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Abstract: Hexavalent chromium (Cr(VI)) compounds are considered to be occupational carcinogens,
which can be transferred from the environment to the human body and pose a significant threat
to human health. It is particularly urgent to explore a more efficient catalyst for removing Cr(VI)
to comply with discharge standards. The addition of CNTs enables the separation and transfer of
photogenerated charges. Thus, we synthesized a range of NiCo2S4 hybrid materials with different
multi-walled carbon nanotube (MWCNTs) contents using a two-step hydrothermal method. The
composites had significant advantages compared to pure NiCo2S4, such as an enhanced visible
light absorption, increased specific surface area, high electron–hole pair separation, and fast electron
transport. Thus, MWCNT addition enabled efficient photocatalytic performances in terms of reducing
hexavalent chromium (Cr(VI)). Among all the composite samples, the MWCNT/NiCo2S4 with 0.050 g
of MWCNTs achieved the highest efficiency in reducing Cr(VI) under light irradiation, which showed
a removal rate close to 100% within 40 min. Such CNT-based composite photocatalysts could be used
to reduce the highly toxic Cr(VI) in environmental applications.

Keywords: photocatalysis; hexavalent chromium; NiCo2S4; CNT; reduction

1. Introduction

In the past decades, water resource pollution has become more and more severe with
industrialization development [1]. Heavy metal pollution due to the massive application of
heavy metals in industry is gaining widespread attention [2,3]. Among them, hexavalent
chromium (Cr(VI)) is often used as an essential raw material in electroplating, pigment
processing, leather making, photographic, textile, and other applications. Chromium
is usually present in two different oxidation states, hexavalent chromium (Cr(VI)) and
trivalent chromium (Cr(III)) [4,5]. Cr(III) is less toxic in the environment and plays a vital
role in metabolic processes as a trace metal essential to human nutrition [6,7]. In addition, it
can be readily precipitated out of wastewater as Cr(OH)3 in an alkaline or neutral solution
and removed as solid waste. Unfortunately, Cr(VI) is 100 times more toxic than Cr(III),
which the US has classified as a top-rated toxic pollutant. This was by the Environmental
Protection Agency (EPA) due to its dangerous persistence and extremely low degradability
in water and soil. Thus, the reduction of Cr(VI) to Cr(III) is considered to be a critical step
in the treatment of wastewater containing Cr(VI) [8–10]. In addition, Cr(VI) can quickly
enter food chains and destroy human enzyme systems through ingestion, inhalation, or
skin contact, which poses a considerable threat to human health [11,12]. Studies have
shown that releasing potentially carcinogenic, highly toxic, and non-degradable Cr(VI)
into the environment can cause health problems such as pulmonary gland obstruction,
epidermal irritation, hepatitis, and cancer [11,13,14]. Therefore, the conversion of Cr(VI)
into Cr(III) is a desirable method for strictly controlling the concentration of Cr(VI) in
industrial wastewater so that the wastewater can be safely discharged.
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Various conventional methods have been adopted to remove Cr(VI) from water envi-
ronments, including ion exchange, adsorption, chemical reduction, bioremediation, phys-
ical reverse osmosis, and membrane separation [15–20]. However, traditional methods
often result in ancillary contaminants, a high energy intake, and a low efficacy, which are
relatively expensive and environmentally unfriendly [21,22]. Actual industrial wastewater
is often treated using the chemical reduction method, which reduces Cr(VI) to Cr(III) by
adding reducing agents (such as NaHSO3, Na2SO3, and iron powder, etc.) to the wastewa-
ter, and then adding lime or sodium hydroxide for precipitation and separation [23,24]. The
reducing agent needs to be added in an acidic environment, and the amount of reducing
agent added must be more significant than the theoretical amount, but a large amount
would cause the wastewater chemical oxygen demand to rise [25]. The main advantages of
this method are its relatively mature technology, simple operation, low investment, and
good results in engineering applications. However, it has a large amount of sludge and
will produce secondary pollution, which is not in line with the development concept of
green environmental protection.

Photocatalysis is a promising technology for achieving the one-step removal of Cr(VI)
using sunlight due to its efficient, simple, and environmentally friendly features [26–29].
It has been extensively studied in environmental and energy fields [30–33]. More and
more semiconductor photocatalysts [34] are being investigated and applied for Cr(VI)
reduction, hydrogen production, carbon dioxide reduction, and the degradation of organic
pollutants such as TiO2 [35–38], g-C3N4 [39–41], ZnIn2S4 [42,43], NiCo2S4 [43], CuS [44],
and BiVO4 [39,45]. Unmodified photocatalysts tend to have a short photogenerated car-
rier lifetime and low specific surface area, leading to inefficient photocatalysis, which
limits their development and practical application [46]. As an ideal additive phase for
composite materials, carbon nanotubes (CNTs) have excellent electrical and mechani-
cal properties, and their suitable pore size distribution allows for a better dispersion of
metal components [43,47–50]. Moreover, their unique and stable structure and morphology,
especially their surface properties, can be modified in different ways according to the
needs of people, making them an ideal new catalyst carrier material [51]. The research on
CNTs as catalyst carrier materials has mainly focused on loading active components onto
CNTs [52–54]. In the photocatalysis of a single semiconductor, the photogenerated electrons
migrate to the conduction band (CB) and then tend to return to the valence band (VB) again,
which significantly reduces the photocatalytic efficiency. The addition of CNTs enables
the separation and transfer of photogenerated charges [25,55]. In this study, CNTs were
hybridized with NiCo2S4. CNTs as a carrier not only inhibited the aggregation of NiCo2S4
and increased the specific surface area of the catalysts, but also effectively inhibited the
recombination of photogenerated carriers through charge transfer. The research content of
this paper is instructive for the preparation and application of CNTs in photocatalysts.

Herein, a series of MWCNT-NiCo2S4 (C-NCS) composites with different MWCNT
contents were prepared using a relatively facile two-step hydrothermal process. The
synthesized composites were utilized for the photocatalytic reduction of Cr(VI) under UV-
Visible radiation to evaluate their photocatalytic activity. The materials were characterized
in detail using XRD, SEM, TEM, XPS, and BET, etc. The selective removal performance
of the composites for Cr(VI) was also explored. Compared to the pure NiCo2S4, the
composites with added MWCNTs showed a better photocatalytic activity. Among them,
0.050MWCNT-NiCo2S4 had the best performance in the photocatalytic reduction of Cr(VI).

2. Materials and Methods
2.1. Synthesis of Composite Photocatalysts

Firstly, 0.4 g of PVP (K30) was added to 50 mL of ultrapure water and ultrasonically
dispersed well. In total, 0.050 g of multi-walled carbon nanotubes (MWCNTs) was added
to the above solution, followed by 30 min of treatment using an ultrasonic reactor (SONICS
VCX1500, SONICS & MATERIALS INC, 53 CHURCH HILL RD. NEWTOWN, CT, USA).
The dispersion was stirred until it was cooled, then 0.1783 g of nickel chloride hexahydrate,
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0.3568 g of cobalt chloride hexahydrate, 0.45 g of urea, and 10 mL of ultrapure water were
added and stirred for 30 min. It was added to the hydrothermal kettle and reacted at 130 ◦C
for 12 h. The obtained sample (precursor of 0.050C-NCS) was washed with ultrapure water
and 75% alcohol and finally dried in an oven at 70 ◦C. In the second hydrothermal reaction
step, 0.2 g of as-obtained product, 0.6 g of sodium sulfide nonahydrate, and 60 mL of
ultrapure water were added to the hydrothermal kettle, sonicated for 2 min, stirred for
30 min, and then reacted hydrothermally at a temperature of 180 ◦C for 12 h. Similarly,
various amounts of MWCNTs (0 g, 0.005 g, 0.020 g, 0.035 g, 0.050 g, 0.075 g, and 0.100 g) were
added in the first step of the hydrothermal process to synthesize the MWNCT-NiCo2S4
composite samples. The obtained composite samples were named NCS, 0.005C-NCS,
0.020C-NCS, 0.035C-NCS, 0.050C-NCS, 0.075C-NCS, and 0.100C-NCS, respectively.

2.2. Photocatalytic Performance Measurements

The photocatalytic activity of the samples was evaluated by reducing Cr(VI) (K2Cr2O7
solution). In this reaction, 15 mg catalysts were dispersed into 30 mL of 50 ppm Cr(VI) solu-
tion and then stirred in the dark for 30 min to reach the absorption–desorption equilibrium.
Next, the suspension was irradiated with a 300 W Xenon lamp (CEL-HXF300-T3, Beijing
China Education Au-Light Co., Ltd, Beijing, China) with a VisREF filter (350~780 nm). A
total of 1 mL of sample was, intermittently and in specific time intervals, filtered through a
0.22 µm pore-sized PTFE syringe filter to determine the removal rate of Cr(VI). The concen-
tration of Cr(VI) was determined with a UV-Vis spectrophotometer (Shimadzu UV2600,
Shimadzu corporation, Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto, Japan) using a
diphenylcarbonyldihydrazide colorimetric method.

3. Results
3.1. Photocatalytic Performances

We synthesized NiCo2S4 nanoparticles with different MWCNT contents using a two-
step hydrothermal method, adding 0 g, 0.005 g, 0.020 g, 0.035 g, 0.050 g, 0.075 g, and 0.100 g.
The products obtained were defined as NCS, 0.005C-NCS, 0.020C-NCS, 0.035C-NCS, 0.050C-
NCS, 0.075C-NCS, and 0.100C-NCS, respectively. The photocatalytic performances of the
samples were evaluated using a 60 min reduction experiment of Cr(VI) with a controlled
amount of photocatalyst under visible light irradiation, as shown in Figure 1a. A con-
centration of 30 mL of 50 ppm Cr(VI) was chosen for the photoreduction experiments.
A schematic diagram of this reactor is demonstrated in Figure S1. The results showed
that, when using pure NiCo2S4 as the photocatalyst, Cr(VI) could only be reduced by
64.4% in 60 min. However, all composites containing MWCNTs exhibited an excellent
photocatalytic activity. In particular, 0.050C-NCS could reduce Cr(VI) entirely within
40 min, which exhibited the best photocatalytic performance. Figure 1b shows the results
of the control experiment for the reduction of Cr(VI) by 0.050C-NCS, and it can be seen
that the concentration of Cr(VI) was almost constant under light conditions only. At the
same time, only 17.5% of Cr(VI) was adsorbed under dark conditions, and the MWCNT
had almost no photocatalytic effect on Cr(VI), which further demonstrates the essential
role of this composite in the photocatalytic reduction process of Cr(VI). Furthermore, the
electron spin resonance (ESR) detection results (Figure S2) also indicated that a distinct
·O2

- the characteristic signal peak was detected at 0.050C-NCS. In contrast, the detection of
pristine NiCo2S4 indicated that the intensity of the O2

− signal was significantly lower than
that of 0.050C-NCS. This result also demonstrated an improvement in the photocatalytic
performance when a certain amount of MWCNT was added. By verifying the effect of
scavengers on photocatalytic efficiency, the active species with contributing roles in the
photocatalytic process can be elucidated [56]. As shown in Figure S3, potassium bromate
(10 mM) hindered the photocatalytic reduction process, which demonstrates that the photo-
electrons were mainly responsible for the Cr(VI) photocatalytic reduction enhancement of
the 0.050C-NCS. Furthermore, we compared the reaction conditions and reduction activity
of different photocatalysts reported in the recent literature with the present work, and
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the results are listed in Table S1. Compared to previous studies, 0.050C-NCS exhibited an
excellent photocatalytic reduction of Cr(VI).
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Figure 1. (a) Photocatalytic reduction curves of Cr(VI) in the presence of as-prepared samples
with different amounts of MWCNTs (15 mg photocatalyst, 30 mL 50 ppm Cr(VI)); and (b) control
experiment of photocatalytic reduction of Cr(VI) for 0.050C-NCS.

The separation rate of photogenerated electron–hole pairs is an essential factor affect-
ing the photocatalytic activity of a photocatalyst. A higher separation efficiency of the
photogenerated electron–hole pairs will result in a higher photocatalytic activity of the
photocatalyst. To evaluate photocatalysts’ charge carrier separation and transport efficiency,
photocurrent and Electrochemical Impedance Spectroscopy (EIS) analyses were conducted.
The photocurrent response in Figure 2a indicates that 0.050 CNT-NiCo2S4 showed the
highest photocurrent density because of a much lower charge carrier recombination in
0.050C-NCS. The improved separation efficiency and lowest recombination rate of the
photogenerated electron–hole pairs facilitated efficient photocatalytic reactions [57,58]. The
photoreaction and separation of carriers are effective when the arc-radius of the EIS plot
is less [59,60]. The EIS of the fabricated photocatalysts was analyzed to investigate the
charge carriers’ interface transfer/recombination efficiency. As can be seen from Figure 2b,
0.050C-NCS presented a much smaller arc size than the pure NiCo2S4, demonstrating that
0.050C-NCS had a lower electron transfer resistance and a positive effect on photo-induced
carrier transfer. The Nyquist data of 0.050C-NCS were fitted with an equivalent circuit via
Zview software (2.1.0.0) to determine the exact values of the RESR and Rct resistances [61,62].
Figure S4 presents the fitted model of 0.050C-NCS with the most suitable modified Randle
circuit model in the inset image. The value of the RESR and Rct of the 0.050C-NCS sample
electrode came to be 36.77 and 66.31 Ω, respectively. All of the above results demonstrate
the excellent photocatalytic performance of 0.050C-NCS, consistent with the trend of the
photocatalytic reduction results.

The effect of inorganic ions on photocatalytic activity has been reported in many
studies. Among them, inorganic anions, such as NO3

−, Cl−, SO4
2−, and PO4

3−, may have
two inhibitory effects: the first is the competitive adsorption of ions and pollutant molecules
to the active sites on the TiO2 surface, leading to a decrease in the photocatalytic efficiency.
The second is that anions can react with the photogenerated holes, thus reducing the
amount of oxides that degrade the pollutant molecules [12,63]. We investigated the effect
of coexisting ions in the photocatalytic reduction process of Cr(VI). In Figure 3a, it is seen
that the inhibition of the Cr(VI) reduction process was enhanced when the concentration of
NaCl was gradually increased, which might have been due to the competition between
chloride ions and Cr(VI) adsorption. Similarly, the addition of 10 mM of HCO3

− and SO4
2−

to the solution had a relatively strong inhibitory effect on the reduction process of Cr(VI)
(Figure 3b). The effect of cations on the reduction process of Cr(VI) was investigated in
Figure 3c, from which it can be seen that the addition of Cu2+ significantly improved the
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photocatalytic reduction rate of Cr(VI). This is because the positively charged Cu2+ was
more likely to capture the electrons generated by photoexcitation on the catalyst surface
than the negatively charged Cr2O7

2−, and Cu2+ was preferentially reduced to Cu+. At
the same time, Cu+ could rapidly undergo redox reactions with Cr2O7

2−, with Cr2O7
2−

being reduced to Cr3+ and Cu+ being oxidized to Cu2+. Since Cu2+ could capture the
electrons generated on the catalyst surface faster than Cr2O7

2−, the recombination rate of
the electron–hole pairs on the catalyst surface was significantly reduced, which resulted in a
higher utilization of electrons on the catalyst surface. Therefore, a significant enhancement
in the photocatalytic reduction rate occurred when a small amount of Cu2+ was added
to the reaction system. The above process shows that Cu2+ plays a catalytic role in the
photocatalytic reduction process of Cr(VI). As shown in the figure, the presence of cations
such as Mg2+, Ca2+, K+, and Na+ in the solution will reduce the reduction efficiency of
Cr(VI). This inhibitory effect is mainly because these ions can quickly get the photoexcited
electrons on the semiconductor conduction band, thus competing with Cr(VI) for electrons,
inevitably reducing the reduction efficiency.

C 2023, 9, x FOR PEER REVIEW 5 of 14 
 

of coexisting ions in the photocatalytic reduction process of Cr(VI). In Figure 3a, it is seen 
that the inhibition of the Cr(VI) reduction process was enhanced when the concentration 
of NaCl was gradually increased, which might have been due to the competition between 
chloride ions and Cr(VI) adsorption. Similarly, the addition of 10 mM of HCO3− and SO42− 
to the solution had a relatively strong inhibitory effect on the reduction process of Cr(VI) 
(Figure 3b). The effect of cations on the reduction process of Cr(VI) was investigated in 
Figure 3c, from which it can be seen that the addition of Cu2+ significantly improved the 
photocatalytic reduction rate of Cr(VI). This is because the positively charged Cu2+ was 
more likely to capture the electrons generated by photoexcitation on the catalyst surface 
than the negatively charged Cr2O72−, and Cu2+ was preferentially reduced to Cu+. At the 
same time, Cu+ could rapidly undergo redox reactions with Cr2O72−, with Cr2O72− being 
reduced to Cr3+ and Cu+ being oxidized to Cu2+. Since Cu2+ could capture the electrons 
generated on the catalyst surface faster than Cr2O72−, the recombination rate of the elec-
tron–hole pairs on the catalyst surface was significantly reduced, which resulted in a 
higher utilization of electrons on the catalyst surface. Therefore, a significant enhancement 
in the photocatalytic reduction rate occurred when a small amount of Cu2+ was added to 
the reaction system. The above process shows that Cu2+ plays a catalytic role in the photo-
catalytic reduction process of Cr(VI). As shown in the figure, the presence of cations such 
as Mg2+, Ca2+, K+, and Na+ in the solution will reduce the reduction efficiency of Cr(VI). 
This inhibitory effect is mainly because these ions can quickly get the photoexcited elec-
trons on the semiconductor conduction band, thus competing with Cr(VI) for electrons, 
inevitably reducing the reduction efficiency. 

 

Figure 2. (a) Transient photocurrent responses of the as-prepared samples; and (b) electrochemical 
impedance spectra (EIS) of the as-prepared samples. 

 
Figure 3. Photocatalytic reduction curves of Cr(VI) solution containing different concentrations of 
NaCl (a); and (b) sodium salts (10 mM) and (c) inorganic salts (10 mM). 

Figure 2. (a) Transient photocurrent responses of the as-prepared samples; and (b) electrochemical
impedance spectra (EIS) of the as-prepared samples.

C 2023, 9, x FOR PEER REVIEW 5 of 14 
 

of coexisting ions in the photocatalytic reduction process of Cr(VI). In Figure 3a, it is seen 
that the inhibition of the Cr(VI) reduction process was enhanced when the concentration 
of NaCl was gradually increased, which might have been due to the competition between 
chloride ions and Cr(VI) adsorption. Similarly, the addition of 10 mM of HCO3− and SO42− 
to the solution had a relatively strong inhibitory effect on the reduction process of Cr(VI) 
(Figure 3b). The effect of cations on the reduction process of Cr(VI) was investigated in 
Figure 3c, from which it can be seen that the addition of Cu2+ significantly improved the 
photocatalytic reduction rate of Cr(VI). This is because the positively charged Cu2+ was 
more likely to capture the electrons generated by photoexcitation on the catalyst surface 
than the negatively charged Cr2O72−, and Cu2+ was preferentially reduced to Cu+. At the 
same time, Cu+ could rapidly undergo redox reactions with Cr2O72−, with Cr2O72− being 
reduced to Cr3+ and Cu+ being oxidized to Cu2+. Since Cu2+ could capture the electrons 
generated on the catalyst surface faster than Cr2O72−, the recombination rate of the elec-
tron–hole pairs on the catalyst surface was significantly reduced, which resulted in a 
higher utilization of electrons on the catalyst surface. Therefore, a significant enhancement 
in the photocatalytic reduction rate occurred when a small amount of Cu2+ was added to 
the reaction system. The above process shows that Cu2+ plays a catalytic role in the photo-
catalytic reduction process of Cr(VI). As shown in the figure, the presence of cations such 
as Mg2+, Ca2+, K+, and Na+ in the solution will reduce the reduction efficiency of Cr(VI). 
This inhibitory effect is mainly because these ions can quickly get the photoexcited elec-
trons on the semiconductor conduction band, thus competing with Cr(VI) for electrons, 
inevitably reducing the reduction efficiency. 

 

Figure 2. (a) Transient photocurrent responses of the as-prepared samples; and (b) electrochemical 
impedance spectra (EIS) of the as-prepared samples. 

 
Figure 3. Photocatalytic reduction curves of Cr(VI) solution containing different concentrations of 
NaCl (a); and (b) sodium salts (10 mM) and (c) inorganic salts (10 mM). 

Figure 3. Photocatalytic reduction curves of Cr(VI) solution containing different concentrations of
NaCl (a); and (b) sodium salts (10 mM) and (c) inorganic salts (10 mM).

3.2. Structural and Morphological Analysis

The X-ray diffraction (XRD) results of the NiCo2S4 with different MWCNT contents
are shown in Figure 4. For the samples, eleven diffraction spikes were recorded at 26.8◦,
31.6◦, 33.0◦, 38.3◦, 47.4◦, 50.5◦, 55.3◦, 58.1◦, 62.5◦, 65.1◦, and 69.3◦, respectively, indexed as
022, 031, 222, 040, 242, 511, 044, 253, 620, 053, and 244 using JCPDS No. 20-0782 [64]. It can
be clearly seen from the image that the diffraction peaks of these as-prepared composites
were relatively narrow and independent, indicating that the composites exhibited a better
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crystalline state. However, no prominent diffraction peaks of the MWCNTs were observed,
indicating that they were highly dispersed in the composites. With the introduction of
MWCNTs, the NiCo2S4 was relatively dispersed, and the peak intensity decreased. The
change in grain size can be reflected in the peak width of the diffraction peak [65]. It
can be seen from the graph that the grain size of the pure NiCo2S4 was slightly larger.
Furthermore, the grain sizes of the NiCo2S4, 0.020C-NCS, 0.050C-NCS, and 0,100C-NCS
photocatalysts were further calculated to be 321, 262, 136, and 148 nm, respectively, by
using the Debye–Scherrer method [66,67]:

D = kλ/β cos θ

The photocatalytic activity generally increased with a decrease in the grain size [68].
The larger grain size of NiCo2S4 indicated that the photocatalytic reduction reaction of
Cr(VI) with the pure NiCo2S4 had poor performance. The previous experimental results of
photocatalytic reduction also confirmed this conclusion.
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Figure 4. XRD pattern of as-prepared samples.

The structure and morphology of 0.050C-NCS were further characterized using SEM
and TEM, as shown in Figure 5. From the SEM of 0.050C-NCS (Figure 5a,b), there were a
large number of NiCo2S4 nanoparticles clustered on the surface of the carbon nanotubes.
The appearance of the carrier MWCNTs and nanoparticle shape of NiCo2S4 proved that
the NiCo2S4 nanoparticles were successfully loaded on the MWCNTs via hydrothermal
synthesis. The nanostructure of 0.050C-NCS was further characterized using transmission
electron microscopy (TEM), as shown in Figure 5c. The results of the TEM further observed
that the morphology of 0.050C-NCS showed an apparent hollow tubular structure. In
the high-resolution TEM (HR-TEM) image of 0.050C-NCS, it exhibits an ordered lattice
structure (Figure 5d). The measured lattice fringe spacing between two adjacent planes
was 0.27 nm, which matched well with the (222) lattice plane of NiCo2S4, indicating the
successful synthesis of NiCo2S4 materials. In addition, the element distribution of 0.050C-
NCS (Figure 5e) was tested using SEM-EDS. The result showed that 0.050C-NCS comprised
Ni in a light blue color, Co in a green color, S in a yellow color, C in a blue color, and N
in red color, indicating the successful synthesis of 0.050C-NCS. Additionally, the Energy
dispersive spectroscopy of 0.050 CNT-NiCo2S4 is presented in Figure S5.

3.3. Nitrogen Adsorption–Desorption Experiment

The specific surface area of photocatalysts is one of the critical factors affecting the
performance of catalysts. The higher the specific surface area, the more reaction sites
of the catalyst, which is beneficial to enhancing the photocatalytic performance of the
catalyst. We can obtain the type of BET isotherm from the four informative sections of
the BET plot: initial steepness, rounded knee, plateau, and final steepness. The prepared
photocatalyst’s BET isotherm (Figure 6 or Figures S6–S8) was of type II, as it had a low
saturation pressure, an extended plateaus, and an almost vertical rise at a higher relative
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pressure, which expresses the presence of a macro-sized pore. The higher the relative
pressure, the more adsorption occurs, so the interaction between the adsorbent and the
adsorbate is relatively weak. The photocatalyst’s hysteresis was H3 type (slit-type pores)
that almost diffused or overlapped with the adsorption curve, expressing the simple
adsorption on and desorption from the surface [69]. The H3 hysteresis loops and III-
type isotherms proved the mesoporous nature of the catalysts, and the pore size ranges
counted in Table 1 were all within the mesoporous range. The specific surface area (SBET),
pore volume, and pore size of the prepared samples are presented in Table 1. The SBET
of the samples gradually increased with an increase in the MWCNT addition. Among
them, the SBET and pore volume of 0.050C-NCS increased to some extent compared to
the pure NiCo2S4, which might have been due to the doping of MWCNTs inhibiting the
crystallinity of NiCo2S4, resulting in a decrease in the grain size, thus increasing the SBET
and pore volume. Increasing the pore volume and SBET of photocatalysts could provide
more reaction sites for reducing Cr(VI). However, too much MWCNT addition will lead to
the encapsulation of NiCo2S4 by the MWCNTs, reducing the photocatalytic performance.
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Table 1. The BET parameters of the samples.

Sample SBET (m2/g) Pore Size (nm) Pore Volume (cm3/g)

NCS 16 34 0.133
0.005C-NCS 22 27 0.145
0.020C-NCS 51 22 0.290
0.035C-NCS 71 18 0.328
0.050C-NCS 91 20 0.460
0.075C-NCS 100 18 0.439
0.100C-NCS 125 15 0.467
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3.4. Composition and Band Structure Analysis

To further determine the chemical compositions of the elements in the samples, 0.050C-
NCS was characterized using X-ray photoelectron spectroscopy (XPS), and the results are
shown in Figure 7. The peak positions of C, Ni, Co, S, N, and O can be observed in the
survey spectra of Figure 7a, and the distribution of each element was relatively uniform.
Specifically, the element N was present at a binding energy of 400 eV, and its content was
relatively low. The absorption of some oxygen-containing substances in the air by the
material might have caused the presence of the O 1s characteristic peak. As shown in
Figure 7b, 0.050C-NCS showed two satellite peaks and two spin-orbit double peaks. The
two spin-orbit double peaks were about 853.1 eV and 870 eV, corresponding to Ni2+, and
the peaks were about 855.9 eV and 873.8 eV, corresponding to Ni3+, which proved the
presence of Ni2+ and Ni3+ in 0.050C-NCS [58]. As shown in Figure 7c, in 0.050C-NCS, there
were two spin-orbit double peaks at about 778.5 eV and 793.3 eV, corresponding to Co3+,
and at about 797.3 eV and 781.08 eV, corresponding to Co2+. As shown in Figure 7d, the
S 2p spectrum showed two peaks at 162.5 eV and 161.5 eV, attributed to S 2p1/2 and S
2p3/2, which showed the valence state of S2− [58]. The fractional peak at 163.5 eV was
attributed to the metallic sulfur (M-S) in 0.050C-NCS, demonstrating the presence of the
Ni-Co-S phase [63]. The other peak with a binding energy of 168.6 eV represented the
oxidized S bond, meaning that some surface sulfide ions were oxidized during the XPS
test. The C 1s spectrum was decomposed into three characteristic peaks at 288, 285.8, and
284.8 eV (Figure 7e), which could be attributed to the C=O/C=N, C-O/C-N, and C=C/C-C
bonds, respectively [70,71]. From the N 1s spectra, the nitrogen atoms contained different
oxidation states, including pyridine-N (398.4 eV), pyrrole-N (400.1 eV), and pyridine-N-
oxide (402.2 eV) (Figure 7f) [72].

To investigate the band structure alignment of 0.050C-NCS, UV-Vis Diffuse Reflectance
Absorption Spectra (DRS) were obtained, as shown in Figure 8. As shown in Figure 8a,
0.050C-NCS presented a clear absorption edge at around 485.2 nm. The optical energy
gap was calculated by using the given equation: αhυ = A(hυ − Eg)n, where h, α, υ, A,
and Eg are the equation parameters [73]. The bandgap energy of 0.050C-NCS was 2.56 eV
(Figure 8b). Figure S9 shows that the absorption edge of the pure NiCo2S4 was at 417.2
nm. The light absorption of 0.050C-NCS showed a light red shift compared to the pure
NiCo2S4, indicating that introducing MWCNTs enhanced the light absorption performance.
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As shown in Figure 8c, the slope of the Mott–Schottky plot is positive, so 0.050C-NCS
belonged to the n-type semiconductor. Generally, the flat band potential was close to
the bottom of the conduction band of the n-type semiconductor. The flat band potential
calculated from the x-intercept of the linear regions of this plot was−0.63 eV (vs. Ag/AgCl)
for 0.050C-NCS (−0.43 eV, vs. NHE). The conduction band was smaller than the flat band
by 0.2 eV. Thus, the conduction band of 0.050C-NCS was −0.63 eV (vs. NHE). According to
the equation EVB = ECB + Eg [74], the valence band position (EVB) of 0.050C-NCS could be
calculated as 1.93 eV. The relative band structure alignment of 0.050C-NCS is illustrated
in Figure 8d. Also, the potential of ECr6+(Cr2O7

2−/Cr3+) could be calculated as 1.33 eV
when the solution was acidic. Therefore, Cr(VI) can be easily reduced by the 0.050C-NCS
photocatalyst system. Adding MWCNTs accelerated the charge transfer, which was more
conducive to the reaction.
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The results indicated that MWCNTs incorporated into NiCo2S4 nanoparticles im-
proved the efficiency of visible light absorption and excitation separation. The high activity
of 0.050C-NCS was attributed to the high charge transfer and low photoexcited electron–
hole recombination properties. The good chemical and thermal stability, large surface area,
and excellent mechanical properties of MWCNTs make them ideal as support materials
for hybridization with photocatalysts for applications in modifying photocatalysts. When
MWCNTs were hybridized with NiCo2S4, they not only exerted the advantage of inhibiting
photocatalyst aggregation. Moreover, they also acted as a sink in the transfer of photogener-
ated electrons. In this photocatalyst system, MWCNTs acted as “electron sinks” to receive
the photogenerated electrons from NiCo2S4, effectively separating the electron–hole pairs.



C 2023, 9, 99 10 of 14

Thus, the recombination of photogenerated carriers was effectively suppressed. Moreover,
the photogenerated electrons on MWCNT could participate in the photocatalytic reaction
and effectively photocatalytically reduce Cr(VI) to Cr(III). In addition, the reaction equation
for the photocatalytic reduction of Cr(VI) to Cr(III) is as follows [45]:

Cr2O7
2− + 14 H+ + 6e− → 2Cr3+ + 7 H2O
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3.5. Stability of the Catalyst

In addition, as a photocatalyst with an excellent performance, it should remain sta-
ble under repeated cycles. Cyclic photocatalytic experiments confirmed the stability of
0.050C-NCS. As shown in Figure 9, the results showed that 0.050C-NCS maintained a high
reduction rate after being used five times. It maintained a 91.4% reduction rate in the
fourth photocatalytic Cr(VI) reduction, while a sharp decrease occurred in the fifth cycle.
In general, 0.050CNT-NiCo2S4 had a relatively good application for reducing Cr(VI) in the
first four cycles.
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4. Conclusions

In summary, a facile two-step hydrothermal method was used to prepare CNT-
NiCo2S4 composites with different MWCNT contents. The composite samples showed
excellent photocatalytic activities with a good reduced Cr(VI) stability. The 0.050C-NCS
sample could reduce Cr(VI) within 40 min, attributed to the large specific surface area,
enhanced visible light absorption, and efficient separation and transport of photogen-
erated electron–hole pairs resulting from the MWCNT introduction. MWCNTs could
receive photogenerated electrons from NiCo2S4 and effectively separate the photogener-
ated electron–hole pairs. Therefore, the recombination of photogenerated carriers was
effectively suppressed. After the addition of MWCNTs, an improvement in the visible light
absorption and carrier separation efficiency of NiCo2S4 was realized, and the photogener-
ated electrons on the MWCNTs could effectively photocatalytic reduce Cr(VI) to Cr(III).
Therefore, the MWCNT-based composite photocatalyst could effectively reduce Cr(VI).
This work’s strategy for building a CNT-based photocatalyst provides a promising method
for completely removing high-valence heavy metal ions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/c9040099/s1. Figure S1: The schematic diagram of the reactor;
Figure S2: ESR spectrum of the •O2

− produced by NiCo2S4 and 0.050 CNT-NiCo2S4 under visible-
light irradiation; Figure S3: Effect of scavengers on photocatalytic degradation of Cr(VI) during
the trapping experiments of the 0.050 CNT-NiCo2S4; Figure S4: Circuit fitted Nyquist plot of the
0.050C-NCS with a suitable modified Randle circuit (inset); Figure S5: Energy dispersive spectroscopy
of 0.050 CNT-NiCo2S4; Figure S6: N2 adsorption and desorption isotherms and corresponding pore-
size distribution curves (inset) for 0.005 CNT-NiCo2S4; Figure S7: N2 adsorption and desorption
isotherms and corresponding pore-size distribution curves (inset) for 0.035 CNT-NiCo2S4; Figure S8:
N2 adsorption and desorption isotherms and corresponding pore-size distribution curves (inset)
for 0.075 CNT-NiCo2S4; Figure S9: UV-Vis Diffuse Reflectance Absorption Spectra (DRS) of as-
prepared samples with different amounts of CNT; Table S1: Comparison of photocatalytic efficiency
for photocatalytic reduction of Cr(VI) between previously reported literature and the present work.
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