
Citation: Paramithiotis, S.; Patra, J.K.;

Kotseridis, Y.; Dimopoulou, M.

Fermented Beverages Revisited: From

Terroir to Customized Functional

Products. Fermentation 2024, 10, 57.

https://doi.org/10.3390/

fermentation10010057

Academic Editors: Giuseppe Italo

Francesco Perretti and Francesco

Grieco

Received: 25 November 2023

Revised: 20 December 2023

Accepted: 12 January 2024

Published: 14 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fermentation

Review

Fermented Beverages Revisited: From Terroir to Customized
Functional Products
Spiros Paramithiotis 1,* , Jayanta Kumar Patra 2 , Yorgos Kotseridis 3 and Maria Dimopoulou 4

1 Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
2 Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyangsi 10326, Republic of Korea;

jkpatra@dongguk.edu
3 Department of Food Science & Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece;

ykotseridis@aua.gr
4 Department of Wine, Vine and Beverage Sciences, University of West Attica, 12243 Athens, Greece;

mdimopoulou@uniwa.gr
* Correspondence: paramithiotis@uoi.gr

Abstract: Fermented beverages have been a constant companion of humans throughout their history.
A wide range of products have been developed with time, depending on the availability of raw
materials and ambient conditions. Their differentiation was based on the specific characteristics of
each product, resulting from the cultivation of different varieties and the variability of environmental
conditions and agricultural practices, collectively described by the term ‘terroir’ that was developed
in winemaking. The health benefits that have been associated with their consumption, which include
the control of blood pressure and glycemic control, along with immunomodulatory, hypocholes-
terolemic, hepatoprotective, and antiproliferative activities, directed their re-discovery that occurred
over the last few decades. Thus, the dynamics of the microbial communities of fermented bever-
ages during fermentation and storage have been thoroughly assessed. The functional potential of
fermented beverages has been attributed to the chemical composition of the raw materials and the
bioconversions that take place during fermentation and storage, due to the metabolic capacity of the
driving microbiota. Thus, the proper combination of raw materials with certain microorganisms may
allow for the modulation of the organoleptic properties, as well as enrichment with specific functional
ingredients, enabling targeted nutritional interventions. This plasticity of fermented beverages is
their great advantage that offers limitless capabilities. The present article aims to critically summarize
and present the current knowledge on the microbiota and functional potential of fermented beverages
and highlight the great potential of these products.

Keywords: wine; kefir; kombucha; functional ingredients

1. Introduction

Fermented beverages are produced since antiquity, with wine being the most char-
acteristic example. They can be classified according to the nature of the raw materials,
or the type of fermentation employed. According to the first, two classes of fermented
beverages are distinguished: plant-based and dairy. The plant-based ones can be further
subdivided into cereal-based products, such as boza, cheka, pozol, kvass, the various
types of beer, etc. [1–6]; fruit-based products, such as the various types of wine, cider,
gilaburu, etc. [7–11]; and herbal-based products, such as kombucha [12,13]. As far as
fermented dairy beverages are concerned, several types have been described, such as kefir,
kumis, viili, acidophilus milk, etc. [14], each with a unique history, production procedure
and microecosystem composition. If the predominant type of fermentation is taken as a
criterion, fermented beverages can be classified into acidic, alcoholic, and mixed fermented
products; kefir and kombucha can serve as examples of acidic beverages, wine of alcoholic,
and boza of mixed fermented beverages.
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The term ‘terroir’ has been developed and is currently in use in wine technology.
It indicates a specific geographical area along with the associated grape cultivars and
oenological practices, which altogether define the specific features of the produced wines.
Nowadays, the health benefits that accompany food consumption have also been at the
epicenter of consumer interest. This trend has led to the intensive study of fermented
beverages throughout the world, their functional ingredients as well as the molecular
mechanisms that are implicated. Apart from grape wine, two fermented beverages have
also been distinguished for their functional potential, namely kefir and kombucha.

Thus, moderate wine consumption has been correlated with reduced risk of cardio-
vascular events [15,16], neurodegenerative diseases [17,18], and type 2 diabetes [19,20], as
well as systolic blood pressure decrease [21–23], improvement of the gastrointestinal tract
function [24–26] and the main symptoms of fibromyalgia [27]. These have all been princi-
pally attributed to the phenolic compounds that it contains. Kombucha consumption has
been correlated with a series of effects, such as antidiabetic, antihypertensive, antimicrobial,
antiproliferative, hepatoprotective, hypocholesterolemic and immunomodulatory [28–37].
As in the case of grape wine, these activities have been attributed to kombucha phenolic
content. Finally, kefir consumption has been correlated with a series of effects, including an-
tiproliferative and immunomodulatory capacity, effective glycemic control, prevention and
treatment of atherosclerosis and liver damage, as well as control of blood pressure [38–44].
These activities have been attributed to the amino acid and peptide content of kefir.

The present study aimed to comprehensively and critically present the microbiota
of fermented beverages, the functional properties that have been associated with the con-
sumption of the most prominent ones, along with the underlying molecular mechanisms,
as well as the strategies that have been employed towards their customization, in order to
summarize the current knowledge and facilitate the identification of research gaps.

2. The Microbiota of Traditional Fermented Beverages

In Table 1, the microbiota of traditional fermented beverages around the world is
presented. Three aspects are immediately noticed: (1) the diversity of the raw materials
employed, (2) the diversity of the microorganisms implicated in each type of fermentation,
and (3) some products have attracted scientific attention and are therefore heavily studied,
while the microecosystem of others has been less intensively assessed.

The availability of raw materials combined with suitable environmental conditions
has led to the development of a wide range of fermented beverages, some of which
are considered as characteristic of certain geographical areas. Indeed, products such as
kombucha and bhaati jaanr, which are based on tea and rice, respectively, have Asian
origins; products based on maize, such as pozol, chicha, and atole agrio originate from
America, whereas milk and cereal-based fermented beverages are abundant in Africa and
Europe. Despite the current globalization of production, traditional knowledge may still be
derived from the cradle in which each product was originally developed.

In the majority of the cases, the microbial consortium that drives fermentation of the
products reported in Table 1 consists of yeasts and bacteria, and more specifically, lactic
and acetic acid bacteria. This can be attributed to the composition of the raw materials and
the conditions used for fermented product manufacture but is biased by the number of
samples analyzed and the identification methodology employed. In general, the higher
the number of samples analyzed, the more likely is to enrich the biodiversity already
reported in the literature. A wide range of techniques are currently available, the correct
application of which may lead to reliable identification at species or subspecies level.
The specific nutritional and growth requirements of each microorganism, at strain level,
define the nature of the relationships that will be developed within the microecosystem.
Despite the large number of studies, at least in the case of kombucha and kefir, the trophic
relationships between the microorganisms are still far from being understood. The only
exception seems to be wine must fermentation. In that case, the requirements and the
capacity of the implicated yeast species have been extensively studied, and this knowledge
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is already considered as established. On the other hand, research is currently focused
on understanding the physiological attributes of the lactic acid bacteria that carry out
malolactic fermentation [45].

Table 1. The microbiota of representative traditional fermented beverages around the world.

Product Main Ingredient Microbiota References

Kombucha Sweetened black
or green tea

LAB: O. oeni, Lq. nagelii
AAB: A. aceti, A. musti, A. okinawensis, A. pasteurianus, A. peroxydans, A.
senegalensis, A. tropicalis, A. xylinoides, A. xylinum, Ga. europaeus, Ga.
hansenii, Ga. intermedius, Ga. xylinus, Gb. oxydans, Kb. europaeus, Kb.
hansenii, Kb. intermedius, Kb. rhaeticus, Kb. saccharivorans, Kb. xylinus
Yeasts: Br. anomalus, Br. bruxellensis, Br. lambicus, Ca. albicans, Ca. boidinii,
Ca. colleculosa, Ca. guilliermondii, Ca. kefyr, Ca. krusei, Ca. sake, Ca. stellata,
De. anomala, De. bruxellensis, H. valbyensis, K. marxianus, Kz. unispora, Lh.
fermentati, Pi. fermentans, Pi. membranifaciens, R. mucilaginosa, S. cerevisiae, S.
uvarum, Sd. ludwigii, Sz. pombe, T. delbrueckii, Z. bailii, Z. lentus, Z. parabaillii,
Zt. fiorentina

[12,13,46–54]

Kefir Milk

LAB: E. durans, E. faecalis, La. casei, La. paracasei, Lp. plantarum, Lb.
acidophilus, Lb. amylovorus, Lb. delbrueckii, Lb. crispatus, Lb. helveticus, Lb.
kefiranofaciens, Lc. lactis, Lt. buchneri, Lt. kefiri, Lt. parabuchneri, Lt. parakefiri,
Le. parakefiri, Ln. mesenteroides, Ln. paramesenteroides, Ln.
pseudomesenteroides, Lq. uvarum, Lq. satsumensis, Lv. brevis, Str. durans, Str.
thermophilus
AAB: A. aceti, A. fabarum, A. lovaniensis, A. okinawensis, A. orientalis, A.
rancens, A. syzygii, Gb. frateurii, Gb. japonicus
Yeasts: Br. anomalus, Ca. colliculosa, Ca. inconspicua, Ca. kefyr, Ca. krusei, Ca.
lambica, Ca. maris, De. anomala, K. lactis, K. marxianus, Kz. aerobia, Kz. exigua,
Kz. kefir, Kz. unispora, Lh. meyersii, M. guilliermondii, Pi. kudriavzevii, Pi.
guilliermondii, S. cerevisiae, S. fragilis, S. turicensis, T. delbrueckii

[55–81]

Wine Fruits

Yeasts: Au. pullulans, Ca. fermentati, Ca. intermedia, Ca. parapsilopsis, Ca.
pulcherrima, Ca. quercitrusa, Ca. zemplinina, H. uvarum, H. guillermondii, H.
uvarum, H. valbyensis, I. occidentalis, I. orientalis, I. terricola, Kc. apiculata, Lh.
thermotolerans, Pi. fermentans, R. graminis, R. mucilaginosa, S. bayanus, S.
cerevisiae, S. italicus, S. pastorianus, S. uvarum, Sd. ludwigii, Sz. pombe, T.
delbrueckii, T. globispora, Y. lipolytica, Z. bailii, Z. fermentati

[9,10,82–86]

Apple cider Apples Yeasts: H. osmophila, H. uvarum, H. valbyensis, M. pulcherrima, Pi.
guillermondii, S. bayanus, S. cerevisiae [8]

Amabere
amaruranu Milk LAB: Ln. mesenteroides, Lp. plantarum, Str. thermophilus

Yeasts: Ca. albicans, Ca. famata, S. cerevisiae, Tr. mucoides [87]

Andean chicha Cereals
Yeasts: H. guiermondii, H. opuntiae, H. uvarum, Ko. ohmeri, R. slooffiae, Mz.
guillermondii, Pi. kluyveri, Pi. kudriavzevii, R. mucilaginosa, Wi. anomalus, S.
cerevisiae, Y. lipolytica

[88]

Atole agrio Maize

LAB: Ag. composti, E. hirae, La. casei, La. paracasei, La. rhamnosus, Lc. lactis,
Lc. piscium, Li. aviarius, Ln. garlicum, Ln. mesenteroides, Ln.
pseudomesenteroides, Lo. coryniformis, Lp. fabifermentans, Lp. paraplantarum,
Lp. pentosus, Lp. plantarum, Lt. curvatus, Lv. brevis, P. pentosaceus, P. stilesii,
W. cibaria, W. confusa, W. hellenica, W. paramesenteroides, Str. equinus
AAB: A. estunensis, A. indonesiensis, A. pasteurianus, A. tropicalis, Gb. frateurii

[89]

Bacaba chicha Oenocarpus bacaba LAB: E. durans, E. hirae, Ln. lactis
Yeasts: Pi. caribbica, Pi. guillermondii [90]

Bhaati jaanr Rice LAB: Lo. bifermentans, P. pentosaceus
Yeasts: Ca. glabrata, Pi. anomala, S. cerevisiae, Sp. fibuligera [91]

Bili bili Sorghum Yeasts: Ca. melibiosica, Cr. albidius, D. hansenii, De. bruxelensis, K. marxianus,
R. mucilaginosa, S. cerevisiae, T. delbrueckii [92]

Borde Cereals LAB: Lv. brevis, P. pentosaceus, W. confusa, W. viridescens [93]
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Table 1. Cont.

Product Main Ingredient Microbiota References

Boza Cereals

LAB: Fr. sanfransiscensis, La. casei, La. paracasei, Lb. acidophilus, Lc. lactis, Li.
salivarius, Lm. fermentum, Ln. amelibiosum, Ln. mesenteroides, Ln.
paramesenteroides, Ln. pseudomesenteroides, Lo. coryniformis, Lp. plantarum, Lt.
buchneri, Lt. parabuchneri, Lt. sakei, P. parvulus, W. confusa
Yeasts: Ca. glabrata, Ca. tropicalis, Pi. fermentans, Pi. guillermondii, Pi.
norvegensis, S. cerevisiae, S. uvarum

[94–96]

Burukutu Sorghum LAB: Lb. acidopilus, Lc. lactis, Lm. fermentum, Lp. plantarum, Lv. brevis
Yeasts: S. cerevisiae [97]

Chicha Maize LAB: Lm. fermentum, Lp. plantarum, W. cibaria, Str. alactolyticus, Str. luteciae
AAB: A. okinawensis [98]

Ikigage Sorghum Yeasts: Ca. humilis, Ca. inconspicua, Ca. magnolia, S. cerevisae, I. orientalis
LAB: Le. buchneri, Lm. fermentum [99]

Gilaburu European
cranberry

LAB: La. casei, La. pantheris, Le. buchneri, Le. parabuchneri, Ln.
pseudomesenteroides, Lp. plantarum, Lv. brevis, Sc. harbinensis [11]

Mahewu Cereals

LAB: E. hermanniensis, E. lactis, Fu. rossiae, Lc. lactis, Lm. fermentum, Ln.
holzapfelii, Ln. pseudomesenteroides, Lp. plantarum, P. pentosaceus, W. cibaria,
W. confusa
Yeasts: Ca. glabrata, S. cerevisiae

[100]

Fermented
masau

Ziziphus
mauritiana

LAB: Cb. divergens, Le. hilgardii, Li. agilis, Lo. bifermentans, Lm. fermentum,
Lp. plantarum, W. minor
Yeasts: Ca. glabrata, H. opuntiae, I. orientalis, Pi. fabianii, S. cerevisiae, Sp.
fibuligera

[7]

Pito Cereals Yeasts: Ca. tropicalis, Ha. anomala, K. africanus, Kc. apiculata, S. cerevisiae, Sz.
pombe, T. delbrueckii [1]

Pozol Maize

LAB: C. alimentarius, E. saccharolyticus, La. casei, Lb. delbrueckii, Lc. lactis, Lm.
fermentum, Lp. plantarum, Str. bovis, Str. suis
Yeasts: Ca. guilliermondii, Cs. cladosporioides, D. hansenii, Ge. candidum, K.
lactis, Pe. fellutanum, Ph. fimeti, Ph. glomerata, R. minuta, R. mucilaginosa

[2,101,102]

Pulque Agave spp.

LAB: Fr. sanfranciscensis, Lb. acetotolerans, Lb. acidophilus, Lb. delbrueckii, Lc.
lactis, Le. hilgardii, Le. kefiri, Ln. citreum, Ln. gasocomitatum, Ln. kimchi, Ln.
mesenteroides, Ln. pseudomesenteroides, Lp. plantarum, P. urinaeequi, Se.
paracollinoides, Str. deviesei
AAB: A. aceti, A. malorum, A. orientalis, A. pomorum, Gb. oxydans
Yeasts: Ca. parapsilosis, Ca. valida, Cl. lusitaniae, D. carsonii, H. uvarum, Ge.
candidum, K. lactis, K. marxianus, Pi. guilliermondii, Pi. membranifaciens, R.
mucilaginosa, S. bayanus, S. cerevisiae, S. pastorianus, T. delbrueckii

[103–106]

AAB: Acetic acid bacteria; LAB: lactic acid bacteria. A.: Acetobacter; Ag.: Agrilactobacillus; Au.: Aureobasidium;
Br.: Brettanomyces; C.: Companilactobacillus; Ca.: Candida; Cb.: Carnobacterium; Cl.: Clavispora; Cr.: Cryptococcus;
Cs.: Cladosporium; D.: Debaryomyces; De.: Dekkera; E.: Enterococcus; Fr.: Fructilactobacillus; Fu.: Furfurilactobacillus;
Ga: Gluconacetobacter; Gb., Gluconobacter; Ge.: Geotrichum; I.: Issatschenkia; Kb.: Komagataeibacter; H.: Hansenias-
pora; Ha.: Hansenula; K.: Kluyveromyces; Kc.: Kloeckera; Ko.: Kodamaea; Kz.: Kazachstania; La.: Lacticaseibacillus;
Lb.: Lactobacillus; Lc.: Lactococcus; Le.: Lentilactobacillus; Lh., Lachancea; Li.: Ligilactobacillus; Lm.: Limosilactobacillus;
Ln.: Leuconostoc; Lo.: Loigolactobacillus; Lp.: Lactiplantibacillus; Lq. Liquorilactobacillus; Lt.: Latilactobacillus; Lv.: Lev-
ilactobacillus; M.: Metschnikowia; Mz.: Meyerozyma; O.: Oenococcus; P.: Pediococcus; Pe.: Penicillium; Ph.: Phoma;
Pi.: Pichia; R.: Rhodotorula; S.: Saccharomyces; Sc.: Schleiferilactobacillus; Sd.: Saccharomycodes; Se.: Secundilactobacillus;
Sp.: Saccharomycopsis; Str.: Streptococcus; Sz.: Schizosaccharomyces; T.: Torulospora; Tr.: Trichosporon; W.: Weissella;
Wi.: Wickeramomyces; Y.: Yarrowia; Z.: Zygosaccharomyces; Za.: Zygoascus; Zt.: Zygotorulaspora.

3. Functional Properties of Fermented Beverages

The consumption of fermented beverages has been associated with a series of func-
tional properties. These have been attributed to the chemical composition of the raw
materials employed and the bioconversions that take place during the fermentation pro-
cess. Thus, the same functional properties may be assigned to the same or different
bioactive compounds, the formation of which depends upon the metabolic capacity of the
microorganisms that constitute the driving micro-community. In the next paragraphs, the
functional properties of wine, kombucha and kefir, the most studied fermented beverages,
are summarized.
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3.1. Functional Properties of Wine

A series of functional properties have been associated with wine and are mainly
attributed to the phenolic compounds that it contains. The type and amount of pheno-
lic compounds depend upon factors such as grape variety, environmental conditions,
agricultural practices and winemaking technology [107]. In general, the major phenolic
compounds of wine are distinguished into flavonoids and non-flavonoids. Flavonols
(quercetin, kaempferol and myricetin), anthocyanins (cyanin, petunin, peonin and malvin),
and flavan-3-ols (catechin, epicatechin, gallocatechin, procyanidins and condensed tannins)
belong to the first category, while phenolic acids (hydroxybenzoic and hydroxycinnamic
acids), volatile phenols (ethyl phenol, vinyl phenol, guaiacol, etc.), and stilbenes (resveratrol
and its polymers) belong to the second one [108,109]. The total amount of flavonoids in
white and red wines has been reported to range between 25–30 and 700–1000 mg of gallic
acid equivalent (GAE/L), respectively. Catechins and soluble tannins are quantitatively the
most abundant classes of compounds in white and red wines, respectively. On the other
hand, the total amount of non-flavonoids has been reported to range between 160–260 and
230–500 mg GAE/L in white and red wines, respectively, with cinnamates being, in both
cases, the most abundant class of compounds, with approximately 150 mg of GAE/L [108].
The bioavailability of the aforementioned compounds is a key issue as it affects their bio-
logical function. In general, wine phenolic compounds are only partially bioavailable, not
only because of their chemical structure but also due to the biotransformations that take
place during digestion [110]; it has been reported to range between 2–25% [111–113].

Excessive alcohol consumption has been correlated with an increased incidence of
disease [114]. On the contrary, moderate alcohol consumption, particularly wine, seems
to have a protective role on human health [115]. The concept of moderate or low-risk
wine consumption has been exhaustively debated [115,116]. From a quantitative point
of view, the consumption of up to 25–40 g alcohol per day for males and 13–25 g for
females is generally accepted as moderate [117]. A range of health benefits have been
associated with moderate wine consumption, such as lowering the risk of cardiovascular
disease and neurodegenerative disease development, protection against type 2 diabetes,
and generally life span prolongation. The capacity of wine to confer these health benefits
has been assessed through in vitro, in vivo and clinical studies. The next paragraphs focus
on the underlying mechanisms that validate the latter.

An association between moderate wine consumption and reduced risk of cardiovascu-
lar events, even among persons with established heart diseases, has been reported [15,118].
This has been attributed to the modulation of circulating cholesterol and anti-platelet activ-
ity of alcohol and to the antioxidant, anti-inflammatory and anti-platelet activities of the
phenolic compounds [119,120]. The antioxidant activity is expressed through free radical
scavenging and through the upregulation of Nrf2, which in turn induces antioxidant gene
expression [121]. Regarding their anti-inflammatory activities, a series of mechanisms
have been proposed, such as switching off the NF-κB pathway [122], blocking oxysterol-
related NOX1 induction [123], suppression of NLRP3 inflammasome activation [124], sup-
pression of the JAK/STAT inflammatory pathway and modulation of Nrf2 activity [125],
as well as decrease in IL-1β, IL-6 and IL-8 secretion [126,127]. Finally, the capacity of
red wine to inhibit thrombin, ADP- and PAF-induced platelet aggregation has been re-
ported [128–133] and attributed to ethanol and polyphenols, particularly quercetin, tyrosol
and trans-resveratrol [132,133]. In addition, the inhibition of PAF biosynthesis by tyrosol
and resveratrol has also been reported in U-937 cells under inflammatory conditions [134].

An association between moderate wine consumption and reduction in the risk of
neurodegenerative diseases has also been developed [17]. The mode through which wine
consumption may affect the onset of Alzheimer’s and Parkinson’s diseases has been ex-
tensively studied. In the first case, protection may take place through the antioxidant and
anti-inflammatory activities of wine, as well as through more specific functions such as the
modulation of secretase enzymes, the enhancement of amyloid clearance, the inhibition of
amyloid aggregation and the prevention of tau protein hyperphosphorylation [135–137]. In-
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deed, the activation of α-secretase activity by 6% Cabernet Sauvignon, myricetin, quercetin,
resveratrol, and caffeic acid [138–143], along with the inhibition of BACE1 activity by
resveratrol and some of its oligomers, epicatechin, myricetin, quercetin, kaempherol and
caffeic acid [142–154] and inhibition of γ-secretase by resveratrol, oxy-resveratrol, and
piceatannol [155,156], have been reported. In addition, amyloid accumulation and aggrega-
tion seem to be prevented by a variety of mechanisms. Amyloid clearance or the induction
of degradation mechanisms, activities that have been reported for resveratrol [157–159]
and quercetin [160], have been reported to prevent amyloid accumulation. On the other
hand, resveratrol, quercetin, and grape seed pro-anthocyanidin consisting of catechin,
epicatechin, and epicatechin gallate, have presented an anti-aggregation capacity [161–165].
Finally, the inhibition of tau protein hyperphosphorylation has been reported for resvera-
trol, quercetin and caffeic acid [166–169]. Regarding Parkinson’s disease, protection may
take place through the antioxidant activity and neuroprotective effects of resveratrol, which
seem to be related to its SIRT-activating potential [170–174], and quercetin, which seems to
be related to the induction of the PKD1/CREB/BDNF axis [175,176]. In addition, other con-
stituents such as caffeic acid, gallic acid and catechins have also been reported to contribute
to the aforementioned activities [177–179].

The association between wine consumption and a reduced risk of type 2 diabetes has
been repeatedly reported [19,20]. This association was further improved by Ma et al. [180],
which highlighted that this protective action takes place when moderate alcohol drink-
ing, especially wine, takes place with meals. The mode of action includes the inhibition
of α-amylase and α-glucosidase activities, the inhibition of sodium-dependent glucose
transporter 1 (SGLT1) and the activation of 5-adenosine monophosphate-activated pro-
tein kinase (AMPK) [181–184]. Regarding diabetic patients, wine consumption has been
reported to attenuate insulin resistance, with no effect on vascular reactivity and nitric
oxide production [185], to reduce the diastolic blood pressure and total cholesterol but
not glucose parameters and other cardiovascular risk factors [186], and to reduce the risks
of cardiovascular events and all-cause mortality [187]. In addition, the initiation of red
wine consumption has been associated with increased high-density lipoprotein cholesterol
(HDL-C) and apolipoprotein(a)1 level and decreased the ratio of total cholesterol to HDL-
C [188]. In addition, wine consumption improved glycemic control, in terms of fasting
plasma glucose, homeostatic model assessment of insulin resistance and hemoglobin A1c,
but only in patients carrying the alcohol dehydrogenase alleles [ADH1B*1], i.e., the slow
ethanol metabolizers.

Several other health benefits have been correlated with moderate wine consumption,
such as the decrease in systolic blood pressure [21–23], the improvement of gastrointestinal
tract function [24–26] and the improvement of the main symptoms of fibromyalgia [27].
However, further research is still necessary in order to identify the responsible molecular
mechanisms.

3.2. Functional Properties of Kombucha

Kombucha is commercially available as a non-alcoholic beverage; therefore, the ethanol
content should not exceed 0.5% alcohol by volume (ABV). However, in many cases, this
limit is not respected [189–191] and the production of kombucha with ethanol content as
high as 5.83 mg/mL has been reported [49]. A series of functional properties, such as
antioxidant, antiproliferative, immunomodulatory, antihypertensive, antidiabetic, hypoc-
holesterolemic, hepatoprotective and antimicrobial, have been attributed to kombucha.
In all cases, the functional properties have been attributed, at least partially, to specific
compounds that are either present in the raw materials or are formed during fermentation.
Therefore, every factor that affects the production of the raw materials or the fermentation
procedure is expected to affect the functional properties of the final product, to a greater or
lesser degree [32,192–196]. Below, a short description of studies assessing these properties
is offered.
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The antioxidant capacity of kombucha has been principally attributed to the presence
of phenolic compounds. The phenolic concentration and diversity in black-tea kombucha
have been reported to be greater than those of green-tea kombucha [35]. This has been
attributed to the processing steps that are necessary for black tea production. During these
steps, the concentration of theaflavins and thearubigins increases, and they become the
main polyphenols in black tea [197]. During fermentation, these compounds are subjected
to enzymatic or chemical biotransformation, resulting in the formation of a wealth of lower-
molecular-weight phenolic compounds. Indeed, Cardoso et al. [35] identified 126 phenolic
compounds in the samples of green and black-tea kombucha that they analyzed, of which,
50 compounds were common, 75 were unique to black-tea kombucha, and only one,
namely verbascoside, was unique to green-tea kombucha. Interestingly, the occurrence of
five phenolic compounds in green-tea kombucha and 30 phenolic compounds in black-tea
kombucha was solely assigned to the fermentation process.

The antioxidant activity of kombucha is usually assessed in vitro through free-radical
scavenging assays such as DPPH, FRAP, ABTS, MCA, Curpac, etc. [35,198,199]. In vivo
studies are generally lacking; only a few are currently available, the main findings of
which are described in the following lines. Dipti et al. [200] used a lead acetate solution to
induce oxidative stress on male albino (Sprague Dawley) rats and studied the antioxidant
effect of black-tea kombucha. The results of kombucha oral administration included the
reduction of DNA damage and lipid peroxidation, as well as the increase of glutathione
level and GPx activity. Yang et al. [201] used mice from the Institute of Cancer Research
and fed them with a hypocholesterolemic diet (HCD) combined with 66 mL Kg−1 DW
of traditional kombucha tea (TKT) or modified kombucha tea (MKT) (sweetened black
tea fermented with Gluconoacetobacter sp. strain A4) or 60 mg Kg−1 DW of D-saccharic
acid-1,4-lactone (DSL) for 12 weeks. The antioxidant activity, measured as total antioxidant
capacity (TAOC), superoxide dismutase (SOD) and malonaldehyde (MDA) was assessed
in the serum after the end of the 12 weeks of the treatment. The hypocholesterolemic diet
resulted in a statistically significant decrease in TAOC and SOD and an increase in MDA
values. These values were restored when the HCD was supplemented with TKT, MKT, or
DSL. Vazquez-Cabral et al. [202] measured the antioxidant activities of kombucha and a
kombucha analog (KAO) made of Quercus resinosa leaves against the oxidative damage
caused by H2O2 in activated THP-1 human monocyte cells and reported the capacity
of KAO to decrease oxidative stress. Finally, Gaggia et al. [49] studied the capacity of
kombucha made from Aspalathus linearis leaves, fermented for 7 and 14 days, to decrease
oxidative stress in L929 mouse fibroblasts caused by H2O2. When the treatment with the
kombucha preceded the H2O2 application, the cell viability was partially restored by both
products. When the treatment with the kombucha followed the application of H2O2, only
the kombucha fermented for 14 days was able to restore the viability of the cells.

The antioxidant capacity of kombucha has also been reported to result in hypocholes-
terolemic and antidiabetic effects. Indeed, kombucha administration has been reported
to decrease total and LDL cholesterol in rabbits and mice fed a high-cholesterol diet, as
well as attenuate histological effects, such as lesions in the intima [30,34,201–203]. As
far as the antidiabetic effect is concerned, this is attributed not only to the antioxidant
capacity of kombucha, which addresses the oxidative stress caused by diabetes, but also
to the reduction in blood glucose and the increase in plasma insulin, which have been
reported as the effects of kombucha administration in experimental rats with induced
diabetic consequences [31,33,204,205].

The antiproliferative capacity of kombucha has been demonstrated in vitro using
human cancer cell lines. More precisely, the cytotoxicity against lung carcinoma (A549), os-
teosarcoma (U2OS), renal carcinoma (786-O), ileocecal colorectal adenocarcinoma (HCT8),
colorectal adenocarcinoma (CACO-2), rhabdomyosarcoma (RD), cervix carcinoma (Hep2c),
prostate cancer (PC-3), colon cancer (HCT-116), breast cancer (MCF-7) and a murine fi-
broblast (L2OB) has been exhibited [32,35,206,207]. Jayabalan et al. [206] proposed that
Dimethyl 2-(2-hydroxy-2-methoxypropylidene) malonate and vitexin may contribute to
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these cytotoxic effects. Cardoso et al. [35] attributed the higher antiproliferative capacity of
green-tea kombucha, compared to that of black-tea kombucha, to the presence of higher con-
centrations of catechins and verbascoside, the antitumor activity of which has already been
reported [208,209]. However, not all cell lines were affected by black-tea kombucha [210].
In addition, Srihari et al. [211] reported that the survival of the prostate cancer cell line
(PC-3) decreased after treatment with lyophilized kombucha extract, most likely due to the
downregulation of the angiogenesis-associated genes HIF-1α, VEGF, IL-8, COX-2, MMP-2,
and MMP-9. Despite these promising results, clinical studies are still lacking.

Strong indications of the immunomodulatory capacity of kombucha have been re-
ported. More precisely, black-tea kombucha administration in male Swiss albino mice
with indomethacin-induced stomach ulceration resulted in effective healing, which was at-
tributed to the antioxidant activity and the reduction of gastric acid secretion [28]. The delay
in the onset and severity of experimental autoimmune encephalomyelitis induced in female
C57BL/6 mice through black-tea kombucha administration was reported by Marzban
et al. [212]. In addition, the suppression of TNF-α and IL-6 levels in lipopolysaccharide-
stimulated macrophages, as well as the in vitro inhibition of 5-LOX enzyme activity by
black-tea kombucha extract, has also been reported [32,201].

As far as the antihypertensive activity is concerned, this is indicated by the detection
of ACE inhibitory capacity. Certain flavonoids [213] with certain structural features [214]
have an excellent antihypertensive capacity. The ACE inhibitory activity of green- and
black-tea kombucha, as well as a series of analogues, has been reported [37,215].

The hepatoprotective activity of kombucha has been repeatedly exhibited in ani-
mal models. Indeed, the protective effect of black-tea kombucha against tertiary butyl
hydroperoxide-induced cytotoxicity in murine hepatocytes of male albino Swiss mice,
by reducing ROS generation, as well as through the inhibition of glutathione depletion
and the attenuation of malonaldehyde levels, was reported by Bhattacharya et al. [216].
Abshenas et al. [29] induced hepatotoxicity in male Balb/c mice through acetaminophen
treatment. Kombucha consumption for 7 days before acetaminophen treatment reduced its
toxicity through the reduction of the serum aspartate aminotransferase, alanine aminotrans-
ferase, lactate dehydrogenase, and alkaline phosphatase levels. In addition, the decrease
of histopathological changes, such as hepatocellular glycogen storage degeneration and
necrosis, mononuclear cell infiltration in the portal area, dilation of central veins and capil-
larization, was also reported. Acetaminophen was also used by Wang et al. [160] to induce
hepatotoxicity in male ICR mice. The administration of traditional black-tea kombucha as
well as kombucha fermented only by Gluconoacetobacter sp. strain A4 effectively inhibited
the increase of alanine aminotransferase, alkaline phosphatase, triglyceride and malondi-
aldehyde, which were induced by acetaminophen treatment. These positive effects were
largely attributed to the D-saccharic acid-1,4-lactone produced by the bacterial strain. Kabiri
et al. [217] induced hepatotoxicity in male Wistar rats with thioacetamide and studied the
effect of black-tea kombucha. Administration of kombucha for 3 weeks before TAA or after
TAA treatment had all biochemical parameters assessed (alanine aminotransferase, aspar-
tate aminotransferase, alkaline phosphatase, lactate dehydrogenase, total, LDL and HDL
cholesterol, triglycerides, and bilirubin) at comparable levels to the control group, accompa-
nied by normal histology. Hyun et al. [218] induced hepatic steatosis in male C57BLKS and
C57BLKS db/db mice through a methionine/choline-deficient diet. Black-tea kombucha
administration was reported to reduce the liver weight/body weight ratio to control-group
levels through the reduction of fatty acids uptake and triglyceride synthesis, which were
also indicated through the application of reverse-transcription quantitative PCR.

The antimicrobial activity of kombucha, as well as a series of analogues, has been
extensively assessed. The methods of choice are diffusion and microdilution. The inhibition
of the growth of a series of microorganisms, including molds such as Aspergillus flavus and
As. niger; yeasts such as Candida albicans, Ca. glabrata, Ca. krusei, and Ca. tropicalis; Gram-
positive bacteria such as Alicyclobacillus acidoterrestris, Bacillus cereus, Listeria monocytogenes,
Micrococcus luteus, Staphylococcus aureus, and St. epidermidis; and Gram-negative bacteria
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such as Aeromonas hydrophila, Agrobacterium tumefaciens, Campylobacter jejuni, Enterobacter
cloacae, Escherichia coli, Esch. coli O157:H7, Haemophilus influenzae, Klebsiella pneumoniae,
Proteus mirabilis, Pr. vulgaris, Pseudomonas aeruginosa, Salmonella Enteritidis, Sa. Typhi, Sa.
Typhimurium, Shigella dysenteriae, Sh. sonnei, Vibrio cholerae, and Yersinia enterocolitica has
been reported [35,36,207,219–224].

The ingredients to which this antimicrobial activity has been primarily attributed are
organic acids, mainly acetic acid, as well as a series of compounds with antimicrobial capac-
ity, such as catechins, unsaturated lactones, hydroxylactones and verbascoside [225–227].
Qualitative and quantitative differences between different types of kombucha have also
been attributed to differences in their chemical composition [35,220,224].

In summary, kombucha seems to possess a wealth of functional properties, which
have been assessed either in vitro or using animal models. Further study is still necessary,
including clinical trials [228].

3.3. Functional Properties of Kefir

Kefir is another thoroughly studied non-alcoholic beverage. As in the case of kom-
bucha, the limit of 0.5% ABV is not always respected [229], and the production of kefir
with as much as 10% ethanol has been reported [230]. Many functional properties have
been described for kefir and attributed to its amino acid and peptide content. The type of
milk, the proteolytic capacity of the micro-consortium that drives fermentation, and the
storage time [231] greatly affect these properties. The most important kefir activities that
play an essential role in its functional properties are the antioxidant and anti-inflammatory
ones. The first is attributed to a series of enzymatic and non-enzymatic systems. Catalase,
superoxide dismutase, and glutathione peroxidase account for the enzymatic ones, while
vitamin E and β-carotene—along with peptides resulting from the proteolytic breakdown
of casein and amino acids, especially methionine, lysine and tryptophan, which seem to
possess higher antioxidant activity than threonine, serine, alanine, valine, isoleucine and
phenylalanine—account for the non-enzymatic ones [232–235]. The anti-inflammatory
activity of kefir is evidenced through the reduction of the levels of proinflammatory media-
tors, such as TNF-a and IL-6β, and the increase of the levels of anti-inflammatory cytokines
such as IL-10 [236–242]. The bacteria themselves [238], their extracellular vesicles (as in the
case of Lactobacillus kefiranofaciens subsp. kefirgranum PRCC-1301 [243]), their micro integral
membrane protein (such as the one of Lactiplantibacillus plantarum [244]) as well as kefir
peptides [44,245] seem to contribute to this activity.

The association between kefir consumption and effective glycemic control through
reduction of IL-1β and increase of IL-10 expression, as well as a reduction of fasting glucose
and insulin levels and reduction of insulin resistance, has been reported [39,40,239,246,247].
Although the exact mode of action is still to be elucidated, it includes the release of bioac-
tive peptides from caseins, most likely through the proteolytic activity of the kefir mi-
crobiota [247]. These bioactive peptides may also include ACE-inhibitory ones [38,248],
which contribute to the effective control of blood pressure. Indeed, a series of studies
have highlighted the antihypertensive capacity of kefir and indicated that ACE-inhibitory
activity is among the most important mechanisms [249–251]. Kefir has also been reported
to have an immunomodulatory capacity [43] and act towards the prevention and treat-
ment of atherosclerosis [44] and liver damage [41], mostly due to its antioxidant and
anti-inflammatory activities. In addition, it may also act as a psychobiotic due to the
occurrence of LAB capable of producing gamma-aminobutyric acid, a major inhibitory
neurotransmitter of the mammalian central nervous system [252], combined with anti-
inflammatory activities [253,254].

The anti-carcinogenic capacity of kefir has been assessed in a variety of human cancer
cell lines, such as the gastric AGS and SGC7901, mammary MCF-7, myeloid leukemia
HL60/AR, colorectal Caco-2 and HT-29, etc. [255–259]. In the majority of cases, inhibition
of proliferation and apoptosis induction were reported, mediated by molecular mechanisms
that included downregulation of TGF-α and Bcl-2, decreased polarization of mitochondrial
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membrane potential, as well as the upregulation of TGF-β1, Bax, caspase 3, caspase 8,
caspase 9, etc. [42,256–258,260–262].

4. Customization of Fermented Beverages

In the previous paragraphs, the importance of raw materials in terms of their chemical
composition, as well as the importance of the microbiota involved in fermentation in
terms of metabolic capacity, have been highlighted. The functional properties of fermented
beverages are achieved through the combination of these two parameters.

Product customization is as old as fermentation itself. The use of starter cultures is a
form of customization, which, before the dawn of microbiology, took place through back-
slopping. Nowadays, customization is facilitated by a wealth of information regarding the
molecular mechanisms of disease and the mode of action of bioactive compounds. The
customization of fermented beverages aims at achieving reproducibility, and therefore,
the standardization of the product, and enhancing its functional properties. The first
is principally achieved through the use of starter cultures. Indeed, the use of defined
monocultures or micro-consortia allows the acceleration of the fermentation procedure,
as well as the predictability of the outcome [263]. On the other hand, the enhancement
of functional properties has been achieved mostly through the use of alternative and/or
supplementary raw materials. In Table 2, representative studies on the customization of
fermented beverages are exhibited.

Table 2. Representative studies on customization of fermented beverages.

Product Customization Strategy-Outcome References

Fruit-based fermented
beverage

Improvement in the antioxidant activity of kiwifruit pulp through fermentation with a Lp.
plantarum strain. The increase in DPPH and ABTS scavenging activities were correlated
with the increase in total phenolic and flavonoid content.

[264]

Fruit-based fermented
beverage

Pomegranate juice was fermented with Lp. paraplantarum CRL2051 and Lp. plantarum
CRL2030 and administered to C57BL/6 mice fed a high-fat diet. The fermented juice
offered protection against weight gain, liver damage, and dyslipidemia.

[265]

Fermented mango
juice

Different mango cultivars were subjected to lactic acid fermentation with two LAB strains,
namely Lp. plantarum 75 and Ln. pseudomesenteroides 56. The latter strain improved the
retention of carotenoids, while the former enhanced the phenolic content and the
antioxidant activity of all mango cultivars.

[266]

Whey-based
fermented beverage

Commercially available probiotic LAB cultures, capable of producing conjugated linoleic
acid (CLA), were used to ferment whey that was enriched with walnut oil lipolyzed by
endogenous lipases as a source of free linoleic acid. After the optimization of the
fermentation conditions, the whey-based beverage, apart from the CLA content, which
could reach 36 mg/g fat, also presented a remarkable antioxidant capacity, most likely
due to the presence of phenolic compounds and tocopherol in the walnut oil.

[267]

Kombucha analog

A kombucha analog with the use of coffee (Coffea arabica) by-product infusion, instead of
Camellia sinensis infusion, was developed. The antioxidant activity (as estimated through
the reduction in intracellular ROS and uric acid concentration in HK-2 model cells) and
the anti-inflammatory activity (as estimated through a reduction in NO formation in
LPS-induced macrophages of the kombucha analog and black-tea kombucha) were
comparable.

[268]

Kombucha analog

Hops (Humulus lupulus L.), madimak (Polygonum cognatum), and hawthorn (Crataegus
monogyna) were used to supplement black-tea kombucha, using the same SCOBY. After
fermentation, the antioxidant activity of traditional kombucha was higher than that of the
ones supplemented with herbs. All kombuchas exhibited comparative antiproliferative
capacity against two cancer cell lines, namely HCT116 and Mahlavu.

[269]
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Table 2. Cont.

Product Customization Strategy-Outcome References

Kombucha analog
Hibiscus sabdarifa L. leaves and stems were used to develop kombucha analogs. The
products exhibited similar antioxidant capacity and no cytotoxicity against
noncancer cells.

[270]

Kombucha analog

Infusions of blackcurrant (Ribes nigrum), black chokeberry (Aronia melanocarpa), and
blueberry (Vaccinium myrtillus) were fermented using the same SCOBY, resulting in
products with a significant content of polyphenolic compounds. The kombucha analogs
exhibited significant antioxidant activity, assessed both in vitro and with the use of
human keratinocytes (HaCaT) and fibroblasts (BJ).

[271]

Enhanced kombucha

Incorporation of Echium amoenum in kombucha resulted in a significant increase in the
total phenol, anthocyanin, and flavonoid content, as well as the antioxidant activity. The
kombucha prepared solely via E. amoenum infusion exhibited enhanced cytotoxicity
against the human prostate cancer cell line (PC3) compared to the products containing
both black tea and E. amoenum infusions.

[272]

Fermented soy
beverage

Commercially available probiotic strains La. rhamnosus GG and B. longum BB536, along
with isolates with probiotic potential, namely B. breve INIA P734, B. longum INIA P132, La.
paracasei INIA P272 and La. rhamnosus INIA P344, were used to ferment a commercially
available soy beverage. The product obtained with La. rhamnosus GG and La. rhamnosus
INIA P344 contained high levels of bioactive isoflavone aglycones. The viability of the
strains, along with the bioactive compounds, was maintained during refrigerated storage
for 28 d.

[273]

B.: Bifidobacterium; La.: Lacticaseibacillus; Ln.: Leuconostoc; Lp.: Lactiplantibacillus.

The employment of alternative raw materials, as partial or complete replacements of
traditional ones, has been extensively exercised in the case of kefir and kombucha beverages.
In fact, this strategy has been so extensively employed that it has led to a whole new class
of products, namely kefir analogs and kombucha analogs. In both cases, the aim was to
meet the consumer needs of nutritionally dense and organoleptically appealing products.
Especially the latter seems quite a challenge, taking into consideration the varying taste
preferences [274]. Therefore, a variety of raw materials have been employed, resulting in
variable nutritional and sensorial outcomes. In the case of kefir analogs, the utilization
of fruits, vegetables, and sugar solutions is most commonly reported [275–282], while for
the production of kombucha analogs, the employment of herbal infusions and fruits is
most frequently encountered [283–297]. Apart from using kefir or kombucha cultures to
ferment their analogs, the development of fruit- and vegetable-based beverages through
the fermentation of substrates not traditionally considered for that purpose, using cultures
that could effectively carry out fermentation and enhance their functional potential, has
been extensively assessed. Indeed, a series of fruit or vegetable juices and pulps have
been subjected to fermentation, principally lactic acid fermentation [298–308]. Apart from
the organoleptically interesting products, in the majority of cases, the results exhibited an
increase in the concentration of bioactive compounds, such as the total phenolic content,
vitamin C, shikimic acid, etc., along with an increase in the antioxidant capacity, which, in
some cases, was further verified through in vitro experimentation.

The enhancement of functional properties has also been achieved through the direct
addition of compounds or their precursor molecules. An example of the first strategy
is the study by Frolova et al. [309], in which pre-dissolved inulin and a vitamin premix
consisting of thiamine, riboflavin, pyridoxine, folic acid and niacin were added to the
already fermented black-tea kombucha at concentrations corresponding to 100% of the
recommended daily intake (RDI) of inulin and 29–44% of the RDI of the vitamins. In
addition, an infusion of frozen strawberries and lime leaves was created and added after
the primary fermentation, and a secondary one was allowed, at 23 ◦C, for 24 h. The final
product exhibited a 82% DPPH inhibitory activity and it was highly accepted by the sensory
evaluation panel. Another example of the direct addition of functional compounds is the
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study by Shahbazi et al. [292]. In that study, medicinal plants, namely cinnamon, cardamom,
and shirazi thyme, were added to the green-tea concoction and allowed to ferment using
the same SCOBY. The cinnamon-flavored kombucha exhibited higher antioxidant and
antimicrobial activity, as well as better sensorial scores, than the green-tea kombucha that
served as the control and the cardamom- and shirazi thyme-flavored ones. Based on
these results, cinnamon was used to partially or completely replace green tea. Increasing
the cinnamon concentration resulted in an increased total phenolic content and radical
scavenging activity and had a variable effect on the minimum inhibitory concentration
against the Gram-positive and Gram-negative pathogenic bacteria that were examined; the
authors noted that the Gram-negative ones seemed to be more susceptible. Similarly, Ozturk
et al. [269] combined black tea leaves with hops (Humulus lupulus L.), madimak (Polygonum
cognatum), or hawthorn (Crataegus monogyna) dry leaves and created a concoction that
was left to ferment into kombucha. The herbs employed had no additive effect on the
antioxidant capacity of the black-tea kombucha that served as the control and all products
had a comparable antiproliferative activity against the human colorectal carcinoma cell
line HCT116 and the human hepatocellular carcinoma cell line Mahlavu. Both studies,
along with many similar ones, can be considered as a non-targeted attempt to improve
the functionality of the final product. The term ‘non-targeted’ is used to highlight that the
aim of the studies was to enhance the total phenolic content, and therefore, the antioxidant
capacity, and not the concentration of a specific compound. In the case of kombucha, an
example of such a compound would be epigallocatechin gallate (ECGC), the most studied
bioactive compound of green tea. There is a strong indication that ECGC exhibits significant
antiproliferative and antihypertensive activity through a variety of mechanisms [310,311].
Therefore, targeting the increase in this compound would create a product with specific
capacities. However, research is still necessary in order to verify these actions and elucidate
the underlying molecular mechanisms. This targeted approach was employed by Moslemi
et al. [267], aiming to enhance the conjugated linoleic acid (CLA) concentration of a whey-
based beverage. CLA is a group of linoleic acid isomers, the consumption of which has
been correlated with a series of health benefits [312,313]. In that study, walnut oil that
was already lipolyzed by endogenous lipases was added to a whey-based formulation,
homogenized, and allowed to ferment with commercially available starter and probiotic
cultures. The lipolysis of the walnut oil was necessary in order to liberate the esterified
linoleic acid and thus enable the microorganisms to use it as a precursor for conjugated
linoleic acid synthesis. Although the maximum produced amount of 36 mg/g of fat
does not meet the recommended daily intake, this study proved that supplementation
with substrates used by microorganisms for the production of bioactive compounds is an
effective strategy and definitely worth further assessment.

Finally, the valorization of market surplus food, especially bread, into fermented
beverages with functional potential has also been considered. Indeed, Massa et al. [314]
reported the development of a non-alcoholic beverage using Saccharomyces bayanus 995,
a SCOBY, or water kefir grains. The authors proposed a saccharification pre-treatment
with Aspergillus oryzae and the supplementation of the thermally treated infusion with
1% w/v multiflora honey. The final product was sensorially evaluated, and the beverage
prepared with S. bayanus was more preferred. On the other hand, Nguyen et al. [315]
inoculated a sterilized slurry made after the homogenization of finely cut bread and water
with La. rhamnosus GG and/or S. cerevisiae CNCM I-3856. Before sterilization, the addition
of commercially available zero-calorie sweetener mix and a stabilizer took place. After
fermentation at 37 ◦C for 72 h, the beverage fermented with a consortium of both strains
contained the highest amount of amino acids, such as leucine, valine, glycine and GABA,
throughout storage at 5 and 30 ◦C for 6 w. More recently, Siguenza-Andres et al. [316]
applied desalting and treatment with a-amylase and glucoamylase to dried and milled
surplus bread before inoculation with La. rhamnosus GG or a microconsortium consisting
of Bifidobacterium sp., Lb. delbrueckii subsp. bulgaricus, and Streptococcus thermophilus.
Fermentation took place at 38 ◦C for 24 h. The authors reported that the enzyme treatment
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allowed faster acidification to occur, whereas desalting restricted the maximum rates of
growth, pH reduction and acidification.

5. Conclusions

Fermented beverages have a long tradition and a very promising future due to their
great capabilities, spanning from their capacity to fit into the mentality of subsequent
generations, including the current ‘on the go’ generation, to their customization potential.
Especially regarding the latter, the wide range of raw materials that can be used, combined
with the metabolic potential of food-grade microorganisms, can give birth to customized
products that meet the extensive range of organoleptic preferences and enable targeted
nutritional interventions. Although a lot of research is still necessary, this exciting future
seems to be within reach.
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