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Abstract: Nanoarchitectonics has been recently proposed as a post-nanotechnology concept. It is
the methodology to produce functional materials from nanoscale units. Carbon-based materials
are actively used in nanoarchitectonics approaches. This review explains several recent examples
of energy and related applications of carbon materials from the viewpoint of the nanoarchitecton-
ics concept. Explanations and discussions are described according to the classification of carbon
sources for nanostructured materials: (i) carbon nanoarchitectonics from molecules and supramolec-
ular assemblies; (ii) carbon nanoarchitectonics from fullerenes; (iii) carbon nanoarchitectonics from
biomass; and (iv) carbon nanoarchitectonics with composites and hybrids. Functional carbon ma-
terials can be nanoarchitected through various processes, including well-skilled organic synthesis
with designed molecular sources; self-assembly of fullerenes under various conditions; practical,
low-cost synthesis from biomass; and hybrid/composite formation with various carbon sources.
These examples strikingly demonstrate the enormous potential of nanoarchitectonics approaches to
produce functional carbon materials from various components such as small molecules, fullerene,
other nanocarbons, and naturally abundant biomasses. While this review article only shows limited
application aspects in energy-related usages such as supercapacitors, applications for more advanced
cells and batteries, environmental monitoring and remediation, bio-medical usages, and advanced
devices are also expected.

Keywords: biomass; carbon; composite; energy-related application; fullerene; hybrid; nanoarchitectonics;
organic synthesis; self-assembly; supercapacitor

1. Introduction

Developments of functional materials are the foremost keys to solve various social
problems such as energy [1-4], environmental [5-8], and medical issues [9-12]. As seen
in materials fabrication processes based on organic synthesis [13-15], polymer chemistry [16-18],
supramolecular chemistry [19-22], and materials sciences [23-26], carbon materials and
hydrocarbon materials (organic compounds) play indispensable roles. Significant contribu-
tions of carbon-related materials originated in their high adaptability to various demands,
their environmentally friendly nature, their possible biocompatibility, and the richness
of their reserves in petroleum and biomass. Thus, one of the central players in materials
science history is undoubtedly carbon.

In addition to producing materials with superior intrinsic properties, the importance
of nanostructure controls of functional materials has been paid much attention in research
efforts to produce more refined functional materials. This trend was triggered by nanotech-
nology developments, especially with advanced methods for observation and analyses
on nanoscale structures [27-29]. Nanocarbons such as fullerenes, carbon nanotubes, and
graphene derivatives play essential roles in various nanotechnology-related research ef-
forts [30-32]. As seen in recent advanced observation techniques, nanocarbons such as
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carbon nanotubes [33] and carbon nanohorns [34] were used for observation media. Fur-
thermore, the accumulation of nanostructure analyses in functional materials has revealed
the importance of nanostructure regulations for better performance.

As a one-step advanced methodology, nanoarchitectonics has been recently proposed
as a post-nanotechnology concept (Figure 1) [35,36]. This concept was initially proposed by
Masakazu Aono [37,38]. Nanoarchitectonics is a concept based on the fusion of nanotech-
nology with other research fields such as organic chemistry, supramolecular chemistry,
fabrication processes, materials science, and bio-related science [39,40]. It is the methodol-
ogy to produce functional materials from nanoscale units through combination/selection of
atom/molecular manipulation, chemical conversion, self-assembly /self-organization, ma-
terials processing, and bio-related treatments [41,42]. Because the basic concept in nanoar-
chitectonics is universally applicable to a wide range of materials, the nanoarchitectonics
concepts have been used for various targets including materials production [43,44], struc-
ture regulation [45—47], sensors [48,49], devices [50,51], catalysts [52,53], energy [54,55],
environment [56,57], bioscience [58-60], and biomedical applications [61-63]. Carbon-
based materials such as fullerenes are also used in nanoarchitectonics approaches [64,65].
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Figure 1. Outline of nanoarchitectonics concept to produce functional materials from nanoscale units
with highlights of carbon nanoarchitectonics and its energy-related applications.

Although the term nanoarchitectonics has not appeared clearly, essences of the nanoar-
chitectonics approaches are used in the developments of various functional materials.
Undoubtedly, carbon materials have significant contributions in recent research for func-
tional materials. Nanocarbon materials, fullerenes, carbon nanotubes, and graphene are
used for separation technology as stationary phases in both liquid and gas chromatography
and solid-phase extraction [66]. Precise nanostructures such as the chirality of single-walled
carbon nanotubes determine metallic or semiconducting natures, thus explaining devices’
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usage of selectively extracted carbon nanotubes [67]. Not limited to precisely structured
carbon materials, abundant carbon materials such as activated carbon materials are utilized
for various applications. For example, it was reported that nitrogen-doped porous activated
carbons were used for efficient separation between carbon dioxide gas and nitrogen gas
based on promoted adsorption of carbon dioxide [68].

Among applications of nanostructured carbon materials, energy-related applications
have been especially paid attention to. For example, nanoporous and mesoporous carbon
materials have acquired elevated interest as the leading electrode materials for commercial
supercapacitors [69,70]. Their characteristic features, especially their low production cost,
outstanding cycle stability, wide voltage operating range, enhanced specific surface area,
and porosity, make them the preference. These materials are widely explored as super-
capacitor electrodes and sensing materials. As reported by Matsumoto and co-workers,
graphene nanoribbons as narrow and elongated strips of graphene can be converted into in-
terconnected pore materials [71]. Disordered structures in their uses for electrode materials
are advantageous for capacitance retention, energy /power densities, and charge—discharge
capability. Kawamura et al. investigated carbon electrode and solid-electrolyte interphase
through operando measurement with in situ neutron reflectivity and ex-situ hard X-ray
photoelectron spectroscopy during two-cycle battery operation [72]. Hysteresis behaviors
of the amorphous carbon electrode upon lithiation/delithiation and chemical composition
of the solid-electrolyte interphase layer were revealed. As summarized in the review
by Matsuo, nanocarbon materials such as carbon nanotubes, fullerene derivatives, and
endohedral fullerenes for stability improvements of organic and perovskite solar cells were
investigated [73]. It was suggested that nanocarbon materials would have crucial roles
in developing practical organic solar cells. As demonstrated in these examples, carbon
materials have been used in various energy-related applications (Figure 1) where regulation
and evaluation of nanostructures of carbon materials are crucial matters.

Based on these backgrounds, this review explains several recent examples of energy
and related applications of carbon materials from the viewpoint of the nanoarchitectonics
concept. Explanations and discussions are described according to the classification of
carbon sources for nanostructured materials: (i) carbon nanoarchitectonics from molecules
and supramolecular assemblies; (ii) carbon nanoarchitectonics from fullerenes; (iii) carbon
nanoarchitectonics from biomass; and (iv) carbon nanoarchitectonics with composites
and hybrids (Figure 1). Research examples described in this review article were not the
best ones from the viewpoint of performances. These examples were selected for the
demonstration of the wide applicability of carbon nanoarchitectonics.

2. Carbon Nanoarchitectonics from Molecules and Supramolecular Assemblies

Chemical conversion upon organic synthesis gives specific contributions in nanoar-
chitectonics processes at the molecular bottom level. For example, well-sophisticated
organic synthesis can be used for syntheses of mimics of nanocarbon materials such as
graphene derivatives and carbon nanotubes. As summarized in a recent review article
by Xu, Miillen, and Narita, various large polycyclic aromatic hydrocarbon molecules can
be organically synthesized as atomically precise graphene quantum dots [74]. Further
extension of polycyclic aromatic hydrocarbon syntheses leads to the preparation of pre-
cisely structure-controlled graphene nanoribbons. These graphene quantum dots and
graphene nanoribbons with precisely controlled strictures become nanocarbon materi-
als with open bandgaps through the quantum confinement effect, unlike conventional
zero-bandgap graphene. These nanoarchitected carbon molecules have high potentials
in semiconductor-related applications such as nanoelectronics and optoelectronics. Upon
the methodology of on-surface synthesis, scalable nanoarchitectonics for structure-defined
graphene nanoribbon films can proceed on gold surfaces. In the recent research report,
two nanographenes (dibenzohexacenohexacene and dibenzopentaphenoheptaphene) were
prepared through on-surface synthesis using 8,8'-dibromo-5,5'-bibenzo[rst]pentaphene
as a precursor (Figure 2) [75]. Precise structures of these prepared nanographenes were
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confirmed by noncontact atomic force microscopy, and their electronic properties were esti-
mated upon density functional theory calculations. Various applications such as quantum
technologies, energy devices, optoelectronic devices, and bioimaging have been demon-
strated for the organically synthesized nanocarbon materials.

in Solution
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Figure 2. On-surface synthesis of two nanographenes (dibenzohexacenohexacene and dibenzopen-
taphenoheptaphene), using 8,8'-dibromo-5,5'-bibenzo[rst]pentaphene as a precursor.

Itami and co-workers recently reported the synthesis of supramolecular double-helix
nanofibers upon self-assembly of negatively curved nanographene without any aids of
assembly-assisting substituents (Figure 3) [76]. The used negatively curved nanographene
molecules can work as gelators in various organic solvents to form double-helix structures
through continuous m—7 stacking as confirmed by three-dimensional electron crystallogra-
phy. The nanoarchitected one-dimensional supramolecular nanocarbon materials can be
regarded as the first example of all-sp?>-carbon supramolecular 7-organogelator with nega-
tive curvature. Isobe and co-workers designed and demonstrated the synthesis of finite
phenine nanotubes with periodic vacancy defects [77]. The synthesized finite nanotube was
a C3p4Hpes molecule composed in a cylindrical shape having forty phenine units that are
mutually connected at the 1, 3, and 5 positions. Its nanometer-sized cylindrical structure
with periodic vacancy defects was identified crystallographically and spectroscopically. It
was suggested computationally that fusion of these unit cylinder molecules resulted in
carbon nanotubes, in which the periodic vacancy defects can modulate electronic properties
of the synthesized nanotubes.
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Figure 3. Formation of supramolecular double-helix nanofibers upon self-assembly of negatively
curved nanographene. Reprinted with permission from Reference [76]. Copyright 2021 American
Chemical Society.

Nanocarbon films were fabricated by self-assembly of ring-shaped organic molecules
with mechanical motions at a two-dimensional liquid interface [78]. Carbon nanoring
molecule, 9,9,10,10'-tetra-butoxy-cyclo[6]-paraphenylene-[2]-3,6-phenanthrenylene, dis-
solved in chloroform was on the water subphase with gentle rotational vortex motion.
This vortex Langmuir-Blodgett (vortex-LB) method [79-81] made the carbon nanoring
molecules uniformly assemble into a molecular thin film at the air-water interface. The
assembled thin film was transferred onto a solid substrate, followed by carbonization of the
transfer film for transformation to carbon nanosheet at elevated temperatures under nitro-
gen gas flow. The finally obtained nanofilm had a two-dimensional uniform morphology
with a thickness of about 10 nm. If nitrogen-containing molecules such as pyridine were
mixed into the carbon nanoring precursor, nitrogen-doped carbon nanosheets were synthe-
sized. The electrical conductivity of the nitrogen-doped carbon sheets was significantly
enhanced. The nanoarchitected carbon nanosheets would have potential in uses as catalysts
for oxygen-reduction reactions for high-performance fuel cells. This conventional synthetic
method is also advantageous for the large-scale production of nanocarbon materials. Haino
and co-workers very recently demonstrated the production of nanographene materials
from carbon sources through acid-assisted oxidative carbon cleavage with post-treatments
of neutralization and deionization [82]. Size separation using dialysis membranes provided
nanographene with a specific size distribution.

Template synthesis using molecular assemblies and other nanomaterials as sacrificial
templates is a powerful method to produce various nanostructured materials such as meso-
porous silica [83—85]. This strategy is also applied to carbon nanoarchitectonics, as seen in
the preparation of nanoporous and mesoporous carbon materials [86,87]. Wide ranges of
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applications have been investigated for such porous nanocarbon materials. As summarized
in the recent review article by Vinu and co-workers, nanoporous carbon materials with a
sufficiently high surface area have high potential in environmental applications such as
removing toxic heavy metals and radionuclides from water [88]. For adsorption efficiency
and selectivity, surface functional properties and textual characteristics are crucial factors.
These features can be adjusted by processes through selection and combination of the
precursors, synthetic conditions, activation, and modification. Especially, the low-cost
nature of preparation processes for nanoporous carbon materials is advantageous for a
worldwide application for water remediation. Shitanda et al. demonstrated the use of
pendant glycidyl group-modified mesoporous carbon materials as stable supports of en-
zymes [89]. Flavin-adenine-dinucleotide-dependent glucose dehydrogenase immobilized
on mesoporous carbon materials exhibited a glucose-oxidation catalytic current using
1,2-naphthoquinone as the redox mediator. Such enzyme-coupled nanostructured carbon
materials can be applied as bioelectrodes for biofuel cells. Vinu and co-workers demon-
strated the preparation of two-dimensional mesoporous Cgp/carbon hybrid materials for
usages in supercapacitor and Li-ion battery applications (Figure 4) [90]. The nanotemplat-
ing method using mesoporous silica SBA-15 as a template was used for the synthesis of
mesoporous fullerene/carbon hybrids, which were subjected to usages as electrodes for
Li-ion battery and supercapacitance applications. It was revealed that carbon coatings on
the mesoporous fullerene were important factors in energy storage devices.

Mesoporous Silica (SBA-15)
Template

Pore Filling with Sucrose
100/160 °C, 12 hr

3

Pore Filling with Cg,
100/160 °C, 12 hr

ytching with HF

/\\ 4

Mesoporous Carbon/Cg,
Hybrid

Figure 4. Preparation of mesoporous Cgg/carbon hybrid materials through nanotemplating method
using mesoporous silica SBA-15 as a template.
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As popularly researched, nanoporous materials, metal-organic frameworks, and co-
ordination polymers have been widely researched [91-93]. These coordination-based
materials can be converted to porous carbon materials that have been researched for
energy-related applications. Henzie, Yamauchi, Na, and co-workers reported nanoarchitec-
tonics of the fabrication of flexible micro-supercapacitors using nanocarbon films derived
from the zeolitic imidazole-based metal-organic framework (ZIF-8) (Figure 5) [94]. Flexi-
ble micro-supercapacitors were fabricated through rather a conventional electrophoresis
technique. The porous carbon films fabricated on micro-supercapacitors exhibited superior
electrochemical performance. The easily processable nature of this electrophoresis method
for high-quality, uniform nanoarchitected carbon films with good electrical conductivity
would become a powerful method for the preparation of excellent electrochemical devices.
It would have important contributions to miniaturized and flexible power supplies in
future applications. Covalent-organic frameworks have also been paid much attention as
another type of functional porous material [95-97]. The conversion of covalent organic
frameworks to nanoporous carbon materials has also investigated. Kim, Shiraki, and
Fujigaya recently reported the preparation of nitrogen-doped nanoporous carbon materi-
als through thermal conversion of triazine-based covalent organic frameworks [98]. The
fabricated nanoporous carbon materials basically have large surface areas with bimodal
microporous and mesoporous structures. Their pore textures can be modified by mod-
ification of carbonization temperatures. Condition optimization for the synthesis of the
nitrogen-doped porous carbons would result in good capacitive performance.

Nanocarbon Particle
Derived from NOF (ZIF-8)

DC15V

3
.." 5.0
‘o‘ t‘ i
& s l '...
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Figure 5. Fabrication of the flexible micro-supercapacitor electrodes using nanocarbon films derived
from the zeolitic imidazole-based metal-organic framework (ZIF-8).

3. Carbon Nanoarchitectonics from Fullerenes

Fullerene is regarded as a zero-dimensional molecule. It can, however, self-assemble
into higher one-dimensional, two-dimensional, and three-dimensional morphologies [99,100].
The self-assembled nanostructures of fullerene molecules have high symmetries and ex-
tended conjugated 7r-systems that impart unique physical and chemical properties. The
functional performance of any device depends mainly on its nanoarchitectonic morphol-
ogy. Therefore, there is a tremendous effort to innovate new methodologies to design
various self-assembled nanostructures to tailor their functional properties strategically.
Several potential applications of fullerene-based nanomaterials have been explored in
biomedicine, semiconductors, optics, electronics, and spintronics [101,102]. Furthermore,
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introducing well-defined mesoporous architectures with controllable pore sizes of these
fullerene nanostructures can increase their surface areas and synergistic interactions and
provide multiple functionalities, which is usually impossible to achieve using conventional
materials. Thus, fullerene with such architectures can be employed in several applications,
including high-performance solar cells, supercapacitors, hydrogen storage, photocatalysts,
and sensing [103,104]. However, constructing complex hierarchical functional materials
over different length scales using functional molecules, particularly fullerene Cgg or Cyg
remains challenging.

Fullerene (Cgp) is a stable spherical allotrope of carbon. It has 20 hexagonal and
12 pentagonal rings, with a network of sixty structurally equivalent sp?>-hybridized carbon
atoms. It can form various self-organized structures involving 7r-stacking and strong van
der Waals interactions. Energetically unfavorable double bonds in its rings make it a perfect
candidate to design novel devices in diverse fields, including optoelectronics, photovoltaics,
sensing, etc. The formation of highly graphitic walls with extended conjugated 7r-systems
in nanoporous carbons would enhance its electrical conductivity and improve its durability;
strategic design of the self-assembled structures is still an area to explore. In this context,
a novel method for large-scale and ultra-rapid fabrication of fullerene nanorods and
nanotubes has been recently demonstrated. Additionally, nanoporous fullerene nanorods
and nanotubes as ideal 7-electron carbon sources having 7-electron conjugation within the
sp?-carbon with robust frameworks for electrochemical capacitor and sensor applications
are also demonstrated.

For example, one-dimensional fullerene (Cgg) nanorods and fullerene nanotubes were
fabricated using the liquid-liquid interface precipitation method [105]. Fullerene nanotubes
were obtained at an interface formed between a saturated solution of Cgp in mesitylene
and isopropyl alcohol. In contrast, fullerene nanorods were produced at an interface
between a saturated solution of Cgg in mesitylene and tert-Butyl alcohol through careful
mixing at 25 °C. The low polydispersity was observed for both fullerene nanorods and
fullerene nanotubes. Both fullerene nanorods and fullerene nanotubes were composed
of individual Cgy single crystals. One-dimensional single-crystal fullerene nanorods and
fullerene nanotubes were then converted to nanoporous carbon nanorods and nanoporous
carbon nanotubes, respectively, by heating directly at a very high temperature (up to
2000 °C) in a vacuum (Figure 6). This yields a new family of nanoporous carbons with
sp?-carbon robust frameworks with graphitic walls having 7-electron conjugation within.
The original one-dimensionality of the fullerene nanorods and fullerene nanotubes was
retained. Following this strategic experimental design, a drastic increase in the effec-
tive surface area (nanoporous carbon nanorods = 1600 m? g~! and nanoporous carbon
nanotubes = 1650 m? g~ !) could be achieved. These nanoporous carbon nanorods and
nanoporous carbon nanotubes showed enhanced electrochemical capacitance (specific ca-
pacitance of 145.5 F g~ ! (for nanoporous carbon nanotubes) and 132.3 F g1 (for nanoporous
carbon nanorods) at a scan rate of 5 mV s~ !). Quartz crystal microbalance experiments
with nanoporous carbon nanotubes showed outstanding sensitivity and selectivity to-
wards solvent molecules, especially aromatic molecules. The sp>-bonded graphitic carbon
frameworks in nanoporous carbon nanotubes make the 77—t interaction between them and
solvent molecules possible, allowing easy and free diffusion of aromatic solvent molecules
into the nanopores.
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Figure 6. Conversion of one-dimensional single-crystal fullerene (Cg0) nanotubes to nanoporous
carbon nanotubes by heating directly at very high temperature (up to 2000 °C) in vacuum.

Fabrications of mesoporous crystalline fullerene (C7g) microtubes with highly crys-
talline pore walls and their direct conversion into mesoporous graphitic carbon microtubes
were also reported (Figure 7) [106]. First, mesoporous fullerene Cy, tubes were synthesized
using an ultrasonic liquid-liquid interfacial precipitation method. Briefly, fullerene Cyg
tubes were fabricated at the interface formed between the solution of fullerene (Cyj) in
1,2-dichlorobenzene and isopropyl alcohol, at 15 °C, followed by sonication and multiple
washing to remove 1,2-dichlorobenzene completely. The fullerene Cy tubes were then
used as a m-electron carbon source to produce high surface area mesoporous graphitic
carbon with crystalline pore walls. Furthermore, direct conversion of fullerene Cyj tubes
was directly converted into mesoporous graphitic carbon microtubes by heat treatment at
2000 °C in a vacuum, with the initial one-dimensional tubular morphology retention. The
walls of the resulting graphitic carbon microtubes are composed of ordered conjugated sp?
carbon with a robust mesoporous framework structure. The electrochemical supercapaci-
tance performance of mesoporous graphitic carbon microtubes was studied (mesoporous
graphitic carbon microtubes modified glassy carbon electrode in 1 M H,SO4) through
cyclic voltammetry and chronopotentiometry (charge—discharge) measurements. It was
found that this new carbon material exhibits high specific capacitance ca. 2122 F g~! ata
scan rate of 5mV s~ ! and 184.6 F g~ ! at a current density of 0.5 A g~ . It is believed that
an innovative methodology towards the fabrication of a new type of nanoporous carbon
material with graphitized frameworks would open up a new avenue for the fabrication of
multifunctional carbon nanomaterials, which are not attainable by traditional approaches
to prepare mesoporous/nanoporous carbons, for high-end applications such as solar cells,
supercapacitors, hydrogen storage materials, and sensors.
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Figure 7. Mesoporous graphitic carbon microtubes fabricated from mesoporous crystalline fullerene
(Czp) microtube.

4. Carbon Nanoarchitectonics from Biomass

In addition to exclusive nanocarbon materials such as carbon nanotube, graphene,
reduced graphene oxide, and fullerene, nanoporous carbon materials can also be derived
from natural biomass like lignite, coal, peat, wood, etc. [107,108]. There are several meth-
ods for obtaining nanoporous carbons from natural biomass like direct carbonization, the
chemical activation method, template methods, etc. Of all the popular methods, physical
and chemical activation methods represent the feasible, scalable, and low-cost methods.
Physical activation involves heating precursor material at high temperatures in the air,
nitrogen, carbon dioxide, or steam. Low yield and product with a low surface area are the
demerits of this method. While in chemical activation, the precursor material is treated with
dehydrating salts such as zinc chloride (ZnCl,), potassium chloride (KCl); acids like phos-
phoric acid (H3PO,) and sulfuric acid (H2SO4); and alkalis like sodium hydroxide (NaOH)
or potassium hydroxide (KOH). The activation is done before carbonization at relatively
low temperatures. This decomposes lignocellulosic materials pyrolytically. Nanoporous
carbons with enhanced porosity are obtained with less energy input through these meth-
ods. The porosity can be controlled by controlling the activation temperature, time, and
impregnation ratio of the activating agents. Specific surface area and pore volumes of
chemically activated nanoporous carbons are much higher than physically activated car-
bons. Additionally, their fabrication process is also cost-effective and straightforward.
Therefore, they are preferably explored as electrode materials for electrical double-layer
capacitors. Extensive research has been procured in the production of such nanoporous
carbon materials using various sources of agricultural wastes or biomass as precursor
materials such as rice husks, pistachio shell, pitch, coconut shell, bamboo, corncob, corn
husks, firewood, oil-palm shell, etc.

Biomass-derived nanoporous activated carbons exhibit very high surface areas and
porosity because of their unique ordered micro- and meso-porous architectures. In addition,
they show good electrical conductivity and admirable electrochemical stability, which are
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highly desired in the emerging electrochemical energy storage supercapacitors applications.
Bamboo is a naturally abundant lignocellulosic material that contains cellulose, hemicellu-
lose, and lignin as the chief components. Through carbonization, decomposition of these
chief polymeric structures is expected, leaving behind a rigid carbon skeleton. Fabrication
of nanoporous carbon from bamboo cane powder through chemical activation with phos-
phoric at comparatively very low activation temperature, 400 °C, was reported [109]. They
have thoroughly investigated their surface area, pore volume, electrochemical supercapac-
itance, and sensing performance and the effect of the impregnation ratio of phosphoric
acid on them. The nanoporous carbon formed was amorphous with well-ordered miro-
and mesopores. It was found that both the surface area and the pore volume could be
controlled by controlling the impregnation ratio of phosphoric acid and that of bamboo
cane powder. The surface area was found in the range from 218 to 1431 m? g~! and pore
volume in the range from 0.26 to 1.26 cm® g~ 1. The nanoporous carbon exhibited electrical
double-layer capacitor behavior with a specific capacitance of 256 F g~ ! at a scan rate of
5mV s~ L. In 1000 cycles of cyclic stability test (charge and discharge), a 92.6% capacitance
retention was observed.

Adsorption of toxic solvent vapors on nanoporous carbons has received considerable
attention. Several reports support the fact that well-designed porous materials with high
surface area and large pore volume show a high affinity towards vapor sensing [110,111].
Nanoporous carbon obtained from bamboo cane powder exhibited brilliant surface and
structural properties. Furthermore, vapor sensing properties of nanoporous carbon towards
volatile organic solvents were also studied using the quartz crystal microbalance technique
(Figure 8). The nanoporous carbon lacks a well-developed graphitic microstructure that
could assist the adsorption of aromatic solvent vapors (77—t interactions between solvent
molecules and the sp?>-bonded graphitic carbon framework). Therefore, they exhibited
higher sensitivity for non-aromatic solvent vapors like methanol and ethanol than aromatic
vapors like benzene and toluene. At the same time, sensitivity towards non-aromatic sol-
vent vapors could be due to the presence of oxygen-containing surface functional groups
(-OH, C=0, and COOH) in nanoporous carbon, which promotes interactions between oxy-
gen and alcohol vapors to their adsorption. Further, this material showed discrimination
between ethanol and methanol. Because methanol has a higher density of the interactive
site (OH per one carbon) than ethanol (OH per two carbons), methanol naturally interacts
more towards these functional groups than the latter. Therefore, nanoporous carbon pre-
pared from naturally abundant bamboo could apply in separation and selective sensing of
these volatile chemicals widely expected in the petroleum and food industries.

(A) QCM Frequency Shift Upon Gas Sensing (B) Guest Selectivity
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Figure 8. (A) QCM frequency shifts quartz crystal microbalance coated with nanoporous carbon
upon exposure to methanol, ethanol, butanol, benzene, toluene, ethylbenzene, and acetic acid;
(B) summary of sensing performance [109].
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Xu, Wang, Hossain, and co-workers fabricated porous carbon materials from ligno-
cellulose for the capacitive deionization applications [112]. The porous nanocarbons were
synthesized through direct carbonization of lignocellulose. The obtained porous carbon
materials have several advantages for capacitive deionization applications, including a
high production yield, cost-effectiveness, and environmentally friendly natures. These
characteristics are desirable ones for industrial-level capacitive deionization applications.
Nitrogenated porous carbon materials often have promoted performances in capacitive
deionization. Xu, Zhang, and Yang reported the synthesis of nitrogen-doped porous carbon
microtubes by pyrolyzing naturally abundant biomass (willow catkins) with the nitro-
gen source of urea [113]. Highly enhanced desalination performance was observed for
porous carbon microtubes with high nitrogen content compared with undoped analogues.
Liu, Zhang, and co-workers fabricated O-N-S co-doped carbon from the Lotus leaf stem
with multiscale pore architecture [114]. The proposed preparation methods based on pre-
carbonization and KOH activation can be scalable. The fabricated O-N-S co-doping carbon
materials possess three-dimensional hierarchical structures with high surface area and
desirable distribution of pore sizes. Advantageous features for supercapacitors, including
a large accessible surface for charge storage, low internal resistance, rapid charge transfer,
and short ion diffusion distance, can be expected.

Generally, desirable requirements in biomass precursors for the preparation of acti-
vated carbon include high abundance, cost-effectiveness, high carbon content, and ease
of activation. Lapsi (choerospondias axillaris) seed stone satisfies all of the above proper-
ties. It is abundantly available in its native country Nepal, and the seed is an agricultural
waste product, with a high carbon content; additionally, it can be easily carbonized to
obtain activated carbon. Therefore, Lapsi seed could be suitable for the fabrication of
nanoporous activated carbon materials that could be low-cost electrode material for high-
performance electrochemical supercapacitors and even candidates for sensing volatile
organic compounds. The preparation of nanoporous carbon materials with a high sur-
face area was actually prepared from Lapsi seed through ZnCl, activation, one of the
preferable activating agents over sulfuric acid, phosphoric acid, potassium hydroxide,
or potassium carbonate, etc. at a moderate temperature, 700 °C [115]. It was confirmed
that the nanoporous carbon has an amorphous structure incorporating oxygen-containing
functional groups. It was also found that the nanoporous system contained graphitic car-
bon structures with interconnected hierarchical micro- and mesopores (Figure 9). Surface
areas and pore volumes of the materials were found, in the ranges from 931 to 2272 m? g !
and 0.998 to 2.845 cm® g~!, respectively, which were better than commercial activated
carbons. Its potential as electrode material for supercapacitors was explored because of
its high surface areas, large pore volumes, and interconnected hierarchical micro- and
mesoporous structures. The glassy carbon coated with this nanoporous carbon in 1-M
H,SO4 aqueous solution showed brilliant electrochemical supercapacitance. The maxi-
mum specific capacitance of 284 F g1 at a current density of 1 A g~! was observed. The
electrodes exhibited a high-rate capability with 67.7% capacity retention at a high-current
density of 20 A g~!. High capacitance retention (99%) with excellent cycle stability in
10,000 charge—discharge cycles was achieved, demonstrating the potential of Lapsi seed-
derived nanoporous carbons as suitable electrode materials in high-performance super-
capacitor devices. The results demonstrated that nanoporous activated carbon derived
from Lapsi seed, a form of agricultural waste, could be suitable as electrode materials for
high-performance supercapacitor devices.
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Figure 9. Nanoporous carbon fabricated from Lapsi seeds containing graphitic carbon structures
with interconnected hierarchical micro- and mesopores.

Nanoporous activated carbon materials were fabricated from the natural agro-waste
precursor, washnut seed, using ZnCl, as a dehydrating chemical (activating agent) [116].
The activation temperature range was 400-1000 °C. The nanoporous carbon obtained
through ZnCl, activation of washnut at different temperatures exhibited an ordered micro-
and mesoporous structure. The surface area and the porosity of the nanoporous carbon
greatly depended on the carbonization temperature. The higher the temperature, the higher
was the surface area and the porosity. The highest specific surface area (1309 m? g~ !) and
pore volume (0.789 cm® g~ !) were observed at 800 °C. The electrochemical performance
of the thus obtained nanoporous carbon-modified glassy carbon electrode was studied in
an aqueous solution of 1 M H,SOy on three-electrode cells. Nanoporous activated carbon
obtained at 800 °C showed the best surface textural properties like higher surface areas,
well-defined porosity, and an ordered micro- and meso-porous structure with graphitic
walls. Therefore, this sample also showed excellent electrochemical supercapacitance,
with a specific capacitance of 225.1 F g~! at a current density of 1 A g!. A capacitance
retention of 69.6% at a high current density of 20 Ag~! indicated a high-rate capability of
the nanoporous carbon as an electrode material. A 98% cycling stability was observed in
the test of 10,000 charging-discharging cycles. These results demonstrate that washnut
seed, an agro-waste precursor, could be utilized to produce nanoporous carbon with
enhanced surface textural properties. This material can be used as a low-cost and scalable
supercapacitor electrode for high-performance supercapacitors.

5. Carbon Nanoarchitectonics with Composites and Hybrids

Instead of synthesizing nanostructures of one particular material, nanoarchitecton-
ics of composites and/or hybrids sometimes become rational ways to achieve advanced
functions [117,118]. For example, Jakmunee and coworkers reported the fabrication of
nanocomposites with carbon nanotubes, nickel oxide, and Nafion for electrocatalytic detec-
tion of serotonin and dopamine in human serum [119]. Facile electroanalytical detection
of serotonin with rapid, selective, and sensitive features is highly desired. Therefore,
electrocatalytic sensing systems based on screen-printed carbon electrodes modified with
carbon nanotubes /nickel oxide/carbon black/Nafion were tested especially for serotonin
detection among other interfering species. The nanoarchitected sensing systems exhibited
several advantageous features for serotonin detection, including a low limit detection, a
wide linear range, and high reproducibility, as well as a good recovery range.

Materials exhibiting enhanced capacitances and a long cycle lifetime have received
significant attention. It is possible to obtain such materials by combining electrical double-
layer capacitors and pseudocapacitors called hybrid supercapacitors. Therefore, a com-
prehensive exploration of such hybrid supercapacitors is understandable. For the elec-
trode materials of electrical double-layer capacitors, carbon-based nanomaterials such
as fullerene, carbon nanotube, reduced graphene oxide, and mesoporous or nanoporous
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carbons have been widely explored, while for the electrode materials for pseudocapacitors,
several transition metal oxides have been broadly explored. Carbon nanotubes and reduced
graphene oxides have higher carrier mobility and electrical conductivity. Therefore, they
are preferably used as the matrix of a hybrid supercapacitor. Furthermore, there are several
nanocomposites that are widely explored as electrode materials in supercapacitor appli-
cations, such as binary nanocomposites of carbon nanotubes, graphene-based materials,
conducting polymer polyaniline, or polyaniline composite with metal sulfide or oxide with
metal oxide nanoparticles [120,121]. Nanostructures and properties of materials greatly
influence the performance of supercapacitors. Therefore, it is understandable that the
hierarchical micro-/nano-structures must be explored to enhance device performance.

Following the footsteps in the formation of a novel material for the advanced su-
percapacitors, fabrication of ternary nanocomposite material composed of mesoporous
nanocube indium oxide (In,O3) of size 50 nm embedded into carbon nanotubes and
reduced graphene oxide was reported (Figure 10) [122]. The ternary nanocomposite,
Iny O3/ carbon nanotubes/reduced graphene oxide, was fabricated through the hydrother-
mal method. Microscopic images showed that mesoporous nanocrystals of In,O3 were
uniformly dispersed on the m-electron-rich conductive nanocarbons, the carbon nanotube,
and the reduced graphene oxide nanocarbon surface. The electrochemical supercapacitance
performance of nanocomposite was tested by modifying a glassy carbon electrode nanocom-
posite material. It showed an enhanced/appreciable specific capacitance of 1273 F g~!
at5mV s~!and 948 F g~! at 1 A g~!. In addition, they exhibited outstanding cyclic
stability. The capacity loss of the nanocomposite-modified electrode was not observed even
after 5000 charge/discharge cycles. Additionally, capacitance retention was calculated as
75% at a high scan rate of 200 mV s~!. These outcomes from the cyclic voltammetry and
chronopotentiometry measurements establish the fact that this integrated In,O3 /carbon
nanotube/reduced graphene oxide ternary nanocomposites can be a promising candidate
for supercapacitor applications (can be applied as a supercapacitor candidate). These
results demonstrate that the ternary nanocomposite of mesoporous In,O3 cubes with -
electron-rich conductive nanocarbons of carbon nanotubes and reduced graphene oxide
fabricated using a simple hydrothermal method could be an effective material for energy
storage in high-performance supercapacitor applications.

Imae and co-workers fabricated conducting nanocomposites containing conductive
polymer (polypyrrole or polyaniline), carbon nanohorn, and carbon dot through in-situ
polymerization as electrode materials for supercapacitors [123]. A key factor is the presence
of carbon dots. The addition of carbon dots to the nanocomposite systems efficiently in-
creased the specific capacitance of the composite supercapacitors. In addition, the presence
of carbon dots in the nanocomposite significantly enhanced capacitance retention. Thus,
the nanoarchitected carbon composites would be promising materials for electrodes for
energy storage devices in which high capacitance and stability can be expected. Imae
and co-workers also fabricated nitrogen-doped graphene electrodes hybridized with mag-
netic metal oxide (NiO, Co3O4, or Fe304) as supercapacitors to an external magnetic field
using a Helmholtz coil [124]. Electrical conductivity of the added metal oxides and the
Lorentz force effect of the magnetic field showed some effects on the capacitance, the
charge/discharge profile, and cycle retention. In particular, hybrid materials with Fe;O4
and nitrogen-doped graphene exhibited higher potential as supercapacitor electrodes with
enhanced capacitance by the magnetic field.
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Figure 10. Fabrication of ternary nanocomposite material composed of mesoporous Indium oxide
(InpO3) nanocubes embedded into carbon nanotubes and reduced graphene oxide.

6. Future Perspectives

This review briefly exhibited recent examples of carbon-related nanoarchitectonics
for several functions. Although the described examples do not fully cover all the as-
pects, the selected examples demonstrated a wide range of synthetic possibilities, such
as source applicability and fabrication methodologies. Functional carbon materials can
be nanoarchitected through various processes, including (i) well-skilled organic synthesis
with designed molecular sources, (ii) self-assembly of fullerenes under various conditions,
(iii) practical low-cost synthesis from biomass, and (iv) hybrid/composite formation with
various carbon sources. These examples strikingly demonstrated the enormous potentials
of nanoarchitectonics approaches to produce functional carbon materials from various
components such as small molecules, fullerene, other nanocarbons, and naturally abundant
biomasses. Not limited to the energy-related usages such as supercapacitors described in
this review, applications of the functional carbon materials for more advanced cells and
batteries, environmental monitoring and remediation, biomedical usages, and advanced
devices are also expected [125,126]. Furthermore, mechanisms for molecules and molec-
ular assemblies coupled with carbon materials have to be further investigated [127-129].
Hybrids of polymers and nanocarbon materials with their percolative behaviors and their
electrical/thermal properties have been investigated [130,131]. Nanoscale behaviors of
these materials in terms of morphology, polymer nature, gained thermal properties (Joule
effect), and electrical properties (increased electrical conductivity, piezoresistivity) were
also discussed [132]. Electrocatalysis as an important branch of energy fields has been con-
sidered with carbon materials [133,134], which should be powerful outputs in applications
of carbon nanoarchitectonics. Because biomass usages for carbon materials have much
wider selections [135,136], carbon nanoarchitectonics with biomass have huge impacts in
industrial applications.

Here, one particular target, carbon, was exemplified for nanoarchitectonics approaches
to produce functional materials. However, the same methodology and similar processes
would apply to a wide range of elements, molecular families, and related nanomateri-
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als. Thus, further developments and expansion of the nanoarchitectonics concept would
create a versatile paradigm to produce functional materials systems from any nanoscale
components. Furthermore, emerging methods such as machine learning [137,138] would
probably support efficient usages and developments of nanoarchitectonics strategies in
materials science. Including various possibilities in carbon nanoarchitectonics, creating new
functional materials with a combination of nanoarchitectonics and artificial intelligence
will become a significant future challenge.
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