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Abstract: In this work, hardwood sulfite spent liquor (HSSL)—a by-product from a pulp and paper
industry—was used as substrate to produce short-chain organic acids (SCOAs) through acidogenic
fermentation. SCOAs have a broad range of applications, including the production of biopolymers,
bioenergy, and biological removal of nutrients from wastewaters. A continuous stirred tank reactor
(CSTR) configuration was chosen to impose selective pressure conditions. The CSTR was operated
for 88 days at 30 ◦C, without pH control, and 1.76 days of hydraulic and sludge retention times were
imposed. The culture required 46 days to adapt to the conditions imposed, reaching a pseudo-steady
state after this period. The maximum concentration of SCOAs produced occurred on day 71—7.0 g
carbon oxygen demand (COD)/L that corresponded to a degree of acidification of 36%. Acetate,
propionate, butyrate, valerate, and lactate were the SCOAs produced throughout the 88 days, with
an average proportion of 59:17:19:1.0:4.0%, respectively.

Keywords: short-chain organic acids; hardwood sulfite spent liquor; activated sludge; acidogenic
fermentation; mixed microbial cultures

1. Introduction

The increasing interest in new renewable sources of energy and materials is a consequence of
several factors, including the rapid depletion of petroleum and the colossal generation of residues
and wastes—both direct consequences of human population growth and its activities. To exploit the
potential of using wastes as feedstock, waste management needs to move from treatment-oriented
processes to the integration of technologies able to valorize organic waste streams for the production
of value-added products [1,2].

Currently, a considerable effort is being made to develop technologies that are able to
produce value-added products using residues and by-products. Koutinas et al. [3] enlisted several
compounds to be produced from wastes: building-blocks such as succinic acid, 2,3-butanediol, and
1,3-propanediol; biofuels like bioethanol and biohydrogen; and polymers such as bacterial cellulose
and polyhydroxyalkanoates (PHAs); and short-chain organic acids (SCOAs) [3].

SCOA production is currently achieved by chemical synthesis, followed by distillation at
atmospheric pressure [2]. These compounds have a maximum of six carbon atoms, and present
a broad range of applications in the production of biopolymers [4,5], bioenergy [6], and the biological
removal of nutrients from wastewaters [4,7].

Organic industrial and urban wastes can act as substrate for SCOA production through acidogenic
fermentation (AF). This is a stage of anaerobic digestion (AnD) where several organic compounds
present in wastes are transformed into SCOAs including acetate, propionate, butyrate, or lactate, and
alcohols such as ethanol [8]. AnD is a complex process which can be divided into four individual

Fermentation 2017, 3, 20; doi:10.3390/fermentation3020020 www.mdpi.com/journal/fermentation

http://www.mdpi.com/journal/fermentation
http://www.mdpi.com
http://dx.doi.org/10.3390/fermentation3020020
http://www.mdpi.com/journal/fermentation


Fermentation 2017, 3, 20 2 of 11

stages: hydrolysis, acidogenic fermentation, acetogenesis, and methanogenesis. If AF is the objective,
the process should be interrupted at acidogenesis or acetogenesis by inhibiting methanogenesis.
AnD is a mature technology that is usually employed worldwide within full-scale facilities for the
treatment of industrial and urban wastewaters and organic solid wastes. AnD is advantageous over
aerobic activated sludge systems because of its high organic content removal, low energy input
requirements, energy production, and low sludge production [9]. Usually, the final goal of AnD is the
production of methane and carbon dioxide (biogas), and only recently is being driven by the formation
of SCOAs. For SCOA production, it is essential to establish selective pressure conditions to inhibit
methanogenic microorganisms and select those which are capable of synthesizing SCOAs, maximizing
their production [10]. This selection is possible because methanogenic microorganisms are quite
sensitive to operational conditions like temperature, or to the presence of inhibitors, and usually present
low growth rates compared to the acidogenic population [11]. Furthermore, the thermodynamics of
AF is more favorable than methanogenesis [8,12].

AF has the potential to produce value-added compounds from low-cost waste-based materials.
This aspect is of vital importance to the integration of an AF stage into other processes, once the
substrate costs often contribute significantly to the overall process economy. Therefore, there are critical
parameters to be ascertained to select the most suitable waste streams for acidogenic fermentation, and
thus to establish a more cost-effective process. These include the biochemical acidogenic potential of the
waste stream, which is the composition and amount of SCOAs that can be generated from the fermentation
of the organic wastes [2]. Generated SCOAs can be used further in other processes; namely, the production
of PHAs by mixed microbial cultures (MMCs) [13,14]. Parameters such as pH [15,16], temperature [15],
hydraulic retention time (HRT), solids retention time (SRT) [17,18], and organic loading rate (OLR) [19]
have already been studied in the production of SCOA from industrial or municipal wastes.

The objective of this work was to evaluate the possibility of the application of AF to hardwood
sulfite spent liquor (HSSL)—an industrial by-product from the pulp and paper industry—to produce
SCOAs. Sulfite spent liquors have the potential to be valorized through a lignocellulosic biorefinery
approach [20]. Due to the considerable amount of sugars such as glucose, xylose, and in smaller
amounts, galactose, mannose, and arabinose, SCOA production is a strong opportunity to be
explored. Instead of using the traditional anaerobic sludge as the inoculum of the process, an aerobic
activated sludge was chosen and submitted to anaerobic conditions without pH control and
temperature-controlled at 30 ◦C. This procedure was expected to inhibit the presence of methanogenic
bacteria and increase the presence of the acidogenic population [11,21].

2. Materials and Methods

2.1. Microbial Culture

The reactor was inoculated with an MMC collected from an aerobic tank of the wastewater
treatment plant (WWTP) Aveiro Sul, SIMRia. The inoculum concentration was 10.5 g carbon oxygen
demand (COD)/L.

2.2. Experimental Setup

A continuous stirred tank reactor (CSTR) configuration was chosen to perform the AF of
chemically pre-treated HSSL under anaerobic conditions. The working volume of the reactor was
1.55 L, and the flow rate of the feeding solution was 0.85 L/day, resulting in a hydraulic retention time
(HRT) of 1.76 days. The reactor had no retention system for the biomass, resulting in a SRT similar
to the HRT. The effluent was collected at the outlet of the reactor by overflow. Reactor stirring was
performed by a magnetic stirrer and kept constant at 100 rpm. Nitrogen was sparged regularly to
assure anaerobic conditions. Oxidation–reduction potential (ORP) was monitored with a transmitter
M300 2-channel ORP meter (Mettler-Toledo Thornton, Inc., Greifensee, Switzerland). The system
worked with temperature control at 30.1 ± 1.0 ◦C and without pH control.
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2.3. Substrate

HSSL from magnesium-based acidic sulfite pulping of Eucalyptus globulus was supplied by
Caima–Indústria de Celulose S.A. (Constância, Portugal). Pre-evaporated HSSL was collected
from an inlet evaporator from a set of multiple-effect evaporators to avoid the presence of free
SO2. To remove part of the most recalcitrant compounds, HSSL was submitted to a preliminary
pretreatment [22]. The pretreatment started with a pH adjustment to 7.0 with 6 M KOH, followed by
aeration with compressed air (2880 L of compressed air per liter of HSSL in 6 h). Then, the liquor was
centrifuged for 1 h at 5000 rpm. The precipitated colloids were filtered using a 1 µm glass microfiber
filter. Finally, the pre-treated HSSL was stored at 4 ◦C. The total carbon oxygen demand (COD) of
pretreated HSSL was determined (≈267 g COD/L). Lignosulphonates (LS) and phenolic components
were still the main constituents (ca. 190 g/L), along with xylose, acetate, and glucose (43.5, 14.4, and
7.9 g/L, respectively). No phosphates or ammonia were detected in the HSSL.

2.4. Fermentation Medium

To achieve an organic load rate (OLR) of 11.8 g COD/L day in the CSTR, HSSL was diluted
with a mineral solution at a ratio of 1:12.8 (v:v). The mineral solution was composed by (per liter of
distilled water): 80 mg of CaSO4·2H2O, 160 mg of FeSO4·7H2O, 160 mg of MgSO4·7H2O, 80 mg of
Na2MoO4·2H2O, 160 mg of NH4Cl. The pH of the medium was adjusted to 7.0, and the medium
was autoclaved for 20 min at 121 ◦C. KH2PO4 (160 mg/L) and K2HPO4 (80 mg/L) were added under
sterile conditions.

2.5. Sampling

Samples were collected every 4 days, three times a day, at intervals of 3 h (sample volume of 5 mL).
Samples were further centrifuged at 13,000 rpm for 10 min, the pellet discarded, and the pH of the
supernatant measured before storage under −16 ◦C for later determination of glucose, xylose, SCOAs,
COD, and LS concentrations. Five milliliter samples were regularly collected for the determination of
total suspended solids (TSS) and volatile suspended solids (VSS).

2.6. Analytical Methods

Biomass concentration was determined using total suspended solids (TSS) and volatile suspended
solids (VSS) procedure described in Standard Methods [23]. Microfiber filters with 1.0 µm pore size
were calcined for 30 min at 550 ◦C to remove all organic matter. After cooling to room temperature,
filters were weighed, and 5.0 mL samples were filtered. Then, filters with the biomass were dried in
the oven for 24 h at 105 ◦C to remove water and were then weighed at room temperature to achieve
the TSS concentrations. Finally, the filters were calcined at the same conditions as earlier, and finally
weighed at room temperature to achieve the VSS concentrations.

COD was measured accordingly to Standard Methods [23]. Replicates were prepared for each
sample, which were diluted according to the detection range of the method (100–900 mg/L). Diluted
sample (2.0 mL) was mixed with 2.8 mL of digestion solution (20.43 g of K2Cr2O7, 66.6 g of HgSO4,
334 mL of H2SO4 in 2 L of distilled water) and 1.2 mL of acidic solution (23.3 g of AgSO4 in 2 L
of H2SO4). In the preparation of blank, 2.0 mL of distilled water was added to the test tubes instead
of sample. Tubes suffered a vigorous agitation and were placed on a pre-warmed incubator for 2 h
at 150 ◦C. After the digestion, tubes were taken from the incubator and placed in the dark to cool
down to room temperature. Lastly, the absorbance of the tubes was read at 600 nm with a colorimeter.
COD concentrations were then calculated based on a calibration curve performed with glucose standards.

Acetate, propionate, butyrate, valerate and lactate, xylose, and glucose were measured by HPLC.
For this, 650 µL of each sample were filtered using centrifuge tube filters with a cellulose acetate
membrane, 0.2 µm pore size at 8000 rpm for 20 min. Samples were then injected (Auto-sampler
HITACHI L-2200, Hitachi, Ltd., Chiyoda, Japan) in an ion exchange column Aminex HPX-87H (Bio-Rad,



Fermentation 2017, 3, 20 4 of 11

Hercules, CA, USA) at 40 ◦C (Oven Gecko-2000, CIL Cluzeau, Sainte-Foy-la-Grande, France), and
analyzed by a refractive index detector (HITACHI L-2490, Hitachi, Ltd., Chiyoda, Japan). The eluent
0.01 N H2SO4 was pumped at a flow rate of 0.6 mL/min (HITACHI L-2130 pump, Hitachi, Ltd.,
Chiyoda, Japan) at room temperature. The eluent was prepared with milli-Q water and filtered with
a cellulose acetate membrane, 0.22 µm pore size. The concentrations of sugars and SCOAs in g/L
were determined by comparison with the calibration curves of each analyzed compound obtained
using standards of known concentrations. The standards concentrations were within the range of the
expected concentrations of the analytes: 0.15 to 3.00 g/L for lactate and valerate; 0.20 to 4.00 g/L for
propionate and butyrate; 0.25 to 5.00 g/L for glucose, xylose, and acetate.

LS were measured according to Restolho et al. [24]. The absorbance of samples was measured
in a spectrophotometer (Shimadzu UVmini-1240, Shimadzu Corp., Kyoto, Japan) at 273 nm, after
a dilution of 1:400. LS concentration was calculated using the Beer–Lambert law with a molar
attenuation coefficient of 7.41 g/cm [25].

2.7. Calculations

The concentrations of SCOAs, sugars, and biomass were determined by volume of mixed liquor
and were converted from g/L to g COD/L using conversion factors that represent the mass (g) of
oxygen required to oxidize 1 g of compound based on the oxidation reactions for each compound.
The overall oxidation equation is represented below.

a compound + b O2 → c CO2 + d H2O + e NH3 (1)

In which a, b, c, d, and e represent the stoichiometric coefficients of the equation. Therefore, the
conversion factor (cf) was calculated according with the following Equation:

cf (gO2/g) =
b × M(O2)

a × M(compound)
(2)

The conversion factors were 1.07 g O2/g for glucose, xylose, lactate, and acetate; 1.51 g O2/g
for propionate; 1.82 g O2/g for butyrate; and 2.04 g O2/g for valerate. For biomass, an empirical
molecular formula of C5H7NO2 that corresponded to a conversion factor of 1.42 g O2/g for biomass
was assumed [19].

Additionally, acidification degrees (ADs) were calculated for the fermentative process. The total
acidification degree (ADTotal) represents the amount of substrate consumed to produce SCOAs
considering all the organic matter entering the reactor Equation (3). The sugars acidification degree
(ADSugars) represents the amount of sugars consumed to produce SCOAs, considering the xylose and
glucose fed to the reactor Equation (4). These calculations were performed as percentages.

ADTotal (%COD) =
[SCOAs]out − [SCOAs]in

CODIn
(3)

ADSugars (%COD) =
[SCOAs]out − [SCOAs]in

CODSugars in
× 100 (4)

3. Results and Discussion

The CSTR inoculated with an aerobic consortium was operated with a HRT of 1.76 days. A short
SRT was chosen since short SRTs were already observed to promote the growth of acidogenic organisms
comparatively to methanogens, usually presenting low growth rates [2]. Moreover, the use of an aerobic
population as inoculum was also based on the fact that methanogens are strict anaerobes and acidogenic
bacteria are facultative anaerobes [11,26]. Consequently, the conditions imposed were expected to
favor the acidogenic population. The initial COD concentration of the CSTR feed (20.8 g COD/L)
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was chosen considering preliminary assays of acidogenic fermentation of HSSL (data not shown) and
taking into account the COD and LS concentrations of HSSL obtained after the chemical pre-treatment
(266 g COD/L and 190 g/L, respectively). This corresponded to an organic load rate of 11.8 g COD/L
day. Temperature was kept in the mesophilic range (30 ◦C), because at this value the process can
occur efficiently without major energy requirements [2]. Finally, pH was monitored but not controlled
along the operational period of the CSTR. This can be advantageous at an industrial level, considering
that lower amounts of chemicals are required and no extra equipment for pH control is needed, thus
reducing operation costs. This would also be beneficial for the process scale-up.

3.1. Acidogenic Fermentation of HSSL

The variation of SCOA composition during the CSTR operational period, which lasted about
88 days, as well as of the main sugars, glucose and xylose, is shown in Figure 1.
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Figure 1. Evolution of short-chain organic acids (SCOAs), sugars, biomass, and pH variation during
the fermentative process. COD: carbon oxygen demand.

At the beginning of the operational period, the CSTR lost a significant amount of biomass, reaching
the lowest value (1.3 g COD/L) on the 39th day. The observed loss of biomass probably resulted from
the operational conditions imposed. The short SRT would not allow for the survival of slow-growing
bacteria. Additionally, the obligate aerobes initially present in the inoculum were probably washed
out from the system due to the selective pressure that resulted from the anaerobic conditions imposed.
Then, from the 46th day, a quick increase was observed in the following five days, and then it stabilized
between 7.0 and 9.0 g COD/L until the 74th day, when it started to decrease again. A same pattern of
biomass concentration was observed by Fernández-Morales et al. [26] during the acclimatization of
conventional aerobic activated sludge to obtain an enriched acidogenic culture.

Most days, glucose was exhausted while xylose was not. This could show a preference for glucose
over xylose by the culture. It is known that the metabolic pathway for glucose conversion to SCOAs
is simpler than for xylose, with fewer enzymatic steps. Glucose enters directly in the glycolysis
step, producing pyruvic acid, from which SCOAs are synthetized [10]. On the other hand, xylose
needs to be converted to the intermediary D-xylulose-5-phosphate and go through pentose phosphate
pathway (most commonly) to finally arrive in glycolysis and then be converted to pyruvate, and
consequently, into SCOAs [10,27,28]. Moreover, Temudo et al. [10] verified that xylose catabolism was
more efficient than glucose under anaerobic conditions, since more ATP was generated per mole of
substrate. However, when authors compared the ATP-utilization for biomass production, biomass
growth from xylose was less efficient than from glucose [10].

During the first 15 days of operation, a gradual increase of SCOAs production was observed, and
then it stabilized until the 30th day. A drastic decrease in SCOA production was observed between
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days 30 and 40, which could be a consequence of the increase of glucose and xylose concentrations
observed in the reactor. The minimum value of total SCOA concentration (0.86 g COD/L) was obtained
on the 39th day (Figures 1 and 2). The decrease in SCOA concentration could be a consequence of the
lowest biomass concentration observed on this day in the CSTR (Figure 1), suggesting that the culture
was still unstable. The pH also fluctuated during this period, probably due to the verified instability.
Generally, throughout the CSTR operational period, a higher concentration of SCOAs in the reactor
effluent corresponded to a lower amount of sugars. An increase in the amount of sugars in the reactor
effluent coincided with lower SCOAs production.

Fermentation 2017, 3, 20  6 of 10 

 

due to the verified instability. Generally, throughout the CSTR operational period, a higher 

concentration of SCOAs in the reactor effluent corresponded to a lower amount of sugars. An increase 

in the amount of sugars in the reactor effluent coincided with lower SCOAs production. 

 

Figure 2. SCOA production profile, sugars, and pH evolution throughout fermentation time. 

Total SCOA maximum concentration was achieved on day 71, and corresponded to an average 

value of 7.0 g COD/L, which was comparable to the values reported in the literature. For instance, 

Bengtsson et al. [29] tested the AF of four industrial wastes in batch mode with pH controlled at 6.00. 

The maximum SCOA concentration obtained was 3.96 g COD/L using a waste derived from a paper 

mill [29]. Additionally, Silva et al. [8] studied the AF of eight organic streams in batch experiments, and 

the maximum SCOA concentration obtained was 3.37 g COD/L for cheese whey. Lastly, Jie et al. [30] 

tested different pH values and their impact on AF of excess sludge, and observed the highest SCOA 

concentration for pH 10.0, 3.16 g COD/L. Moreover, the SCOA concentration obtained seemed to be 

related not only to the conditions imposed during the AF process, but also to the AF potential of the 

waste used. In this way, despite the presence of inhibitory components, and due to the sugar content, 

HSSL bears a significant AF potential, comparable to the wastes tested in the literature [8,29,30]. 

The concentrations of sugars and SCOAs were the parameters chosen to evaluate the stability of 

the microbial population. More stable sugars and SCOA concentrations—3.8 ± 0.25 and 5.5 ± 0.84  

g COD/L, respectively—were obtained from day 45 onward. A pseudo-stationary state was 

considered to have been reached after this day, meaning that after inoculation, the system required 

44 days to adapt to substrate and conditions imposed (Table 1). The reduction in the biomass 

concentration at the beginning of the process could be responsible for the long adaptation time. 

Moreover, the presence of known bacterial inhibitors in HSSL such as gallic acid, pyrogallol, and 

furfural, as reviewed by Pereira et al. [22], could affect the SCOAs and biomass concentrations 

obtained, and consequently contribute to the long adaptation time [26,31]. An introduction of a pre-

adaptation step in batch mode could accelerate the adaptation of the MMC to HSSL. 

Table 1. Main results from the acidogenic fermentation of hardwood sulfite spent liquor (HSSL). 

Parameters 
Time 

(Day) 

Sugars 

Consumed * SCOAs * 

(g COD/L) 

SCOAs Profile (% COD) * 

AD * (%) 

 
g 

COD/L 
(%) Lactate Acetate Propionate Butyrate Valerate 

Operation 0–88 
3.8 ± 

0.29 

94 ± 

7.2 
4.0 ± 1.76 

3.9 ± 

3.91 
59 ± 6.8 17 ± 6.8 19 ± 6.5 1.0 ± 1.3 20 ± 9.0 

PSS 46–88 
3.8 ± 

0.25 

94 ± 

6.3 
5.5 ± 0.84 

5.7 ± 

3.91 
53 ± 3.2 22 ± 4.2 19 ± 7.5 

0.0 ± 

0.00 
28 ± 4.3 

* mean values ± standard deviation. AD: acidification degree. PSS: Pseudo-steady state 
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Total SCOA maximum concentration was achieved on day 71, and corresponded to an average
value of 7.0 g COD/L, which was comparable to the values reported in the literature. For instance,
Bengtsson et al. [29] tested the AF of four industrial wastes in batch mode with pH controlled at 6.00.
The maximum SCOA concentration obtained was 3.96 g COD/L using a waste derived from a paper
mill [29]. Additionally, Silva et al. [8] studied the AF of eight organic streams in batch experiments, and
the maximum SCOA concentration obtained was 3.37 g COD/L for cheese whey. Lastly, Jie et al. [30]
tested different pH values and their impact on AF of excess sludge, and observed the highest SCOA
concentration for pH 10.0, 3.16 g COD/L. Moreover, the SCOA concentration obtained seemed to be
related not only to the conditions imposed during the AF process, but also to the AF potential of the
waste used. In this way, despite the presence of inhibitory components, and due to the sugar content,
HSSL bears a significant AF potential, comparable to the wastes tested in the literature [8,29,30].

The concentrations of sugars and SCOAs were the parameters chosen to evaluate the stability of
the microbial population. More stable sugars and SCOA concentrations—3.8 ± 0.25 and 5.5 ± 0.84 g
COD/L, respectively—were obtained from day 45 onward. A pseudo-stationary state was considered
to have been reached after this day, meaning that after inoculation, the system required 44 days to
adapt to substrate and conditions imposed (Table 1). The reduction in the biomass concentration at the
beginning of the process could be responsible for the long adaptation time. Moreover, the presence
of known bacterial inhibitors in HSSL such as gallic acid, pyrogallol, and furfural, as reviewed by
Pereira et al. [22], could affect the SCOAs and biomass concentrations obtained, and consequently
contribute to the long adaptation time [26,31]. An introduction of a pre-adaptation step in batch mode
could accelerate the adaptation of the MMC to HSSL.
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Table 1. Main results from the acidogenic fermentation of hardwood sulfite spent liquor (HSSL).

Parameters Time
(Day)

Sugars Consumed * SCOAs *
(g COD/L)

SCOAs Profile (% COD) *
AD * (%)

g COD/L (%) Lactate Acetate Propionate Butyrate Valerate

Operation 0–88 3.8 ± 0.29 94 ± 7.2 4.0 ± 1.76 3.9 ± 3.91 59 ± 6.8 17 ± 6.8 19 ± 6.5 1.0 ± 1.3 20 ± 9.0

PSS 46–88 3.8 ± 0.25 94 ± 6.3 5.5 ± 0.84 5.7 ± 3.91 53 ± 3.2 22 ± 4.2 19 ± 7.5 0.0 ± 0.00 28 ± 4.3

* mean values ± standard deviation. AD: acidification degree. PSS: Pseudo-steady state

3.2. Short-chain Organic Acids (SCOAs) Production

As stated previously, pH was not controlled during the process, and its variation is shown in
Figure 2. The SCOA concentration was maximal during a period with pH values lower than 5.0.
Previous studies indicated that this range of pH values generally results in very low yields of SCOA
production [2,29]. By not controlling the pH in the CSTR and letting it remain under 5.0, methanogens
would be washed out from the system, resulting in a possible way to improve SCOA concentration.
Consequently, this could be a way to control the methanogenic population without adding inhibitors
for methanogenic bacteria.

Acetate, propionate, and butyrate were the SCOAs obtained in higher concentrations during the
operational period. During the PSS, 3.0 ± 0.53 g COD/L of acetate, 1.2 ± 0.24 g COD/L of propionate,
and 1.0± 0.45 g COD/L of butyrate were produced. Acetate was the SCOA with highest concentration
most of the time, followed by propionate (Figure 2). The presence of these SCOAs in the mixed liquor
was already expected since they are usually the main products of AF [2]. Chang et al. [32] verified
that those were the most common SCOAs generated after the AF of diverse complex substrates that
included food wastes, pig and chicken manure, rice straw, and corn stover [32].

Propionate and butyrate concentrations appeared to be somehow inversely related, and dependent
on the pH (Figure 3). For pH lower than 4.6, propionate seemed to dominate over butyrate, and the
opposite could be observed for higher pH values. This is in agreement with the literature that reports
different metabolic pathways for the production of the two acids, suggesting the existence of two
different types of populations competing for the carbon source [29,30,33].
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Figure 3. Short-chain Organic Acids (SCOAs) concentrations versus pH values obtained during the
continuous stirred tank reactor (CSTR) operation.

The concentrations of valerate and lactate also seemed to be related to pH values (Figure 3).
During the first 32 days, valerate concentration reached its maximum value of 0.11 g COD/L.
Experimental data showed that valerate production occurred when pH values were higher than
4.8, especially at the beginning of the CSTR operational period. Then, pH values decreased over time
(probably as a result of the increase of SCOAs concentration over time), and the concentration of
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valerate decreased. This fact is consistent with the results obtained by Lim et al. [34] for AF of food
waste after testing three pH values (5.0, 5.5, 6.0) in a semi-continuous reactor with once-a-day feeding
and draw-off. At pH 5.0, valerate production was not detected [34]. Regarding lactate, it was only
detected when pH values lower than 5.0 (Figure 3). These findings were in agreement with some
AF studies that observed lactate production under similar conditions [34–36]. Thus, lactate achieved
a maximum concentration at pH 4.3 after 84 days of fermentation. The maximum lactate obtained
corresponded to 18% of the total SCOAs (Figure 2).

The pH seemed to be a crucial parameter in the definition of the SCOAs profile during AF, despite
being a direct consequence of SCOAs production. It probably influenced the selection of different
acidogenic populations in the MMC and their ability to produce different SCOAs. The influence of pH
on the type of SCOAs obtained has already been shown by Albuquerque et al. [37]. Moreover, a tight
relationship between pH and type of SCOAs produced should be achieved in future works for HSSL,
since tailoring the distribution of SCOAs produced based on pH is essential when using the SCOAs
mixtures as substrates in bioprocesses such as PHAs production by MMC [37].

3.3. Acidification Degree

Acidification degrees (ADs) relatively to the total COD, ADtotal, and to the main sugars xylose and
glucose, ADsugars, were determined along the CSTR operational period. ADtotal had a maximum of 36%
on day 71, which corresponded to the maximum value of SCOA concentration obtained. The reason
for the relatively low ADtotal could be explained by the majority of the COD present in the feed being
constituted by phenolic compounds, LS, and other recalcitrant compounds, which are more difficult to
biodegrade than sugars by the microbial population [38].

The maximum ADsugars obtained was 175% on day 71. This value shows that besides xylose
and glucose, other compounds present in the HSSL were probably used for SCOAs production.
These compounds probably included other monomeric sugars such as rhamnose, arabinose, mannose,
or galactose [39], usually below the detection limit of HPLC due to the dilution applied to samples
before analysis. Assuming the data provided by Caima–Indústria de Celulose SA, the HSSL after
the chemical pre-treatment would have 1.36, 1.14, 2.28, 2.28 g COD/L of rhamnose, arabinose,
mannose, and galactose, respectively. Taking these values into consideration and assuming their
total consumption, the ADTotalSugars would be 154%. This result means that besides sugars, some
phenolic components or even LS would be used for SCOAs production. Hence, it would be interesting
to analyze the evolution of the different components of HSSL in more detail to understand which
compounds were being consumed to produce SCOAs.

In order to improve the ADTotal, higher HRT values should be imposed to the CSTR to
assess whether the most recalcitrant compounds of HSSL—LS and phenolics—could be acidified.
The possibility of maximizing the amount of components of HSSL acidified not only increases the
concentration of SCOAs obtained, but also decreases the amount of possible microbial inhibitors,
which favors the utilization of the fermented stream in further bioprocesses.

4. Conclusions

A CSTR was operated for 88 days in order to acidify part of the organic components of HSSL.
The system took about 45 days to reach a pseudo-steady state under the operational conditions imposed.
On day 71, a maximum SCOA concentration of 7.0 g COD/L was obtained, which corresponded to
an ADTotal of 36.0%. The experimental results showed that it was possible to perform the acidification
of HSSL and obtain SCOA by inoculating the CSTR with an aerobic MMC. The use of an aerobic
inoculum and leaving the pH uncontrolled could be responsible for the significant SCOA production.
Future studies should focus on testing higher HRTs, different reactor conformation (e.g., moving bed
biofilm reactor), and controlling the pH to different values in order to improve the concentration of
SCOAs and the amount of HSSL components consumed. Finally, microbiological studies should be
performed in order to understand how the microbial community changed over time.
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