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Abstract: Graphene-like materials have attracted significant attention as alternative catalyst carriers
due to the broad possibilities of changing their shape, composition, and properties. In this study we
investigated the structural and electrochemical characteristics of platinum electrocatalysts supported
on reduced graphene oxide (rGO), including those modified with amine functionalities, nitrogen
heteroatoms (rGO-Am), and oxygen enriched (rGO-O). Synthesis of Pt nanoparticles (20 wt.%) on
the graphene-like nanomaterials surface was carried out using a modified polyol procedure. The
Pt20/rGO-Am showed a lower Pt nanoparticles size together with high Pt utilization and EASA
values compared to rGO-supported catalysts and the Pt/C reference sample due to the uniform
distribution of nucleation centers on the surface of graphene nanoparticles, and the greater ability of
these centers to electrically bond with platinum.

Keywords: reduced graphene oxide; aminated graphene; ozonized graphene; functionalized catalyst
carrier; carbon-supported platinum nanoparticle; platinum utilization; functional group; polyol
reduction; polymer electrolyte membrane fuel cell; PEMFC

1. Introduction

Polymer electrolyte membrane fuel cells (PEMFC) are being developed as power
sources for transport, stationary and portable systems as an alternative to conventional
internal combustion engines, secondary batteries, and other conventional power sources [1].
The catalyst for the oxygen reduction reaction (ORR) (usually carbon-supported Pt nanopar-
ticles [2]) is the main component of the membrane-electrode assembly (MEA) of PEMFC,
which determines its performance, efficiency and durability [3]. The high specific sur-
face area of catalysts based on Pt nanoparticles is achieved by using carbon carries [4].
Carbon carries must have such properties as: a high specific surface area, high electrical
conductivity, developed pore structure and corrosion resistance [5]. In particular, in order
to ensure the transport of reagents/reaction products to/from the active centers, the carbon
supports must have a large number of mesopores and macropores, and an appropriate
morphology [6]. The most commonly used carbon supports are carbon blacks (for example,
Vulcan XC-72), which do not completely fulfil catalyst support requirements, especially on
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the corrosion resistance [7,8]. The disadvantage of carbon black consists of its microporous
structure. The metal particles may sink inside micropores, decreasing the electrochemically
active surface area (EASA). This leads to the development of mesoporous carbons with
high mesopores (2 < pore sizes < 50 nm) degree. These materials have attracted a lot of
attention due to their regular structure, high surface area, large pore volume and a narrow
pore size distribution [9].

The challenging task is the development of alternative supports for Pt nanoparticles
that increase the activity and stability of the catalyst, reduce the noble metal loading, and
provide optimal properties of the active layer (hydrophobicity/hydrophilicity, porous
structure, etc.) that allow the mass transfer facilitation [10,11]. Therefore, graphene-like
materials and their derivatives are considered as promising catalyst supports.

Graphene first obtained by mechanical exfoliation [12] is significantly exploited for
energy storage systems because of its excellent physical-chemical properties: high spe-
cific surface area (up to 2600 m2 g−1), high thermal and electrical conductivity, corrosion
resistance and mechanical strength (up to 130 GPa) [13]. In graphene, each carbon atom
is covalently bonded with neighboring carbon atoms by three in-plane σ-bonds (from
sp2 orbitals) and one π-bond (from the remaining 2p orbital) perpendicular to the basal
plane comprising the electron delocalization network [14,15]. For many electrochemical
systems, including PEMFC, dispersed derivatives of graphene, such as three-dimensional
reduced graphene oxide (rGO) are of practical interest [16,17]. Due to the sp2-hybridized
carbon atoms the chemical and electrochemical stability of graphene-like materials are quite
high [18,19], and these materials are considered as promising supports of Pt nanoparticles.
However, the graphene basal plane is inert and does not have enough defects that could
act as the active centers of electrochemical reactions or nucleation of nanoparticles [20].
Carbon materials modified with heteroatoms (B, N, S or P) allow for breaking the surface
electroneutrality and redistributing the electronic density, providing the appearance of
active centers for the deposition of Pt nanoparticles, as well as controlling their proper-
ties [21]. This allows for achieving higher activity and stability of electrocatalysts in ORR
and other reactions compared with counterparts based on carbon black or graphene-like
materials without doping [22]. In particular, aminated graphene exhibits complicated
morphology with a tendency to form a wrinkled and corrugated structure, which facilitates
the formation of porous films and aerogels, making it promising for catalyst and sensing
applications [23].

The proposed study is focused on the structural, morphological and electrochemical
properties of electrocatalysts supported on rGO modified with amine functionalities and
nitrogen heteroatoms (rGO-Am), and an oxygen enriched one (rGO-O) obtained by ozone
treatment. The synthesized catalysts (with 20 wt.% of Pt) were characterized using different
techniques, including X-ray photoemission spectroscopy (XPS), X-ray diffraction (XRD),
transmission electron microscopy (TEM), and cyclic voltammetry.

2. Materials and Methods

Graphene oxide (GO) was obtained by modified Hummers’ method, as described
in [24,25].

The rGO-O was obtained by ozone–oxygen mixture treatment which was performed
at 20 ◦C by barrier discharge in the ozone generator “MEDOZONE” UOTA-60-01. The
ozone concentration was 30–50 mg L−1, and the processing was carried out for 40–50 min
until the ozone absorption stopped [26].

The rGO-Am was synthesized via the following three-stage approach. At the first
stage, GO was treated with hydrobromic acid. At the second stage the brominated graphene
oxide was subjected to ammonolysis with alcoholic ammonia solution. At the third stage
the aminated graphene oxide was reduced with hydrazine.

Synthesis of rGO-supported Pt nanoparticles (20 wt.%) was carried out by a modified
polyol reduction approach [27]. Briefly, 11.2 mL H2PtCl6 × 2H2O was used as the platinum
precursor, and 180 mL of ethylene glycol was used as the reducing agent. The synthesis
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was carried out in a Drexel flask with argon flowing in the flask, which was kept at 75 ◦C
for 2 h, and then heated to a reduction temperature of 180 ◦C, and kept for 1 h. Washing
was performed by decantation six times. Pt supported on Vulcan XC-72 (Pt/C) was used as
the reference catalyst (Prometheus R&D Ltd., Rostov-on-Don, Russia).

XRD (SmartLab SE X-ray Diffractometer, Rigaku SmartLab, Tokyo, Japan) was carried
out using CuKα radiation. The diffraction data for Pt20/C, Pt20/rGO, Pt20/rGO-O and
Pt20/rGO-Am catalyst were recorded for 2θ angles between 5◦ and 120◦. The crystallite
size of Pt nanoparticles (d) was determined by Debye–Scherrer’s equation:

d =
Kλ

βcosθ
(1)

where K is the Scherrer constant (for spherical particles with cubic symmetry is equal
to 0.94), λ is the wavelength of the X-ray used (0.15406 nm), β is the full width of the
diffraction peak at half maximum in radians (FWHM), and θ is the Bragg angle.

The morphological features of the catalysts were studied by transmission electron
microscopy (TEM) using a TitanTM 80–300 S/TEM (“FEI”) (80–300 kV, space resolution by
points is equal to 0.07–0.08 nm).

The XPS studies were performed using a PHOIBOS 150 (SPECS Surface Nano Analysis
GmbH, Berlin, Germany) hemispherical analyzer and monochromatic Al Kα radiation (Kur-
chatov Complex of Synchrotron and Neutron Investigation, NRC “Kurchatov Institute”,
Moscow, Russia). Obtained spectrums (C 1s, O 1s, Pt 4f ) were measured and processed
according to the approach described in [28,29].

Electrochemical studies were performed using a potentiostat Solartron 1285 (AMETEK
Inc., Berwyn, PA, USA) in a three-electrode cell using Ag/AgCl/sat. KCl solution reference
electrode (Ag/AgCl), polished glassy carbon working electrode, and Pt wire counter
electrode [27,28]. Cyclic voltammograms were measured using Ar-purged 0.5 M H2SO4
solution in the potential range of –0.15 to 1.2 V at the sweep rate of 20 mV s−1.

Electrocatalytic ink consisting of 16 mg of catalyst and 8 mL of water was prepared
by ultrasonic treatment using a probe ultrasonic homogenizer (Cole Parmer, Vernon Hills,
IL, USA) for 20 s with the following treatment in an ultrasonic bath for 40 min. Then, a
10 µL inks aliquot was dropped onto the working electrode surface. The pretreatment of
the working electrode was performed via cyclic voltammetry at 100 mV s−1 until the stable
curve was obtained.

Electrochemical surface area was calculated from cyclic voltammetry analysis by using
the following equation:

EASA = (
Q

QH ∗ Lpt
) ∗ 10−1 (2)

where Q is the charge associated with the adsorption/desorption of hydrogen monolayers
(average value between anodic and cathodic sweep was taken) (µC cm−2), LPt is the Pt
loading on the working electrode (mg cm−2), and QH is the charge required to oxidize the
monolayer of hydrogen on a Pt surface (µC cm−2) [30].

The total Pt surface area was calculated using the equation below, considering particles
have spherical shape [28]:

Spt =
6000
p ∗ d

(3)

where Spt—the total surface area of Pt particles (m2 g−1), d—the Pt particle diameter (nm)
taken as the mean value between dXRD and dTEM, a p—the density of Pt (21.4 g m−3).

The accessibility of the Pt nanoparticles and the catalytic layer connectivity could be
analyzed using the Pt utilization. Pt utilization of 100% means that all Pt nanoparticles
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are integrated into the entire electron conductivity network and are fully accessible by the
electrolyte. The Pt utilization was calculated using the equation below:

Upt =
(

EASA
Spt

)
∗ 100 (4)

where Upt is the Pt utilization of the catalyst (%) [28,31].

3. Results and Discussion

TEM-micrographs of Pt20/rGO, Pt20/rGO-O and Pt20/rGO-Am catalysts are shown
on Figure 1. All catalysts exhibit a layered structure which is characterized by some extent
of Pt nanoparticles agglomeration. Using well-known ImageJ software [32], an analysis
of the size distribution of Pt nanoparticles were performed (no less than 100 particles for
each catalyst have been taken into account). Pt nanoparticles are well-dispersed with a
narrow size distribution in the range of 2–3 nm with an average size of 2.8, 2.5 and 2.4 nm
for Pt20/rGO, Pt20/rGO-O and Pt20/rGO-Am, respectively. However, rGO-supported Pt
nanoparticles are characterized by agglomeration, which leads to a decrease in catalysts
EASA [28,33]. Pt20/rGO-Am has the smallest average nanoparticle size because the nitro-
gen doping of rGO allows for the formation of additional defects on the rGO basal surface,
which provides additional active centers for stabilizing Pt nanoparticles during their depo-
sition. This contributes to a more uniform distribution of smaller Pt nanoparticles [34,35].
It should be noted that the average sizes of Pt nanoparticles in all obtained rGO-based
catalysts were lower compared to the commercial catalyst Pt20/C (average size of 3.1 nm)
which is taken as a well-known reference catalyst [36].
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In addition, the XRD investigations were performed to confirm the crystalline struc-
tures of the Pt on different supports (Figure 2). The characteristic peaks at 2θ ≈ 23.3◦ with
respect to the carbon (002) plane are detected for all studied catalysts. The diffraction
peaks at 2θ of 39◦, 46◦, 67◦, 81◦ and 85◦ correspond to the (111), (200), (220), (311) and
(222) planes of the face-centered cubic structure of Pt crystallites, respectively [37]. The
average crystallite size was calculated for the XRD peak assigned to Pt(220), as this is
far from the background signal of carbon support [38]. The Pt crystallite size of Pt20/C,
Pt20/rGO, Pt20/rGO-O and Pt20/rGO-Am was found to be ca. 2.83, 2.70, 2.85 and 2.69 nm,
respectively. The obtained average crystallite sizes are given in Table 1 together with the
particle sizes obtained by TEM. The mean Pt(220) crystallite size values are in a narrow
range of 2.69–2.85 nm, which generally correlates well with the Pt nanoparticles mean size
values (2.4–3.1 nm).
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Figure 2. X-ray diffraction patterns for Pt20/C, Pt20/rGO, Pt20/rGO-O and Pt20/rGO-Am.

Table 1. Comparative parameters of the obtained catalysts.

Sample dTEM, nm dXRD, nm EASA, m2 g−1 SPt, m2 g−1 UPt, %

Pt20/C 3.1 2.83 70.5 94.7 77.4
Pt20/rGO 2.8 2.70 67.1 101.9 65.8

Pt20/rGO-O 2.5 2.85 40.6 105.0 25.8
Pt20/rGO-Am 2.4 2.69 87.5 110.3 79.3

The elemental composition of Pt20/rGO, Pt20/rGO-O and Pt20/rGO-Am catalysts
was studied using X-ray photoelectron spectroscopy. According to the C 1s spectra
(Figure 3A,C,E), rGO-supported catalysts primarily consist of sp2–carbon (~284.4 eV).
The sp2/sp3 ratios of Pt20/rGO, Pt20/rGO-O and Pt20/rGO-Am are 38.69, 23.4 and 1.23.
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Figure 3. C 1s (A,C,E), O 1s (B,D,F) and N 1s (G) spectrums of catalysts: Pt20/rGO (A,B), Pt20/rGO-
O (C,D) and Pt20/rGO-Am (E,F,G).

According to the C 1s spectra, Pt20/rGO and Pt20/rGO-O are rather similar to each
other and differ mainly in the relative intensity ratios of O=C-OH, C=O, C–O, C-OH and
quinone groups [29]. The existence of C–N bonds (286.07 eV) [39], as well as relatively high
sp3 carbon atoms ratios, should be noticed in Pt20/rGO-Am.

The O 1s spectra of catalysts are characterized by several peaks and allow for a some-
what more detailed assessment of the oxygen-containing groups. In particular, quinone
(~530.3–530.5 eV), carboxyl (~531.1 eV), carbonyl (~532.1 eV), C–O (~532.7–533.0 eV), and
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hydroxyl (~533.7 eV) functional groups [29,40] are detected. Lower binding energy peaks
in the O 1s spectra could be ascribed to the quinone [41] or Me-O. The existence of oxygen
functional groups in rGO is due to the incomplete thermal reduction of graphene oxide at
temperatures below 2000 ◦C [42]. The C/O value of each catalyst shows oxygen content and
equals to 15.57, 9.35 and 8.87 at.% for Pt20/rGO, Pt20/rGO-O and Pt20/rGO-Am, respec-
tively. As such, the ozone treatment allows for significantly increasing the concentration of
oxygen functional groups in comparison with the bare rGO, which is in good agreement
with the literature. Ozone treatment of carbon black at 140 ◦C was responsible for a C/O
decrease from 22.4 to 18.4 and increase in the oxygen functionalities content, especially in
the carboxyl groups [43].

It is worth noting that the N 1s peak in Pt20/rGO-Am confirms the presence of N in the
rGO structure, according to XPS spectrum fitting the nitrogen content in rGO is ca. 1.41 at.%
(Table 2). Thus, the peaks observed in Pt20/rGO-Am spectra (Figure 3G) show the presence
of amino groups (399.83 eV) [23], and demonstrate that the significant part of the N atoms
being embedded in the rGO structure in the form of quaternary N (401.78 eV) and pyridine
N (398.4 eV) [29,44]. It is important to note that the amine functionality with its peak area
percentage of ca. 60% appears to be a dominant type of nitrogen species. The dominancy
of amine functionality was reported for bare aminated rGO as well [23]. It is well known
that amino, carbonyl and carboxyl groups can replace chlorine in the coordination sphere
of hexachloroplatinates [45–47]. The introduction of functional groups into the rGO allows
for the immobilization of platinum precursor molecules (H2PtCl6) on the support surface.
The features of these groups determine the Pt nanoparticles morphology. Moreover, the
nitrogen heteroatoms presumably contribute to better Pt nanoparticles distribution, as
described recently [48–50].

Table 2. Some results of XPS spectrums fitting of Pt20/rGO, Pt20/rGO-O and Pt20/rGO-Am.

Sample C/O C sp2, % N, at.% NH2–, % Npyrr, % Nquat, %

Pt20/rGO 15.57 76.2 – – – –
Pt20/rGO-O 9.35 71.1 – – – –

Pt20/rGO-Am 8.87 37.0 1.41 59.57 21.98 18.43

Metallic Pt (0) duplet peaks were detected at 71.20/74.55 eV, 71.22/74.57 eV and
71.39/74.72 eV for Pt20/rGO, Pt20/rGO-O and Pt20/rGO-Am (Figure 4). The Pt (0) content
of Pt20/rGO, Pt20/rGO-O and Pt20/rGO-Am is ca. 46.18, 52.77 and 55.4%, respectively.
The observed binding energy shift (ca. 0.2 eV) of the Pt/rGO-Am catalyst Pt(0) peak
toward higher values is associated with a change in the electronic structure of the support
(downshifting of the d-band center position), which may decrease the specific interaction
between the Pt surface and strongly adsorbed intermediates (e.g., OHads) [51]. Moreover,
the decrease in these adsorbed OHads–Pt interactions could enhance the catalytic activity
of Pt towards ORR [52,53]. This is consistent with the apparent absence of Pt (IV) in the Pt
4f spectrum (Figure 4C) [54].
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The cyclic voltammograms of catalysts of Pt20/C, Pt20/rGO, Pt20/rGO-O, Pt20/rGO-
Am are shown in Figure 5. Well-defined peaks, observed in the potential range from
−0.15 to 0.2 V vs. Ag/AgCl reference electrode correspond to the desorption/adsorption
of the hydrogen monolayer on the surface of Pt nanoparticles [28]. The EASA value for
Pt20/C, Pt20/rGO, Pt20/rGO-O and Pt20/rGO-Am is ca. 70.5, 67.1, 40.6 and 87.5 m2 g−1,
respectively. The EASA value for Pt20/rGO is in good agreement with the data reported
in the literature [55] for the rGO-supported catalyst (52.1 m2 g−1) with a similar platinum
content and rather close mean Pt nanoparticle size. Pt20/rGO-O has low EASA, presumably
due to a high degree of particle agglomeration during synthesis. These areas are unevenly
distributed over the rGO surface, and tend to appear near the graphene sheet edges.
Therefore, Pt nanoparticles in Pt20/rGO-O tend to be closely formed on the same areas,
allowing their aggregation [26]. This could be responsible for lower catalyst EASA and Pt
utilization, as discussed below.
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The purpose of studying the Pt utilization in the electrocatalyst is to evaluate the
electronic bonding of the carbon support with Pt nanoparticles [56]. According to our
results, the obtained EASA values are lower than the values of the total Pt surface area
calculated from Equation (3), even using a low-loaded thin catalytic film on the working
electrode surface. Pt utilization of the various rGO-supported catalyst could vary from
28% to 93% [57,58] depending on synthesis approach and conditions. The obtained results
(Table 1) show that the nitrogen doping of rGO allows for increasing the catalyst EASA,
reducing the Pt nanoparticles agglomeration degree, and increasing the Pt utilization.
This observation is in good agreement with the literature; the interaction between Pt
nanoparticles and the N-doped support enhance adhesion of the Pt nanoparticles to the
support [35] which could alleviate the aggregation of the nanoparticles. Moreover, first-
principles study revealed that Pt nucleation is favorable on pyridinic and pyrrolic N, and
the center of the d-band can be shifted downward by the nitrogen species [52]. The EASA
of Pt20/rGO and Pt20/rGO-O catalysts calculated by CVs exhibited low values compared
to Pt20/C, which is probably due to the blocking on the surface of the Pt particles and to
the inaccessibility of the catalyst deep inside the micropores of the carbon support [59].
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4. Conclusions

In this study, variously modified rGO-based catalytic materials were synthesized and
characterized, and their performances were compared with those for a reference Pt/C
catalyst. The aminated rGO synthesized in this study could be suggested as a promising
PEMFC catalyst support due to the uniform distribution of Pt nanoparticles provided
by amino functionalities and embedded nitrogen (pyridine and quaternary) heteroatoms.
Amination provides additional sites for Pt nanoparticles nucleation and prevents their
further growth during synthesis. The low nanoparticles agglomeration degree ensures a
high Pt utilization value, which is higher than the one for the bare rGO-supported catalyst
and comparable with those for Pt/C. Pt20/rGO-Am catalyst showed the highest % ECSA
among the other catalysts. Ozone treatment of rGO is still a questionable approach, as the
Pt nanoparticles morphology is not appropriate for further use as PEMFC catalyst, because
of the high degree of catalyst particles agglomeration, which deteriorates the catalyst layer
microstructure, thus reducing the MEA performance.
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