun sequencing of total DNA metagenomics [18] have been used to study hydrogen
producers. Even though these techniques provide information that aids the characterization
of microbial communities in mixed cultures, they are time-consuming and labor-intensive,
rendering them impractical for high sample throughput and real-time assays [19]. The rapid
development of quantitative polymerase chain reaction (q-PCR) has successfully overcome
these limitations and may be considered a potential technique to monitor process perfor-
mance. To our knowledge, the q-PCR methodology for quantifying thermophilic hydrogen
producers utilizing lignocellulosic biomass to produce hydrogen is still underdeveloped.

Therefore, the present study aimed to develop a quantification methodology using
q-PCR approaches to quantify and monitor thermophilic hydrogen-producing bacteria
enriched from the elephant dung. Our findings can be applied to other research studies
aiming to produce and develop alternative sources of green fuel, especially biohydrogen.

2. Materials and Methods
2.1. Substrate

Sawdust was used as the substrate for hydrogen production and was collected from a
local wood factory in Nongkai province, Thailand, air dried, and stored in a plastic box
until further use. The sawdust composition was determined to be 40.06% cellulose, 27.00%
hemicelluloses, and 32.95% lignin.

2.2. Inoculum and Culture Enrichment

Hydrogen-producing bacteria were enriched from elephant dung collected from an
elephant village in Surin province, Northeastern Thailand. The elephant dung was chopped
with a knife and heat-treated in a hot air oven at 105 ◦C for 2 h to inhibit the activity and
growth of methanogens. Subsequently, it was enriched with 5 g/L alpha-cellulose as a
carbon source in a basic anaerobic medium (BA) containing in g/L 1.0 NH4Cl, 0.1 NaCl,
0.1 MgCl2·6H2O, 0.05 CaCl2·2H2O, 0.4 K2HPO4·3H2O, 2.6 NaHCO3, 1.0 Yeast extract,
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1.0 Peptone, 0.25 Na2S, and 1 mL/L trace element solution. The trace element solution
comprised in g/L 0.002 FeCl2·4H2O, 0.00005 H3BO3, 0.00005 ZnCl2, 0.000038 CuCl2·2H2O,
0.00005 MnCl2·4H2O, 0.00005(NH4)6Mo7O24·4H2O, 0.00005 AlCl3, 0.00005 CoCl2·6H2O,
0.000092 NiCl2·6H2O, 0.0005 ethylenediaminetetraacetate, 0.0001 Na2SeO3·5H2O, and
1 mL concentrated HCl [20]. Serum bottles with a total volume of 120 mL and a working
volume of 70 mL were used for enrichment. The initial pH of the medium in the serum
bottles was adjusted to 7.0 with 2 M HCl or NaOH and flushed with N2 gas for 5 min
to obtain anaerobic conditions, followed by incubation at 55 ◦C for 4 days. The enriched
cultures were diluted at each enrichment cycle to 50% v/v in a fresh BA medium. This
process was repeated five times to establish a stable microbial community. Each cycle
of enriched cultures was monitored for hydrogen gas generation, and all samples were
analyzed for soluble metabolite products (SMPs) and microbial community. The final en-
richment cultures (fifth batch cycle) were used further as inoculum for hydrogen production
from sawdust.

2.3. Bio-Hydrogen Fermentation from Sawdust

Bio-hydrogen fermentation was performed in serum bottles with a total volume of
80 mL and a working volume of 40 mL, using 12 mL final enrichment cultures as inoculum
and 12.5 g/L sawdust as substrate. The initial pH was adjusted to 7.0 with 3 M NaOH
and 3 M HCl. All bottles were subsequently purged with nitrogen gas for 5 min to
ensure anaerobic conditions. Later, the serum bottles were sealed with a rubber septum
and aluminum crimp caps and placed in a 55 ◦C incubator for 7 days. All treatments
were conducted in triplicate. The BA medium without sawdust was used as a control
to account for the background production of hydrogen. In addition, the biogas volume
and composition were routinely monitored. The hydrogenic effluent was collected and
analyzed for SMPs at the end of the fermentation process. Simultaneously, sludge was
collected and analyzed for the microbial community responsible for hydrogen production
using polymerase chain reaction-denatured gradient gel electrophoresis (PCR-DGGE).

2.4. Analytical Methods

The volume of biogas in the headspace was measured with a wetted glass syringe.
The hydrogen content was analyzed with gas chromatography (GC-8APT, Shimadzu,
Kyoto, Japan) equipped with a thermal conductivity detector (TCD) and a Shin Carbon
column. The GC operational conditions followed were identical to those reported by
O-Thong et al. [11]. For the SMPs (ethanol (EtOH), acetic acid (Hac), propionic acid (HPr),
butyric acid (HBu), lactic acid (HLa)) analysis, hydrogenic effluent was centrifuged at
10,000 rpm for 5 min, acidified with 0.2 N oxalic acid, and filtered through a 0.2 µm nylon
membrane. The resulting filtrate was analyzed on a GC instrument (GC-8APF, Shimadzu,
Japan) with a flame ionization detector (FID) and a Unisole F-200 glass column. The
GC operation conditions were set as previously reported by O-Thong et al. [11]. The
HLa concentration was analyzed by high-performance liquid chromatography (HPLC;
LC-10AD, Shimadzu, Kyoto, Japan) with an Aminex HPX-87H column and a UV detector.
The HPLC operating conditions were based on those reported in a previous study [21].
Cumulative hydrogen production was calculated using the mass balance equation [22] to
measure headspace gas composition and the total volume of biogas produced during each
time interval. The hydrogen production yield was calculated as the cumulative hydrogen
production divided by the amount of cellulose or sawdust added (mL H2/gcellulose or
mL H2/gsawdust). The hydrogen production rate was calculated as the cumulative hydrogen
production divided by the fermentation time (mL H2/L·d).

2.5. PCR-DGGE Analysis

Triplicate sludge samples were collected from the end of bio-hydrogen fermentation to
investigate the microbial community structure. DNA quality was assessed on a 1% agarose
gel before PCR-DGGE analysis. The 16S rRNA gene was amplified from genomic DNA of



Fermentation 2022, 8, 506 4 of 13

sludge samples using the universal bacterial primers, 518r (5′ ATTACCGAGCTGCTGG
3′) and 357f (5′ CCTACGGGAGGCAGCAG 3′ with 40 bp GC-clamp). [23]. Amplification
mixtures for bacteria were TopTaq™ Master Mix Kit (Qiagen, Hilden, Germany) with a final
volume of 25 µL. The reaction mixture has a final concentration of TopTaq DNA Polymerase,
PCR Buffer, dNTP, and primers of 1.25 units, 1×, 200 µM, and 0.2 µM, respectively. PCR
amplification of bacterial DNA began with an initial denaturation of 94 ◦C for 3 min
followed by 34 cycles of three steps: 94 ◦C for 1 min, 53 ◦C for 1 min, and 72 ◦C for 2 min,
and final extension at 72 ◦C for 10 min. PCR products were analyzed by 1.5% agarose gel
electrophoresis before DGGE analysis.

The DGGE analysis of PCR products was performed using a vertical Dcode Universal
Mutation Detection System (Bio-Rad, Hercules, CA, USA) with 8% (v/v) polyacrylamide
gels and a denaturant gradient of 30–60% (100% denaturing solution containing 7 M of
urea and 40% formamide). The gel was run at 60 ◦C in 0.5X tris-acetate EDTA (TAE) buffer
at 70 V for 16 h. DGGE gels were stained with SYBR Green for 15 min and analyzed on a
GelDoc XR 1708170 system (Bio-Rad Laboratories, Hertfordshire, UK). DGGE profiles were
compared using the Quantity One software package (version 4.6.0; Bio-Rad Laboratories).
Most bands were excised from the gel and re-amplified with the forward primer 357f
without a GC clamp and the reverse primer 518r. After re-amplification, PCR products were
purified using Takara SUPRECTM-PCR (Takara Bio, Shiga, Japan). A Sanger sequencing
was performed with an automated DNA sequencer using the BigDye Terminator v3.1 cycle
sequencing kit. Then Sanger sequencing products were purified by using traditional ethanol
precipitation. Subsequently, the closest matches for partial 16S rRNA gene sequences were
identified in the GenBank database using the web-based basic local alignment tool (BLAST).

2.6. q-PCR Analysis

The DNA standard for q-PCR was extracted from pure cultures of Thermoanaerobac-
terium sp., Clostridium sp., and Bacillus sp. Cells were harvested in microcentrifuge tubes
by centrifugation at 10,000 rpm for 5 min. The cell pellets were re-suspended in 1 mL of
tris-EDTA (TE) buffer. Total genomic DNA was extracted and purified using the QIAamp
DNA Stool Mini Kit (QIAgen, Hilden, Germany). Triplicate sludge samples were collected
from elephant dung in each repetitive sub-culture (C1-C5) and cell culture of biohydrogen
fermentation (3, 6, and 9 days) to quantify the Thermoanaerobacterium sp., Clostridium sp.,
and Bacillus sp. in it. Specific degenerate primers were designed to amplify a nucleotide
sequence of the bacterial 16S rRNA gene from hydrogen-producing bacteria [21]. Specific
degenerated primers were designed to amplify a nucleotide sequence of the 16S rRNA
gene according to the o nucleotide sequence of Thermoanaerobacterium thermosaccharolyticum
(accession number AF247003) and Bacillus licheniformis (accession number AF516176) us-
ing NCBI Primer-BLAST Designers (http://www.ncbi.nlm.nih.gov/tools/primer-blast/
accessed on 17 September 2022). Based on the alignment, the primer set was designed
to conserve sequences region of genes from the two strains. The pairs of primer gave
PCR product range from 70–110 base pair and were selected to perform real-time PCR
system. The primer name and sequence were used in this study as shown in Table 1.
Primer specificities towards 16S rDNA of Clostridium sp., Thermoanaerobacterium sp., and
Bacillus sp. were evaluated using arb-silva (https://www.arb-silva.de/search/testprime/
accessed on 17 September 2022), an in-silico PCR analysis tool which uses 16S/18S rDNA
non-redundant reference dataset, SSURef 108 NR [24]. q-PCR was performed using
Chromo 4 real-time PCR (Bio-Rad, Hercules, CA, USA) in 96-well PCR plates. Standard
curves were constructed with ten-fold dilutions of genomic DNA from 16S rDNA PCR
amplification. Stock concentrations (gene copies µ/L) were determined via PicoGreen
measurement and freshly prepared ten-fold dilutions were used in order to build the
calibration curve. The wells were sealed with optical flat cap strips (Bio-Rad), and each
25 µL q-PCR reaction mixture contained 12.5 µL SYBR Green (IQ, Biorad, Hercules, CA,
USA), 0.25 µL each of 0.25 µM forward and reverse primers, 11 µL sterile water, and 1 µL
genomic DNA as a template. The q-PCR program began with initial denaturing at 95 ◦C
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for 3 min, followed by 39 cycles of denaturation at 95 ◦C for 45 s, annealing for 1 min at
57 ◦C for all primers set, and extension at 72 ◦C for 7 min. The PCR was completed with a
melting analysis starting from 60 ◦C to 99 ◦C with temperature increments of 0.2 ◦C and a
transition rate of 5 s to check for product specificity and primer dimer formation. The purity
of PCR products was also checked by 1% agarose gel, the presence of a single band of the
expected 540 (Clostridium sp.), 92 (Thermoanaerobacterium sp.), and 82 (Bacillus sp.) base.

Table 1. Primers targeted to 16S rRNA were used for q-PCR in this study.

Organism Name Primer
Name Sequence (5′→3′) Coverage

(%)
Specificity

(%)
Sequence

Length (bp) References

Clostridium sp.
Chis150F AAAGGRAGATTAATACCGCATAA

88.6 99.6 540 [25]
ClostIR TTCTTCCTAATCTCTACGCA

Thermoanaerobacterium
sp.

TherF GTGGAGAACACGGAGGAAGG
21.3 100 93 This study

TherR CCCTCTGTTCAGGCCATTGT

Bacillus licheniformis
BacdF TGGCTCAGGACGAACGCTG

100 100 82 This study
BacdR CCGCTGACCTAAGGGAGCAA

3. Results and Discussion
3.1. Enrichment of Thermophilic Hydrogen-Producing Bacteria

Thermophilic hydrogen-producing bacteria were enriched from elephant dung using
alpha-cellulose as a carbon source by repetitive sub-culture for five generations. Hydrogen
production was highest during the third cycle. Stable through the third to the fifth cycle
(Figure 1). The first and second cultivation cycles (C1 and C2) gave hydrogen yields of 20.2
and 23.5 mL H2/g cellulose, respectively. In contrast, the third, fourth, and fifth cultivation
cycles (C3) yielded 198.3, 169.1, and 170.3 mL H2/gcellulose, respectively. These results fur-
ther suggest that multiple transfers of enriched mixed cultures result in highly reproducible
hydrogen production [26]. Furthermore, stable hydrogen production indicates the signifi-
cance of hydrogen-producing bacteria in enriched mixed cultures [3]. Additionally, these
repeated transfers confer an environmental adaptive advantage to microorganisms in the
culture, resulting in increased hydrogen yields compared to single batch cultivations [11].
Consequently, the enriched thermophilic mixed cultures from the fifth cultivation cycle
were employed for hydrogen production from sawdust.

The SMPs of each cultivation cycle is shown in Figure 2. The generation of HAc
and HBu accompanies the formation of hydrogen. The total volatile fatty acid (TVFAs)
concentration in the five cultivation cycles (C1–C5) was 4597.39 mg/L. The TVFAs (HAc,
HBu, HPr, and HLa) showed an increasing tendency in the fourth cycle (C4) and then
declined to 1080 mg/L in the fifth cycle. In contrast, when ethanol production increased,
the concentrations of HLa increased (Figure 2). It is well established that carbohydrate
fermentation by mixed bacterial cultures can produce ethanol and lactic acid [27]. The type
of microorganisms involved in the fermentation process has a major impact on this [28].
HLa is generated by competing strains present in the microbial consortium at the beginning
of the process, resulting in the alteration of metabolic pathways [29]. Lactic acid bacteria
(LAB) have been shown to compete with hydrogen-producing consortia for substrates,
resulting in lower hydrogen yields and lower hydrogen production [30]. The dominance of
hydrogen-producing bacteria (Clostridium sp. and Thermoanaerobacterium sp.) in C4 and
C5 cultivations indicates that they are highly adapted to the hydrogen production process.
Thus, enriched mixed cultures from elephant dung can be expected to enhance hydrogen
yield and may be employed as suitable inocula for hydrogen production from sawdust.
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Figure 1. Hydrogen yield from alpha-cellulose by enriched mixed cultures from elephant dung in
each repetitive sub-culture for five generations (Cycle (C) 1–Cycle (C) 5).
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3.2. Thermophilic Bio-Hydrogen Production from Sawdust

Figure 3 depicts the cumulative hydrogen production from sawdust under ther-
mophilic conditions to measure the efficiency of enriched cultures derived from elephant
dung. Our study observed a maximum cumulative hydrogen production of 179 mL H2/L,
corresponding to a hydrogen yield of 37.1 mL H2/gcellulose. In concurrence with the report
by Mamimin et al. [8], the major SMPs formed during dark fermentation of lignocellu-
losic material by mixed cultures were HAc and HBu (Figure 2). There was no significant
difference between alpha-cellulose and sawdust in hydrogen production, indicating that
mixed cultures of elephant dung contained bacteria capable of converting lignocellulose
into hydrogen. This is because elephants predominantly consume lignocellulosic plant
materials. Thus, their dung is abundant in cellulolytic bacteria that digest cellulose into
glucose and hydrogen-producing bacteria that convert this glucose into hydrogen. There-
fore, the utilization of elephant dung as inocula for mixed-culture systems has the dual
advantages of cellulose degradation and hydrogen production [14]. However, previous
research reported that hydrogen production of unpretreated sawdust is less efficient than
that from pretreated sawdust [31], possibly due to lower biodegradability on account of
the complex structure of cellulose, hemicellulose, and lignin in plant cell walls [32]. While
pretreatment of the substrate increases hydrogen yield, it also raises production costs. On
the other hand, enrichment cultures derived from elephant dung can efficiently produce
hydrogen from sawdust without pretreatment, providing a low-cost benefit.
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3.3. Microbial Community Structure

The microbial community present in enriched mixed cultures from each sub-culture of
elephant dung as well as sawdust hydrogen fermentation were analyzed by PCR-DGGE
that targeted the 16S rRNA gene (Figure 4). Repetitive sub-culture of elephant dung was
shown to affect the diversity of the bacterial community (Figure 4a). These communities
from each repetitive sub-culture (C1–C5) were identified as a mixture of Clostridium sp.,
uncultured bacterium, uncultured rumen bacteria, uncultured Firmicutes bacterium, uncul-
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tured Lachnospiraceae bacterium, Bacillus sp., Geobacillus sp., Tissierella sp., Streptomyces sp.,
uncultured compost bacterium, Clostridium cellulolyticum, and Thermoanaerobacterium sp.
Species diversity decreased from the first cycle (C1) to subsequent cultivations (C2–C5), as
evident from prominent band patterns. The first cycle (C1) and second cycle (C2) had slight
differences in microbial community structure, with uncultured Lachnospiraceae bacterium
appearing as strong bands. At the same time, the third transfer (C3) displayed strong
bands that indicated Tissierella sp. However, bands corresponding to Clostridium sp., and
Thermoanaerobacterium sp. responsible for hydrogen production under thermophilic condi-
tions became most dominant after the third transfer (C3). Thermoanaerobacterium species, a
well-established thermophile with optimal growth at 60◦C that converts carbohydrates to
hydrogen with butyrate as the end soluble product [33], remained the abundant species
throughout the repetitive mixed culture. Clostridium sp. and Thermoanaerobacterium sp.
have been reported as potential hydrogen producers during the acetogenesis stage of
hydrogen production [34], which is in concordance with other studies that report animal
dung as a rich source of hydrogen-producing bacteria [26]. From these results, it may be
concluded that hydrogen-producing bacteria, such as Clostridium sp. and Thermoanaerobac-
terium sp., were present in all cultivation cycles and are the major hydrogen-producing
species in enriched mixed cultures from elephant dung detected by PCR-DGGE. Addi-
tionally, the quantity of Clostridium sp. detected by q-PCR in the C3, C4, and C5 culti-
vations directly correlated with the high hydrogen yield obtained during these transfers
(See Section 3.4).
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As shown in the DGGE profile in Figure 4b, microbial communities had similarities in
numbers (band density) and diversity (number of the band) in most hydrogen fermentation
(SD1, SD2, and SD3). The microbial community structure of sludge from sawdust hydro-
gen fermentation at different DNA loading of 1.18 ug/uL (SD1), 1.58 ug/uL (SD2) and
2.37 ug/uL (SD3) comprised Clostridium sp., Clostridiales bacterium, uncultured rumen
bacteria, Streptomyces sp., Lachnospiraceae sp., uncultured compost bacterium, Thermoanaer-
obacterium sp., and strong bands of uncultured Lachnospiraceae bacterium. The DGGE profile
further showed that the hydrogen-producing bacteria primarily comprised Clostridium
sp. and Thermoanaerobacterium sp., which was previously reported as the predominant
species in hydrogen reactor sludge [9]. Furthermore, these species have been shown to
drive hydrogen production from a wide range of lignocellulosic substances [4,7].

3.4. q-PCR

This study developed a quantitative monitoring protocol for Clostridium sp., Ther-
moanaerobacterium sp., and Bacillus sp. during the hydrogen fermentation process by
q-PCR. The q-PCR technique provides results within a day and has been increasingly
used for identifying and quantifying specific microorganisms within complex microbial
communities [35–37]. The linear detection range was determined using a series of stan-
dard dilutions of genomic DNA extracted from Clostridium sp., Thermoanaerobacterium
thermosaccharolyticum, and Bacillus sp. Threshold cycles were calculated for each sample
based on the threshold value after each q-PCR run, and standard curves for Clostridium sp.,
Thermoanaerobacterium sp., and Bacillus sp. were generated by plotting the threshold cycle.
The slope and y-intercept were evaluated using linear regression analysis, and gene copy
numbers were analyzed using the standard curves. The high R-squared values obtained in
Standard curves (Thermoanaerobacterium sp. = 0.98; Bacillus sp. = 0.99; Clostridium sp. = 0.98)
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confirm that the reactions were consistent with an absence of any non-specific product.
Both Clostridium sp. and Thermoanaerobacterium sp. were detected by PCR-DGGE and
q-PCR in the enriched mixed cultures from each sub-culture of elephant dung (C1–C5).
Gene copy numbers from the q-PCR analysis revealed Bacillus sp. (1.5 × 1016 to
4.39 × 1014 gene copy number) as the dominant genus in the first cultivation (C1) that
demonstrated a decreasing trend in subsequent sub-cultures. In contrast, Clostridium sp.
(4.66× 1014 to 5.63× 1015 gene copy number) and Thermoanaerobacterium sp. (5.03× 1014 to
3.62× 1015 gene copy number) became dominant genera during repetitive sub-culture, con-
comitant with a high hydrogen yield in later cycles (Figure 5). A similar correlation between
hydrogen yield and 16S rRNA gene copy number of Clostridium sp., Thermoanaerobacterium sp.,
and Bacillus sp. was obtained during hydrogen production from saw dust (Figure 6),
thus suggesting these strains play an important role in the hydrogen fermentation pro-
cess. These findings also show that heat treatment of elephant dung prior to form-
ing mixed cultures inhibits non-spore-forming bacteria while not affecting hydrogen-
producing bacteria [38]. A recent report by Okonkwo et al. supports our findings by
demonstrating the use of q-PCR for quantitative monitoring of hydrogen-producing bac-
teria [39]. As a result of these findings, molecular approaches for monitoring microbial
communities and fermentation processes in mixed cultures were developed to improve
hydrogen production.
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Figure 5. The 16S rRNA amplicons of Clostridium sp., Thermoanaerobacterium sp., and Bacillus sp. in
each repeated repetitive sub-culture.
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amplification during hydrogen production from sawdust.

4. Conclusions

Hydrogen-producing mixed cultures were efficiently enriched from heat-treated ele-
phant dung and subsequently selected as inocula for hydrogen production from sawdust.
Maximum cumulative hydrogen production of 179 mL H2/L was observed with HAc
(1141.64 mg/L) and HBu (563.63 mg/L) generated as major SMPs. The PCR-DGGE profile
identified Clostridium sp. and Thermoanaerobacterium sp. as potential hydrogen producers
in the acetogenesis stage of hydrogen production. Quantitative results from the q-PCR
analysis provided vital information about the biohydrogen production process in mixed
cultures, which will be helpful for further improvement of hydrogen production. The
primary hydrogen producer was Clostridium sp. in both the enrichment culture and the
hydrogen fermentation process of sawdust.
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