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Abstract: Bacterial cellulose (BC) is a pure exocellular polysaccharide produced by micro-organisms.
It has several properties in comparison with plant-derived cellulose that make it perfectly suitable
for many applications, ranging from the food industry to the biomedical area. Different production
methods and modification or functionalization procedures have been investigated in response to the
many possible attractive applications of BC. This review overviews the different fermentation tech-
niques and functionalization methods together with the main possible biotechnological applications
of BC for food industry and biomedical purposes.
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1. Introduction

In 1886, a British professor named A.J. Brown reported the synthesis of a white,
gelatinous pellicle that appeared on a liquid medium surface during an acetic fermentation
process [1,2]. Further investigations revealed that this pellicle was composed of pure
cellulose, and it was produced by certain types of bacteria, particularly belonging to the
genera Achromobacter, Alcaligenes, Aerobacter, Agrobacterium, Azotobacter, Komagataeibacter
(formerly known as Gluconacetobacter), Pseudomonas, Rhizobium, Dickeya, and Rhodobacter
among Gram-negative bacteria, as well as by Gram-positive bacteria from the genus
Sarcina [3].

The species Komagataeibacter europaeus, Komagataeibacter medellinensis, Koma-
gataeibacter rhaeticus, Komagataeibacter xylinus, and Novacetimonas hansenii are recog-
nized as the best cellulose producers among bacteria and are commonly used as model
organisms for investigating the synthetic pathways of bacterial cellulose (BC) and its vari-
ous applications [4,5]. Usually, bacteria produce this layer as a form of protection against
desiccation, ultraviolet radiation, or unfavorable pH conditions [6]. BC is not essential
for survival, but it gives the micro-organisms that produce it a competitive advantage by
supporting their attachment, adherence, and colonization of substrates [7].

BC is a nanoscale porous network biopolymer consisting of linear chains of β-D-
glucose linked by β-1,4-glycosidic bonds. During fermentation, micro-organisms metab-
olize glucose forming linear β-1,4-glucan chains. These chains are secreted extracellu-
larly and crystallized to make cellulose monofilaments. The following aggregation of
a certain number of these monofilaments form filamentous fibers and subsequently a
three-dimensional and gelatinous structure on the surface of the liquid medium where the
bacteria are growing [8].
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The biosynthesis of BC includes three stages: the synthesis of uridine diphosphate
glucose; the synthesis of the cellulose molecular chain; and the crystallization and polymer-
ization of cellulose (Figure 1). First, glucose is phosphorylated into glucose-6-phosphate
(Glc-6-P) through the action of an enzyme called glucokinase. Then, Glc-6-P is isomerized
into glucose-1-phosphate (Glc-1-P) by another enzyme known as phosphoglucomutase.
Finally, UDP-glucose (UDP-Glc) is synthesized from Glc-1-P by the UDP-glucose pyrophos-
phorylas. Under the function of cellulose synthase (Bsc) operon, the UDP-Glc monomers
are assembled into a sequence of β-1,4-glucan chains, which further aggregate to form
fibrils. These fibers are secreted through outer membrane pores and in turn, contribute to
the creation of a complex cellulose network structure [9].
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Figure 1. Schematic representation of bacterial cellulose biosynthesis pathways from glucose and
fructose in Acetobacter xylinum.

There are analogous glucose metabolism and UDP-glucose synthesis pathways in
other types of cellulose-producing micro-organisms under anaerobic conditions as well as
other non-glucose carbon sources, including sucrose, fructose, as well as ethanol, which are
converted into UDP-glucose through TCA, gluconeogenesis, etc. entering the metabolic
network [10].

Generally, through the fermentation of sugars, bacteria may produce bacterial cel-
lulose extracellularly in different allomorphic forms, but celluloses I and II are the most
widely studied, [11–13]. Cellulose I has a ribbon structure, comprising bundles of microfib-
rils, whereas cellulose II is an amorphous polymer with a high thermodynamic stability
compared to cellulose I [14].

2. BC Production Methods

BC can be produced through several techniques, including static culture, agitated or
shaking culture, and bioreactor cultures. The bioreactors design is a fundamental element
for the BC structure and yield [15].

Each technique gives BC with different properties in terms of morphology and mi-
crostructure. In static culture, BC forms a gelatinous membrane of cellulose at the surface
of the culture solution [16]. While agitated or shaking cultures result in various structures,
such as asterisk-like, sphere-like, pellet-like, or irregular masses [17]. The choice of the
production method depends on the intended applications of BC and the required character-
istics for those applications. Based on the various fermentation purposes, to increase the
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BC production, different bioreactors have been designed including stirred tank reactors,
airlift, aerosol, membrane reactors, and other types [18].

2.1. Static Culture Method

Static cultivation is the most used method for BC biosynthesis (Figure 2). In this case,
the BC membrane is generated at the air–liquid interface of the culture media. Depending
on the shape and size of the container employed, the resulting BC membranes can take
various forms usually in the form of a film. The thickness of this membrane is influenced
by the incubation time, which typically does not exceed 14 days. In fact, prolonged
fermentation times can lead to the accumulation of inhibitory metabolites like glycolic and
formic acids, among others [19]. In static cultivation, cellulose is usually produced in layers
which are parallel to the film plane, resulting in a remarkably rigid and robust structure.
This makes it well-suited for applications in membrane technology, food packaging, or
as scaffolds in biomedicine [20–24]. According to Schramm and Hestrin, BC-producing
bacteria generate carbon dioxide (CO2) bubbles during their metabolic activities. These
trapped gas bubbles contribute to the pellicle’s ability to float on the liquid surface [25].
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fed-batch culture: (j) a certain amount of medium being fed gradually, (jj) fresh batch of the medium
being fed after first BC layer is formed, (jjj) another layer of BC is formed, and another fresh medium
will, subsequently, be fed.

Despite the significant importance of this technique, some drawbacks may limit its
industrial application, mainly the long cultivation time, low productivity, larger area, and
greater workforce. In this regard, an intermittent feeding strategy, or fed-batch fermentation
has been developed to improve BC production yield during static culture. These processes
are based on a periodic addition of media. As shown in Figure 2, a new batch of fresh
medium is added directly on the top of the pre-existing BC pellicles, typically the first layer.
New pellicles then form on the air–liquid surface, with a critical depth of over 1 mm. This
procedure is repeated continuously until several layers of pellicles are produced [26].

Compared to the conventional process, the intermittent feeding maintained a constant
BC yield of 0.02 g/day for 30 days cultivation, while the production rate in the conventional
process is nearly negligible [27]. Many attempts were made to enhance BC production
within the fed-batch technique by making modifications to the growth medium. Bae and
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Shoda obtained 7.82 g/L of BC through fed-batch fermentation using H2SO4 heat-treated
molasses as a carbon source, versus 5.3 g/L of BC with the conventional batch fermentation
techniques [28]. Further advancements have been achieved by combining the fed-batch
technique with various nutrient sources. For example, Shezad et al. demonstrated that
beer liquid waste, when coupled with the fed-batch technique, could increase BC produc-
tion from G. hansenii PJK threefold within a 30-day cultivation period [29]. Additionally,
Dubey et al. reported that K. europaeus SGP37 could produce BC at a rate 1.47 times higher
in fed-batch fermentation by modifying the HS media with a hot water extract of sweet
lime pulp [30].

2.2. Submerged Fermentation

Due to the limitations associated with static culture, submerged fermentation has
been suggested as an alternative approach. It offers several advantages over static culture,
including the higher productivity in lesser time and more oxygen supply. Nevertheless,
the submerged fermentation the shearing stress generated, which is due to agitation, can
cause the revert of bacteria to non-BC producing mutants, thereby inhibiting the BC pro-
duction [31,32], the formation of irregularly shaped BC granules, and modifications to BC’s
physical properties [31]. The agitated fermentation process is more appropriate for indus-
trial BC production, thereby for commercial applications in various fields. Additionally,
strains mutations are more probable thus influencing BC production [32].

Additionally, at high rotation speeds, bacteria tend to prioritize gluconic acid synthesis
over cellulose production, and hydrostatic stresses can lead to the accumulation of self-
protection metabolites [33].

Several types of submerged fermentation have been employed for BC production,
including stirred tank, rotating disk, and airlift bioreactors. Each of these approaches has
its own set of advantages and limitations, and the choice of the method depends on the
specific requirements of the BC production process [26].

2.2.1. Stirred Tank Bioreactor

The process involves the use of liquid medium that is vigorously aerated and agitated
in large fermenters (Figure 3). These fermenters can be of two types: closed or open, and
then the cultivation can be conducted as batch or continuous processes. These bioreactors
are constructed from non-corrosive metals or glass-lined materials. In batch fermentation,
the micro-organism is cultivated in a predetermined quantity of culture medium for a
defined period, after which the cellular mass is separated from the liquid for further
processing. On the other hand, in continuous culture, the culture medium is withdrawn
based on the rate of product formation and the introduction of fresh medium [34]. This
technology exhibits excellent volumetric mass transfer capabilities, and it is already in
widespread use.

Recent research has examined the fermentation parameters of K. xylinus in stirred
tank reactors [35]. The findings indicated that higher agitation rates led to increased cell
densities and greater production of BC. The study reported that at an agitation speed of
500 rpm, a BC yield of 0.59 g/L and a productivity of 0.01 g/L h were achieved. Under
a high agitation of 700 rpm, the BC yield increased to 1.13 g/L with a productivity of
0.02 g/L h. The volumetric oxygen transfer coefficients, which are closely tied to BC
production, are influenced by the agitation speed. However, given that this approach
requires a significant amount of energy the airlift bioreactor may represent an excellent
alternative for this fermentation process.
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2.2.2. Airlift Bioreactor

An airlift reactor generates lower shear stress than stirred tank bioreactors, and it
guarantees less energy consumption (Figure 4). However, it exhibits a lower oxygen transfer
rate, which is a critical factor for BC production. In this regard, Wu et al. developed a
modified airlift reactor, in which the wire mesh tube was substituted with net plates to
produce BC membranes [36]. These are more suitable for biomedical applications than
BC pellets. The study found a correlation between the number of plates and dissolved
oxygen levels, indicating that the increase in the number of plates enhanced the oxygen
transfer rate [36]. The characteristics of BC could be controlled by adjusting the number of
net plates. For instance, BC exhibited an increased water holding capacity and achieved
the highest Young’s modulus when six net plates were employed.
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In the same context, Chao and his team [37] enhanced the effectiveness of the airlift
reactor by introducing an internal loop. This modification led to obtaining a yield of
10.4 g/L. However, the resulting BC was in a pellet shape, and it exhibited relatively low
mechanical strength. In the airlift bioreactor, BC formation typically takes place within the
medium itself [37]. Another adapted bubble column bioreactor reported by Choi et al. [38]
and Song et al. [39] achieved 5.6 g/L and 5.8 g/L of BC, respectively.
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This bioreactor offered low shear stress and a high rate of oxygen supply. However, the
BC produced through this method exhibited low mechanical properties, low crystallinity, a
low molecular weight, and a low degree of polymerization [38,39].

2.2.3. Rotating Disc Bioreactor

The system comprises multiple flat circular disks, which are installed on a central
rotating shaft with an inlet for inoculation (Figure 5). The cells attach to the surface of the
disks and synthesize a pellicle on the disk surface [34,40]. In the rotating disc bioreactor,
circular discs maintain their rotation, while their surfaces alternatively meet both air and
liquid media. This process results in BC with a homogenous structure; the overall yield is
not substantially higher than that obtained through static culture methods. A wide range
of solid materials and fibers can be introduced directly into the growth medium, where
they integrate into the cellulose structure to enhance the characteristics of both BC and
BC-based composite materials [41,42].
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Typically, bioreactors were designed with half of the disk’s surface submerged in the
medium while the other half was exposed to the atmosphere. Consequently, they require a
new inoculation after each BC collection. The use of plastic composites to support a rotating
disk bioreactor (PCS-RDB) allowed full immersion into the culture media, providing a
rough surface for bacterial attachment, resulting in a high BC yield. Notably, the PCS-RDB
can continuously produce BC without the need for re-inoculation, maintaining its produc-
tivity for at least five cycles. This bioreactor can thus produce BC in a semi-continuous
manner and can be easily scaled up for commercial production [3].

3. BC Modification and Functionalization

Cellulose is one of the most extensively used natural polymers; in particular, BC
obtained using the previously described fermentative processes represents an example
product for sustainable production and consumption. BC has the same molecular structure
as that of plant cellulose but compared to the plant one; however, the space required for
fermentation is also smaller than that for plant growth. BC possesses unique properties
including high purity and crystallinity (60–90%), high water capacity (about 100 times
their own weight), ultrafine and porous 3D network, remarkable tensile strength, non-
allergenicity, transparency, and moldability [43–45].

Its three-dimensional nanostructure, hydrophilicity, biodegradability, and interesting
mechanical properties consisting of a conformability high elasticity, low density, high
degree of polymerization, high specific surface area, good permeability, high porosity and
water content, and high mechanical strength in a wet state [46,47] allow its biotechnological
applications in various fields.

Owing to its unique properties, BC could be modified through different approaches to
fit several applications. In the food industry, it serves as a novel biological material and
edible packaging. In the medical field, BC finds use as a wound dressing material, artificial
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skin, vascular grafts, scaffolds for tissue engineering, artificial blood vessels, medical pads,
and dental implants [48]. Moreover, BC has industrial applications, such as acting as
sponges to collect leaking oil and as materials for absorbing toxins. It also finds use in
optoelectronic applications, including liquid crystal displays [49].

Anyway, although BC shows significant basic properties that make it suitable for
a wide range of applications, several approaches have been used to adapt and improve
its physicochemical and functional properties such as changes in porosity, crystallinity,
chemical structure, and functions. The resulting BC polymers have been evaluated for their
structural and property characteristics, including macroscopic appearance, microstructure,
crystallinity level, chemical composition, polymerization degree, purity, water retention
capacity, porosity, and thermogravimetric properties [50].

Likewise, also in terms of modification and functionalization, BC is more efficient in
comparison to the plant one.

Modifications are mainly performed during the fermentation process (in situ) or after
the BC is formed (ex situ). In situ modifications are conducted by varying the culture
media, carbon source, or adding other materials during the fermentation process, while
ex situ modifications are carried out after the BC is formed, using chemical or physical
treatments [51,52].

3.1. BC In Situ Modification

In situ modifications involve the addition of reinforcement materials like chitosan,
gelatin, poly-3-hydroxybutyrate, nanomaterials, clays, and silica to the bacterial culture
medium, usually at the beginning of BC production. During the process, the materials
were incorporated within BC fibrils, leading to an improvement in physical and mechanical
properties, with the potential for introducing new functionalities [51].

In situ modification is an easy and fast-handling process and permits the homogeneous
distribution of modified materials, changing the original BC biophysical features, confer-
ring unique properties. The advantage of this process is the encapsulation of materials
that become part of the fibrils, and that enhance BC by modifying especially their physical–
mechanical properties [50]. Despite the many advantages, there are several limitations
related to the use of the in situ modification approach. Some supplementation components
in the culture media can inhibit BC synthesis; some of them may have antibacterial activity
or may be insoluble in culture media [51–53]. Other characteristics which did not allow the
use of a supplement for in situ modification may be the high surface tension towards hy-
drophobic materials, the lack of control of the BC nanofibers structure, and the introduction
of particles with low suspension stability within BC growing media [50].

The in situ modification of BC has been widely used, although strict microbial fer-
mentation conditions limit the supplementation of several external additives. Moreover,
interactions among the added compound, the BC fiber growth, and BC nanofibers struc-
ture controls still need to be addressed [54]. The compounds, added into culture media
during the BC synthesis, can interfere with nanofibers during their assembly and produce
novel BC-based materials with new properties. The exogenic material, interacting with the
BC–OH moieties, become a part of the nanofibers and form novel hydrogen bonds [55].

Among the supplemented material added into the culture medium to modify the
intrinsic properties of BC, water-soluble, hydrophilic, and water-dispersible materials are
the most used but the addition of hydrophobic materials has also been reported.

Water-soluble materials, including methylcellulose and carboxymethyl cellulose (CMC),
affect the pore size, crystallinity, and thermal stability of BC [56,57].

Paraffin microspheres [58] and hydroxyapatite nanoparticles (HA—a5(PO4)3(OH)) [59]
were added in BC culture medium to produce BC scaffolds with enhanced porosities for
bone regeneration. In addition, several in situ modifications have been used to produce
wound dressings and temporary artificial skin application tools, including potato starch [60],
cotton gauze [61], and aloe vera [62] composites.
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Butchosa et al. [57] included in the cell culture during BC production deacetylated
chitin nanocrystals (D-ChNCs) to add into BC antibacterial properties. The modification
resulted in a homogenous distribution of D-ChNCs in the BC matrix, which showed a
tensile strength of 377–449 MPa. The authors performed the same modification using also
an ex situ modification approach. Gea et al. used BC medium supplement PVOH [63],
which does not affect the crystal structure and dimension but modifies BC fibers orientation
resulting in a significant higher elasticity, without changing the breaking strength relative
to unmodified BC [63].

Among the water-insoluble polymers, cellulose microfibers, sisal fibers [64], poly-3-
hydroxybutyrate [65], or polycaprolactone [66] have been used.

For the in situ modification, various alternative techniques have been used, such as
the encapsulation of the bacteria in gelatin-based microspheres for the production of BC
microspheres, which have potential applications in biochemical engineering, in cell delivery
systems. as well as food packaging [67]; the use of an electric field to control the BC fibers
orientation; [68,69] or the bacterial cultivation inside a polydimethylsiloxane tube [70] or in
a complex-shaped 3D printed architecture [71].

3.2. BC Ex Situ Modification

Ex situ modification of BC is carried out after the BC has been formed, and it is
produced by either physical or chemical methods [54].

The physical ex situ modification can be performed through physical absorption. In
this application, the porous BC matrix is filled with solutions or particle suspensions and,
thanks to the hydroxyl groups of cellulose chains, strong hydrogen bonding between the
BC molecules and absorbed molecules are often formed [25,59,72].

Regarding chemical ex situ modification, chemical reagents are used to modify the
chemical composition of BC. For example, it can first be phosphorylated and then modified
by graft copolymerization or crosslinking reactions [73].

Among the various chemical reagents commonly used to modify the chemical structure
of BC and to add additional functionalities, NaOH and H2SO4.are the most used.

While 2% NaOH solution is normally used for the purification of BC to wash out
by-products and cell debris, higher concentrations of NaOH can convert cellulose type I to
cellulose type II and 6% NaOH solution was often reported for structural changes [74,75].

H2SO4 promotes the fragmentation of BC and the formation of nanocrystals.
H2SO4, hydrolyzing the amorphous region and leaving the acid-resistant crystalline

region, generates a negative charge by sulfonation of the OH group on the surface of
cellulose, which reduce the nanocrystals’ thermal stability [76].

Although the chemical modification of BC is not very studied, the most common chem-
ical modification of BC is oxidation and others include acetylation [77], benzoylation [78],
succinylation [79], and phosphorylation [80].

A restricted number of solvents, including N, Ndimethylacetamide/LiCl, dimethyl
sulfoxide/tetrabutylammonium fluoride, N-methylmorpholine-N-oxides, and ionic liq-
uids have been used for the chemical modification of cellulose-based materials [8,81–83].
However, these chemical agents make the obtained product unsafe and complex for the
discharge treatment resulting in negative and dangerous effects on the environment [82].

Furthermore, BC is often used to produce nano-sized particles, cellulose nanocrystals
(CNCs), with high crystallinity through acidic or enzymatic and ionic liquid [84].

Generally, the isolation of bacterial cellulose nanocrystals (BCNC) from BC is based on
acid hydrolysis. Briefly, the amorphous regions are hydrolyzed. The hydrolytic cleavage of
their glycosidic bonds liberates the individual crystals from the crystalline regions with
high acid resistance [84,85].

Among the various materials used for ex-situ modification, natural plasticizers play a
key role to improve the flexibility and processability of polymers.
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These materials can enter into the polymer structure acting as a lubricant. It decreases
the frictional forces between the chains and break polymer–polymer interactions, such as
hydrogen bonds or van der Waals forces, and form new polymer-plasticizer bonds [52].

Among water soluble plasticizers, glycerol [52,86], poly(ethylene glicol) [87,88] as well
as chitosan [86], which are usually incorporated into the structure of the BC by dipping,
gave to the BC structure both a plasticizer and reinforcing effects. In addition, thanks to the
PVOH effect the transparency and visual appearance of the films was increased.

BC nanofibers were incorporated in the starch plasticized with glycerol via a solu-
tion impregnation and applied as biodegradable reinforcement [89]. The immersion of
BC in other reinforcing agents such as gelatin and enzymatically modified gelatin pro-
moted an enhancement in the rehydration abilities properties of pure BC. Immersion of
BC in polycaprolactone [90] and poly(3-hydroxybutyrate) [91,92] resulted in transparent
membrane [90] with a denser structure and improved mechanical strength [92] (Figure 6).

Barud et al. [93] used a physical ex situ modification method by soaking BC membranes
into different silk fibroin solutions obtaining a well inter-connected porous network structure
with improved cell permissiveness in comparison with pure BC for medical applications.

In other studies, benzalkonium chloride and polyvinyl alcohol (PVA) with potassium
sorbate were absorbed into BC film. The obtained BC was characterized by an antimicro-
bial [94,95].

Ex situ modification has been used to incorporate various additives in BC matrix, such
as antimicrobial and antioxidant agents for the production of active packaging usable in
the food industry.

Among the antibacterial agents that have been successfully used, there are polyly-
sine [96,97] sodium alginate, silver sulfadiazine (AgSD) [46,98], and silver nanoparticles
(AgNPs) [99].
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4. Biotechnological Application of Modified Bacterial Cellulose

The vast literature reports on the numerous biological applications of BC.
Today, the innovative strategy used for the modification initiates new perspectives for

future applications of this material. In the following paragraphs, the main application of
modified BC in the food and biomedical fields are reported.



Fermentation 2024, 10, 100 10 of 25

4.1. BC and Food Industry

Being a dietary fiber, the USA Food and Drug Administration has classified BC as
generally recognized as safe (GRAS) since 1992 [100,101].

Several animals and in vitro studies clearly suggest that BC is not genotoxic, car-
cinogenic, a tumor promoter, pyrogenic, or a developmental or reproductive poisonous
substance. Furthermore, available evidence makes clear that BC is non-toxic on ingestion,
skin contact, and on inhalation, and that it does not cause any other inflammatory or
oxidative stress responses at the cellular level [101,102].

In the food sector, given its suspending, water retention, thickening, and emulsifying
stability properties, BC has many potential applications ranging from its use as a raw food
material and supplemental ingredients to its application as a packing biopolymer delivery
system, as well as enzyme and cell immobilizers.

4.1.1. BC as Food Component

Many studies report the potential of BC, as well as generally of cellulose, to enhance
the excretion of total lipids, cholesterol, and bile acids in feces [101]. In a hamster model,
the hypocholesterolemic and hypolipidemic properties of BC were significantly higher than
those of plant cellulose [101]. Using a mice model, during a high-fat diet the use of BC as
dietary fiber supplementation was reported to inhibit obesity [103]. Furthermore, BC could
efficiently increase the length of villus cells, and the thickness of colonic mucosa and muscle,
alleviating constipation and regulating short-chain fatty acids and gut microbiota [104,105].

The first commercial BC product was the Nata de coco, originated from the Philippines,
made through the fermentation of coconut water with the acetic bacteria K. xylinus. Nata de
coco is generally cut into cubes and pickled into different flavors. Nata de coco represents
a good source for dietary fibers, mainly known for their potential in reducing the risk of
chronic diseases such as diabetes, obesity, and cardiovascular disease, etc. [106]. BC has
also been widely used as a raw material in the manufacturing of Kombucha, as well as
other similar products [107,108]. The latter, thanks to its low calories together with the high
fiber content and antioxidant ingredients, attenuates lipid accumulation and protects the
liver from damage promoting liver restoration in mice [109].

BC was also used as a filling material for the fortification of fragile food hydrogels [110],
as tool for improving the mouthfeel of pasty foods, preventing the cocoa precipitation in a
chocolate drink, and increasing the strength of tofu [111].

Likewise, BC supplementation can give modified food greater heat stability as the
viscosity remained unchanged after heat sterilization and had better functional characteris-
tics [111].

BC and BCNC, thanks to their amphiphilic properties due to their hydrophilic nature
given by the high density of hydroxyl groups on their surfaces [112] and hydrophobic
properties given by the interactions resulting from the crystalline organization and exten-
sive hydrogen bonding of chains, [113–115], have been applied to stabilize surfactant-free
Pickering emulsions [114,115].

BC pellets obtained by agitated fermentation have been applied as new suspension
agents thanks to their characterized excellent dispersion stability and low viscosity. Their
unique nanofiber-woven 3D structure allowed the suspension stability to be maintained
within various pH values, salt concentrations, and high temperatures up to 80 ◦C [116,117].

Some studies investigated the potential of BC as an ice cream ingredient, in terms of
structure/texture modifier, emulsion and foam stabilizer, and fat replacer [110,118–121]
However, no study has investigated all these aspects together [122].

BC has been used as a fat replacer. Although the complete replacing of the fat in
meatballs with BC used at 20% negatively affected the product acceptance, the use of half
the added fat content together with 10% BC resulted in similar sensory properties and shelf
stability to control regular meatballs [123].

The encapsulation of probiotics using biocompatible and antibacterial materials
such as BC has been proven to increase the stability and the shelf life of these products.
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Fijałkowski et al. confirmed the protective effect of BC over probiotic Lactobacillus spp. from
the harsh conditions of gastric acid and bile salts [124]. Similarly, Oliveira-Alcântara et al.
produced BC/cashew gum films incorporating probiotic Bacillus coagulans and prebiotic
fructooligosaccharides, resulting in excellent storage stability for the probiotics [125].

In addition, BC has been used for the immobilization of enzymes and cells. This
technology is widely used in the food fermentation industry. Li et al. reported the proficient
use of BC for the immobilization of enzymes, including horse radish peroxidase and
laccase for biosensors and bioanalysis [126–128] as well as for yeast [129] for cycling batch
fermentation, promoting a reduction of the cost due to the inoculum preparation within
the wine manufacture process.

4.1.2. BC and Food Packaging

To date, the global market is oriented to the exploration of new food packaging which
may be safe and ecofriendly [130].

Generally, many polymers, including PHA [131], oil seed cake [132], alginate [132],
chitosan [133], cellulose, carrageenan [134], or pectin [135] and their derivatives are used as
biofilm-forming materials [122,134–136].

Among those, BC, being food-grade, could be used as a matrix for films and coatings,
which may be also edible.

This material, which represents a protective tool for packed food, is also an interesting
delivery system for bioactive compounds, which may exert a positive function not only for
the packed food but also for human health.

BC biobased packaging can be synthesized into two main forms, films and coating.
Films are produced using the conventional lab casting, where a solvent is poured into a
dispersion that forms a film and then is evaporated on a suitable surface. For coating,
electrospinning is widely used; it involves the spinning of polymer solutions using a
high-voltage electrical field applied to needle tips connected to syringes [122].

Recent studies report the BC films and coatings capacity of reducing moisture loss and
the absorbed oil by fried foods [137], of controlling the water, O2, and CO2 permeability
and of increasing the mechanical strength of the food packing [138].

To date, the most used BC-based packaging applies the mixture of the natural char-
acteristics of the BNC matrix with biological and physicochemical properties of different
reinforcing compounds. By using this approach, the BC characteristics are improved and
novel microbial cellulose films with specific characteristics necessary for specific applica-
tions can be obtained. The composite materials consist of a BNC matrix acting as a scaffold
and reinforcing bioactive compounds, which impart their specific physicochemical and
biological properties to the obtained packaging material. Generally, the synthesis of BC
composites is possible towards its functionalization, which allows packaging materials
to be obtained with improved or new functional features compared with the native ma-
terial, in terms of physicochemical properties (including mechanical, thermal, chemical,
and surface features, rheological characteristics and degradation abilities) or functional
characteristics (including the compounds that may preserve, extend, or monitor foodstuff
quality and shelf life) [122].

A wide range of additives, including antimicrobial and antioxidative agents, nutrients,
plasticizers, stabilizers, and oxygen scavengers, may be applied to modify BC and to
develop active packaging. Furthermore, several molecules and additives have been used
to produce intelligent packaging material including freshness indicators (pH indicators,
humidity sensors, or conductometric nano biosensor) [139].

Thanks to its gelling properties and high specific surface area [140], BC has excel-
lent potential in the delivery of bioactive agents. Several studies report BC loading or
delivery capacity for various bioactive agents [139]. A wide range of additives, includ-
ing antimicrobial and antioxidative agents, nutrients, plasticizers, stabilizers, and oxygen
scavengers, may be applied to modify BC and to develop active packaging. Furthermore,
several molecules and additives have been used to produce intelligent packaging material
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including freshness indicators (pH indicators, humidity sensors, or conductometric nano
biosensor [139].

Mono- and multi-layer films obtained supplementing BC with asorbic acid possess
promising antimicrobial properties [141,142]. Jebel and Almasi used multi-layer films
containing an antimicrobial layer between two outer layers to control the antimicrobial
agent ZnO nanoparticles’ release rate. In addition to the antibacterial activity, the ZnO
nanoparticles improved the tensile strength and decreased the water vapor permeability
of the films [143]. Malherios et al. reported the antimicrobial activity against Listeria
monocytogenes of BC membranes produced by Gluconacetobacter xylinus in which bacteriocins
isolated from Lactobacillus sakei were immobilized by physical entrapment [144]. Santos
obtained antimicrobial BC membranes by immobilizing nisin into BC sheets [145]. Zhu
et al. produced active sausage casings by impregnating BC tubes with +-polylysine (+-PL).
The film showed good tensile barrier properties, good thermal stability, and antibacterial
activity, promoting an extension of the shelf life of sausages [96].

Moreover, several antioxidant or oxygen scavenger agents, including spherical nanopar-
ticles of flavonoid silymarin (SMN) and zein [146], herbal extract [147], or laccase [148]
were used to prepare functional BC films for food packaging.

Although impregnation has not been widely used to incorporate fortification agents
into BC membranes, Ul-Islam et al. by using this approach produced BC nanocomposites
with montmorillonite, which were characterized by an increased tensile strength and
enhanced thermal stability [149].

In addition to the impregnation method, many BC applications for films and coatings
employ disassembled BC, which may be found in suspension or powder form. By using
this approach, the coatings are directly applied on food surfaces by using a conventional
lab casting [150] or the electrospinning technique, which consist of a high voltage which is
applied to create an electrically charged jet of a polymer solution, producing the polymer
fibers [151].

BC has been also used in combination with other bio polymers as a reinforcing agent.
BCNC have been applied as a reinforcement tool in chitosan matrix, in which thanks to
the addition of silver nanoparticles (AgNPs), barrier and tensile properties as well as the
antibacterial activity were increased [152] in thermoplastic corn starch films [153] and
nanocomposite PVA [154].

Several studies report the application of in situ techniques to produce nanocomposite
films. Pectin, gelatin, or carboxymethylcellulose (CMC) have been added in the culture
media to enhanced mechanical properties of BC. These polysaccharides, binding to BC,
change its network structure water-binding capacity [155]. Gea et al. [63], comparing
the in situ process of growing BC in a medium with 5% polyvinyl alcohol (PVA) with
the impregnation technique, observed that the in situ method did not change BC fibril
arrangement, improved transparency and elongation, and maintained the other tensile
properties, whereas the impregnation process caused the formation of aggregates which
decreased the tensile properties of the films [63]. Fontes et al. [156] using an in situ approach
produced BC with the addition of carboxymethylcellulose (CM). The presence of CMC
increased the viscosity of the medium and decreased the porosity of the resulting material.

4.2. BC and Biomedical Applications

Given its characteristics, BC represents a non-immunogenic interesting material [157] for
various biomedical applications including wound dressing, antibacterial material, scaffold for
tissue engineering, blood vessels, dental implants, bone, and drug delivery [140,158–160].

4.2.1. BC and Wound Dressings

BC given its wide number of properties including its flexibility, ability to retain water,
great mechanical strength, and permeability to gas and liquids and compatibility with
living tissues represent a good natural hydrogel for wound healing applications [161,162].
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In addition to its use for replacing the burnt skin or for different wounds such as
pressure sores, skin grafts, and diabetic wounds, its derivatives and composites have also
been employed for wound healing [163,164]. BC/gelatin [165] and BC/collagen [166]
nanocomposite, BC/kaolin composites [167], BC/dextran hydrogel, and BC/AA hydrogel
prepared and loaded with human dermal fibroblast and human epidermal keratinocytes
cells [168] show important functional properties as wound dressing materials.

Another important approach used to improve BC characteristics for its application
as a wound dressing material is the addition of antibacterial agents. Several antibiotic
molecules [169–171] and nanoparticles [172–177] have been successfully used.

In this context, Jalili Tabaii and Emtiazi, incorporated silver nanoparticles into bacterial
cellulose (BC) by immersing it in an AgNO3 solution. They observed a significant 100%
increase in antimicrobial effectiveness against Staphylococcus aureus spp. and Escherichia
coli spp. [178]. Copper ions were also found to cause cell membrane damage [179]. When
copper nanoparticles were integrated into BC, they exhibited prolonged bactericidal efficacy
against S. aureus spp. and E. coli spp. for up to 90 days [180].

Additionally, essential oils represent a good source for antimicrobial agents. Dudek-
Wicher et al. demonstrated anti-biofilm efficacy (80–100%) of three essential oils: tea
tree, geranium, and frankincense incorporated into bacterial cellulose (BC) against both
Gram-positive (S. aureus spp., Enterococcus faecalis spp.) and Gram-negative (Klebsiella
pneumoniae spp., P. aeruginosa spp., E. coli spp.) strains, as well as one fungal strain (C.
albicans spp.) [162]. Bacterial cellulose treated with thymol, an essential oil component, was
effectively used for the healing of third-degree burn wounds due to its minimal cytotoxicity
to fibroblasts and enhanced cell viability [181].

Furthermore, antibiotics including ceftriaxone, gentamycin, vancomycin, ciprofloxacin,
and tetracycline were used in wound treatments. Previously, compresses soaked in antibi-
otic solutions were employed for treating wound infections [182]. However, this technique
led to an increase in the prevalence of resistant strains due to challenges in determining
the drug concentration retained and controlling the rate of drug release onto the infected
skin. Incorporating antibiotics into bacterial cellulose addresses these issues by allow-
ing the precise measurement of drug quantity and controlled release rates from the BC
membrane [183].

BC with gentamycin at a concentration of 2 g/L was developed by Junka et al.,
equivalent to the commercially available collagen gentamycin sponge. BC exhibited a
slower release of gentamycin than the collagen sponge, maintaining effectiveness against S.
aureus spp. and inhibiting biofilm development [184].

In addition to metals, essential oils, and antibiotics, polymers were introduced into
the BC structure to enhance its properties as a wound dressing material; among them, col-
lagen [185,186], gelatin [171,187,188], chitosan [55,189], silk sericin [190], and polyethylene
glycol [88] are the most studied. Collagen, widely used in biomedical applications, closely
resembles living tissues, promoting cell adhesion and proliferation [191]. A composite
material of BC/collagen type I developed by Wiegand et al. shows a decrease in the secre-
tion of proteases, interleukins, and reactive oxygen species, indicating its potential as an
effective dressing for chronic and burn wounds [192].

The second polymer is known for its antimicrobial activity, mechanical stability
properties, biodegradability, and biocompatibility [189]). Chitosan and chitooligosac-
charide were separately incorporated into bacterial cellulose (BC), resulting in composites
with reduced porosity compared to native BC. Both composites demonstrated excellent
antibacterial activity, with BC/chitosan inhibiting S. aureus and E. coli by 99.99%, and
BC/chitooligosaccharide inhibiting S. aureus by 99.64% and E. coli by 90.56% [191].

Oliveira et al. [193] reported the potential of BC dressings for the treatment of burn
wounds in the ears, face, joint area, hands, feet, and genitals. Czaja et al. [194] reported the
positive effect on burn wound infection promoted by the dressing material with antiseptics,
including silver nitrate, hydroxyquinoline sulphate or boric acid. Other clinical trials
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showed good clinical results obtained by using BC as a dressing in a patient with thermal
burns [195].

4.2.2. BC as Drug Delivery Systems

BC-based materials have been largely used as carriers for various drug deliveries [196]
including topical and transdermal delivery [197–199], dental drug delivery [200,201], oral
and controlled release delivery for different antibiotics, proteins, as well as hydrophilic
and hydrophobic drugs [202–205]. The more used method to load drugs into BC is by
immersion of the polymer into the drug suspension.

BC-based polymers for delivery applications have been prepared by the in situ modifi-
cation or by various methods such as absorption, pointpipetting, and spraying.

Yet, the majority of the studies revealed that the in vitro and in vivo tests for the
evaluation of the drug release is still partial [74,206].

A study explored the diffusion capabilities of BC membranes using tetracycline-loaded
samples, revealing faster drug movement in non-irradiated BC compared to irradiated BC.
Therefore, BC membranes could serve as a model for drug adsorption. Moreover, bacterial
cellulose can be combined with a conducting polymer like polyaniline, known for its electro-
conductivity, to serve as an electrically stimulated drug delivery device. The composite was
synthesized by polymerizing aniline on one side of the BC membrane, forming a product
that functions as a super capacitor [207]. Another study suggests the efficiency of using
BC as a delivery system for optimizing the delivery and release of checkpoint-blocking
antibodies, which was considered as a safe approach for cancer treatment [208].

BC blended with hydroxyapatite, bone marrow mesenchymal stem cells (BMSC),
growth factors, extracellular matrix protein, and estrogen, which represent some bone
repair components have been used as a promising biocompatible material for bone re-
pair [209]. These materials figured to be promising biocompatible materials usable in bone
tissue engineering applications thanks to their high mechanical properties, which for some
BC composites are similar to cortical and cancellous bones [210], easy to fabricate, and
characterized by microporosity [211].

Furthermore, BC has been used for the reparation of hyaline cartilage which represent
the most abundant cartilage covering the joint surface elastic cartilage which is present in
the outer ear, epiglottis and larynx, and auricular deformity and nose skew [211].

4.2.3. BC in Skin and Bone Tissue Engineering Applications

In tissue engineering, BC enters in scaffold designs to facilitate tissue regeneration
and repair. Selecting a suitable material is one of the most fundamental challenges in this
field [212–215]. The main categories of materials used in tissue engineering are inorganic
materials (tricalcium phosphate (TCP), hydroxyapatite (HA), bioactive glass, and met-
als), synthetic polymers (poly-l-lactic acid (PLLA), polyglycolic acid (PGA)), and natural
polymers (collagen, gelatin, silk, cellulose, dextran, and chitin) [214–216]. The main objec-
tive in tissue engineering is to provide scaffolds that boost cell attachment, proliferation,
differentiation, spreading, and migration [211,217,218].

Several research groups have shown interest in utilizing bacterial cellulose (BC) for
creating biocomposite bone scaffolds. Wan et al. were among the pioneers, finding that a
three-dimensional network of hydroxyapatite–BC nanocomposites closely resembled the
structure of the native bone [216], while Cakmak et al. have introduced a novel composite
scaffold composed of polycaprolactone (PCL), gelatin (Gel), bacterial cellulose (BC), and
hydroxyapatite (HA) using 3D-printing technology. This scaffold was designed to enhance
cell proliferation and attachment while improving the mechanical properties of BC through
the incorporation of PCL and gel [219]. Moreover, Maia et al. developed a hybrid scaffold
of BC/HA that promotes the internal migration, proliferation, and differentiation of bone-
forming cells and angiogenesis more effectively than BC alone, due to the biological activity
of HA [220]. BC has been studied not only for soft tissue scaffolds but also for drug-eluting
bone cements. Adding BC to traditional bone cement with vancomycin hydrochloride
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and gentamicin sulfate improved sustained drug release compared to standard cements,
addressing issues of limited release and reduced mechanical strength [221].

4.2.4. BC as Artificial Blood Vessels

The distinctive properties of BC, and its resistance, due to the fact that no enzyme or
strong acid in the human body can decompose it [222], make this biomaterial suitabile for
replacing the artificial vein which is usually derived from synthetic materials such as ePTFE
(expanded polytetrafuoroethylene) [223], PGA [224], and PLLA (poly(l-lactic acid)) [225].

Therefore, various methods have been used to produce synthetic vascular grafts using
bacterial cellulose (BC) polymers including tubular BC production, surface modification,
and grafting anticoagulant factors on the inner surface of a vascular graft [226].

Zang et al. [222] demonstrated, through cytotoxicity and cell compatibility assays, that
BC promotes the attachment, proliferation, and growth of endothelial cells, smooth muscle
cells and fbroblasts. In addition, the BC tube biocompatibility test shows the absence of
obvious signs of inflammation around the implants and complete endothelialisation with a
confluent endothelial layer.

Klemm et al. synthesized BC tubes using cylindrical glass molds, indicating the
potential use of BC in replacing atherosclerotic coronaries as artificial vessels [227]. Bodin
et al. found that BC tubes properties can be modulated by the fermentation techniques and
culture conditions [228].

One of the main challenges in vascular tissue engineering is the material complications
at the blood–material interface [229], including nonspecific adhesion of proteins and cells,
endothelial cell removal, and the occurrence of restenosis and thrombus formation. To ad-
dress these drawbacks, surface modifications of vascular grafts using hydrophilic polyethy-
lene glycol, zwitterionic polymers, bioactive molecules (such as heparin, fibronectin, and
Von Willebrand factor), and active peptides (including RGD, CAG, REDV, and YIGSR)
has emerged [230,231]. In this context, Yizao Wan et al. developed a hybrid nanofiber by
co-synthesizing heparin and bacterial cellulose (Hep/BC) [232]. The results showed no
structural difference between BC/Hep nanofibers and BC nanofibers. Further evaluations
confirmed distinct anticoagulant sulfate groups in BC/Hep nanofibers and significant
differences in their crystallographic structure compared to BC nanofibers [233]. Further-
more, Klemm et al. conducted the first vascular implantation in small animals, utilizing a
bacterial-synthesized cellulose (BASYC) tube with an inner diameter of 1 mm and a length
of approximately 5 mm. The results revealed no stimulation of the immune system after
four weeks of implantation into the right carotid artery [227].

Another study revealed the development of 3D porous bacterial cellulose/gelatin
(BC/Gel) scaffolds loaded with VEGF were modified with heparin, referred to as V-
BC/Gel/H, aiming to enhance blood vessel formation by minimizing the initial burst
release of VEGF. The findings indicated that the heparinized BC/Gel scaffold significantly
reduced the initial burst release and demonstrated sustained delivery of VEGF. According
to these studies, BC seems to be a promising material for the development of devices with
a wide range of applications in the field of biomedicine [234]. Regardless of its versatile
properties, BC biopolymer should be evaluated in terms of environmental impact for a
sustainable economy.

5. Evaluation of the Environmental Impacts of Bacterial Cellulose Production

Bacterial cellulose (BC) is a promising material with a wide range of applications.
While efforts to industrialize its production are increasing, a more comprehensive under-
standing of the environmental impact associated with the BC production process is still
needed. The life cycle assessment (LCA) is a method used to evaluate the environmental
impact of the entire production process. It involves analyzing the inputs, outputs, and asso-
ciated effects. It helps in comparing recycled products with new materials, determining the
environmental viability of waste reduction methods, and evaluating energy consumption,
raw materials, and waste in each production step. Applied to bacterial cellulose production,
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LCA highlights its environmental implications, affirming its potential as a sustainable ma-
terial [235,236]. Bacterial cellulose (BC) production offers environmental benefits compared
to traditional cellulose production processes. BC is a biodegradable biomaterial that serves
as an eco-friendly alternative to synthetic fibers and microplastics. It can help reduce water
pollution by utilizing alternative substrates from the agro industry, beverage industry, and
sugar industry. However, BC production requires significant amounts of water, energy,
and other resources. Furthermore, the fermentation process for BC production consumes
energy, which can contribute to greenhouse gas emissions [107,237,238].

BC synthesis is susceptible to contamination from bacteria or fungi. To minimize this
risk, production facilities can adopt stringent hygiene measures, employ sterile equipment,
and monitor the production process. On the other hand, ethical concerns arise with the
utilization of bacterial cellulose, particularly regarding the use of genetically modified
bacteria. To address this, companies can opt for non-GMO bacteria or explore sustainable
production approaches that eliminate the need for genetically modified organisms [239].

In conclusion, while BC production offers some environmental benefits compared to
traditional processes, it also has negative impacts on resource consumption and energy
usage. To minimize these impacts, it is essential to optimize production conditions, use
alternative substrates, and implement strict hygiene protocols.

6. Conclusions and Future Perspectives

In summary, cellulose secreted by bacteria has high purity and crystallinity and is a
sustainable and highly competitive alternative to plant-derived cellulose nanofibers.

This material has a unique structure with a three-dimensional lattice network and,
being free charge, has brilliant mechanical properties, including a high water-holding
ability, excellent gas permeability, suspension stability, low viscosity, and excellent toler-
ance to acids, salts, ethanol as well as biocompatible, renewable, and biodegradable. In
addition, the modifications and functionalization of BC generate cellulose polymers with
different morphologies and physiochemical properties. Commercial applications of BC
have spread to various fields, such as the food and biomedical industries. However, despite
the advantages of BC, its current applications are still limited, and further attempts should
be made to promote new BC uses.

Structurally, BC has an exclusive structure with a 3D reticulated network, and it is
uncharged, which donates it extra advantages such as mechanical properties, high water-
holding capability, gas permeability, suspension stability, low viscosity, and tolerance to
acid, salt, and ethanol. However, numerous concerns must be evaluated and improved for
BC industrial production and application development. Among the main strategies for
static fermentation the isolation of a high yield of BC-producing strains can be annumerated,
the enhancement of new culture media or the construction of innovative fermentation
reactors, together with the utilization of automated equipment. For which, concern for
the agitated fermentation should be considered as the non-cellulose mutation of bacteria.
Although this fermentation system can produce BC at a large scale, the production efficiency
and the yield of BC must be improved.
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159. Jadczak, K.; Ochędzan-Siodłak, W. Bacterial cellulose: Biopolymer with novel medical applications. J. Biomater. Appl. 2023, 38,
51–63. [CrossRef] [PubMed]

160. Liu, W.; Du, H.; Zhang, M.; Liu, K.; Liu, H.; Xie, H.; Zhang, X.; Si, C. Bacterial Cellulose-Based Composite Scaffolds for Biomedical
Applications: A Review. ACS Sustain. Chem. Eng. 2020, 8, 7536–7562. [CrossRef]

161. Ahmed, J.; Gultekinoglu, M.; Edirisinghe, M. Bacterial Cellulose Micro-Nano Fibres for Wound Healing Applications. Biotechnol.
Adv. 2020, 41, 107549. [CrossRef] [PubMed]
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