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Abstract: In this work, we present a relevant upgrade to the technique of pulsed laser ablation of
fluorescent nanodiamonds (NDs), relying on an automatized graphite-target movement maintaining
a constant level of liquid nitrogen over its surface during hours of deposition. Around 60 mg of
NDs nanopowder was synthesized and optomagnetically characterized to assess its optical quality.
Chemical purification of the ablated nanopowders, which removes the graphitic byproducts, permits
to obtain pure fluorescent NDs with an efficiency of 7 ± 1% with respect to the total nanopowder mass.
This value compares positively with the efficiency of other commercial NDs synthesis techniques
such as detonation, cavitation, and high pressure–high temperature.

Keywords: pulsed laser ablation; nanodiamonds; NV-centers

1. Introduction

The unique characteristics of nanodiamonds (NDs), for example, their excellent optical
and mechanical properties [1] and the fluorescence properties of their nitrogen-vacancy
(NV) centers, dependent on external physical fields [2], opened the possibility of produc-
ing devices with nanoscale quantum sensing capabilities. NV-fluorescent NDs in fact
are almost unique nanoprobes, allowing for the detection of changes in environmental
parameters such as temperature [3,4] and magnetic [5] and electric fields [6]. In addition,
the biocompatibility of NDs allows in-vivo imaging [7].

Recently, we demonstrated the synthesis of NV fluorescent NDs through pulsed laser
ablation (PLA) of graphite in a nitrogen-containing environment. We carried out the
synthesis in both a controlled nitrogen [8] atmosphere and in liquid nitrogen [9]. We also
demonstrated the possibility to produce NDs within different confining media and starting
targets [10].

The most effective condition, in terms of number of fluorescent NDs and fluorescence
intensity, is PLA in liquid nitrogen (LN2), as reported in [9]. The experimental drawback
of this new technique is related to the yield in terms of material produced during the
synthesis process. In fact, for biological application such as imaging or sensing, a relevant
(~mg mass, not obtained in our previous work) amount of highly fluorescent pure ND
material is required in order to obtain a good contrast with low laser pumping powers.
In addition, a significant amount of NDs permits the employment of strong, industry-
compatible, chemical cleaning techniques that allow for the removal of almost all the
optically parasitic graphitic byproducts. The aim of this paper is to present our upgraded
automatized experimental setup where laser ablation of graphitic targets in LN2 produces
significant quantities of nanopowders (pure NDs with NV centers + graphite) allowing
for cleaning out the embedded NV-containing NDs, and to precisely estimate the liquid-
nitrogen laser-ablated fluorescent nanodiamond production yield.
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2. Materials and Methods

The experimental apparatus (general view, details, and schematics) is shown in
Figure 1. Pulsed laser irradiation is performed by using a KrF excimer laser (Lambda-
Physik Coherent LPX220i) having wavelength of 248 nm and pulse duration of 20 ns. Laser
energy is set to 690 mJ per pulse, and the laser is operated at a pulse rate of 10 Hz. The
laser beam is deflected by a motor-driven oscillating mirror and consequently focused by a
400 mm-focal-length lens on the target surface. The pyrolytic graphite target is placed in a
glass vial (“internal LN2 vial” in Figure 1a, where the top surface of the target is covered by
a ~5 mm-thick liquid nitrogen layer. To limit the unavoidable liquid nitrogen evaporation
that occurs during the high-power excimer laser irradiation, the glass box was placed in a
polystyrene box (“external LN2 dewar” in Figure 1a) and filled with liquid nitrogen. The
ablation process was automatized as much as possible with the aim to perform ~hours
of deposition. The system was then equipped with three additional step-motor driven
movements (Figure 1b): the Z-movement, the target rotation around its central cylindrical
axis, and the laser beam rastering along the graphite cylinder height. These movements
are controlled with Arduino© and more thoroughly described in Figure 1. The movement
along the Z-axis allows movement of the target up and down along the vertical direction
during the deposition process. It is also employed before the ablation procedure starts, to
put the graphite target inside the internal LN2 vial, in a position in which the top surface
is covered by a ~5 mm thick LN2 layer. We have found empirically that this LN2 layer
thickness is a good compromise between the confining requisites needed for NDs to nu-
cleate from the graphite and the minimization of UV laser fluence losses due to liquid
absorption/scattering. During the ablation process and the consequent LN2 evaporation,
this motor-driven, Arduino-controlled movement allows the target to downshift, with a
specifically calibrated constant speed, in order to maintain the same LN2 layer thickness
above the target surface.

The other two movements allow the homogeneous ablation of the whole graphite
cylindrical surface and also help to avoid the formation of detrimental macroscopic craters
in the target. The first movement is the target rotation; the cylindrical graphite target
rotates with a specific angular velocity. The second movement is the laser beam rastering
along the longitudinal cylinder height. This movement is obtained by putting the mirror
in a holder that can oscillate. The maximum oscillation angle of the mirror is set by
observing where the laser beam is impinging on the target surface, and avoiding that the
laser beam goes beyond the target length. These three movements are a crucial upgrade in
the experimental apparatus, increasing the laser-deposition from ~µg to ~mg of material.
In fact, the movements also minimize the manual operations required during the ablation,
thus allowing a more efficient use of the deposition time, and avoiding continuous manual
refills of the LN2 level above the graphite target. This upgrade allowed us to perform
more than 6 h of deposition (but longer depositions can be done and repetition rate of the
laser can be safely increased up to 100 Hz), with partial liquid nitrogen refills at 45 minute
interdelays, thus reaching ~57 mg of synthesized material (pure NDs with NV centers
+ graphite) as opposed to previous fractions of µg. In fact now, with all the procedures
adopted and the consequent technical development of the apparatus, we can make around
200.000 laser shots per deposition session, as opposed to the 20.000 laser shots previously.
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The laser beam is made to impinge the cylinder surface at 45°. (c) Details of the experimental 
apparatus. The yellow transparent line is the 248 nm high fluence laser beam. The steering mirror 
reflects it through a 400 mm focal lens (fixed inside the blue circular holder). The graphitic target is 
fully immersed inside a LN2 bath. (d) Graphite cylindrical target with a view of the roto-step-
translational system, which lets the target rotate when the laser impinges on the sample. 
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Figure 1. (a) Experimental apparatus. (b) Schematics of the oscillating mirror automatized system.
The laser beam is made to impinge the cylinder surface at 45◦. (c) Details of the experimental
apparatus. The yellow transparent line is the 248 nm high fluence laser beam. The steering mirror
reflects it through a 400 mm focal lens (fixed inside the blue circular holder). The graphitic target
is fully immersed inside a LN2 bath. (d) Graphite cylindrical target with a view of the roto-step-
translational system, which lets the target rotate when the laser impinges on the sample.

The photoluminescence spectra and the optically detected magnetic resonance spectra
(ODMR) of our samples were measured employing a confocal microRaman Jobin–Yvon
LabRam apparatus, where the confocal microscope section is represented schematically in
Figure 2. The excitation and the collection of the light from the micrometrically sized region
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of our samples were accomplished with a 100× objective. The sample was fixed on an
epoxy-glass sample holder equipped with a Hertzian RF antenna (when measuring ODMR),
which provided the RF pumping of the NV ground state energy levels, |g>, to excited state,
|e> (see the energetic levels scheme in Figure 2). Under tunable radiofrequency irradiation,
we probed the microphotoluminescence spectrum coming from a ~2 µm × 2 µm × 5 µm
volume containing an ensemble of NDs and performed an optical imaging of the emitting
NDs. In particular, we equipped such a micro-Raman/microphotoluminescence apparatus
with a tunable radiofrequency (RF) source, capable of furnishing up to 1 W of RF power
in the 2.6–3.2 GHz range. The RF irradiation served as the ground |g> level pump to
suitably populate the mS = ± 1 sublevels, which are essential to activate the RF-dependent
fluorescence mechanism related to the NV− defect center in (nano)diamonds [2]. We then
recorded the microphotoluminescence spectra on a ~2 µm × 2 µm × 5 µm region (using
an Olympus 50×, NA = 0.5, and working distance = 10.7 mm objective) where a cluster
assembly of NDs was present at the optical imaging, while varying the RF frequency in the
2.6–3.2 GHz spectral region at constant 0.5 W power.

The bare photoluminescence spectra were recorded when no RF irradiation was
superimposed on the NDs samples.
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Figure 2. The confocal microscope allowed for the selection of the focal plane of the NDs clusters.
The light was spectrally dispersed and finally post-processed in order to get an optically detected
magnetic resonance spectrum combined with an optical image of the very region of the sample under
investigation. The figure reports the general case when residual graphite is still residually present.
Energy levels scheme of NDs are also reported in the top right inset. Section (a) shows the NV center
crystal structure, and (b) the energy levels of the NV color center.

3. Results and Discussion

After the deposition, we followed two graphite cleaning procedures: the first relying
on long-lasting thermal annealing of the nanopowders in order to remove as much graphite
as possible, and the second employing a sulfonitric solution with a selective removal of
graphite that achieves the preservation of the embedded NDs.
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The thermal annealing at 425 ◦C and atmospheric condition was performed [11] to
remove selectively the sp2 carbon atoms (the sp3 carbon atoms require a temperature higher
than 500 ◦C to be oxidized). Assuming an efficiency of the graphite–diamond transition
of 1% (but Yang et al. [12] reported efficiency for ablation of graphite in water up to 5%),
the amount of pure NDs was estimated to be on the order of ~mg. The morphological
analysis of the sample was done via scanning electron microscopy (SEM). Fluorescence
and optically detected magnetic resonance of the samples were also analyzed. Typical SEM
images for the as-deposited (as dep) sample and for those that were annealed (5 h ann
and 77 h ann) are reported in Figure 3. As it can be seen, nanostructures having a size in
the order of hundreds nm were formed. From comparison of the SEM images (“as dep”
vs. “ann” samples), one can easily see that the NDs are completely embedded within the
parasitic graphite matrix. When the sp2 carbon atoms are etched under thermal oxidation
(425 ◦C), the morphology of the sample significantly changes. Figure 3 (5 h ann) shows
how the nanoparticles become more detached from the surrounding graphitic environment.
The visible surface of the NDs is partially etched and it is not as smooth as in the “as dep”
sample, indicating that the oxygen atoms act as efficient catalyzers for the removal of the
NDs graphitic surface layers. Worth noting is the presence of submicrometric “holes” in
the graphitic matrix (Figure 3, 5 h ann)—those are likely due to a complete removal of
the sp2 carbon atoms “gluing” the NDs clusters to the surrounding graphite. After 77 h
of additional annealing (Figure 3, 77 h ann), this very situation is even more clear. The
separation between the NDs borders and the graphite matrix is clearly observed—the
amorphous carbon atoms and the NDs no longer form a continuous film as in the “as
dep” sample. The etching process is digging (i.e., removing atoms) around and below the
nanoparticles. This proves further that the nanoparticle core is not made by sp2 atoms, but
by sp3 hybridized carbon atoms.
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Figure 3. Typical SEM images for the as-deposited sample and after annealing at 425 ◦C for 5 h and
77 h.

As seen from SEM, this method is efficient only in partially removing the NDs-
surrounding graphite. For this reason, we also followed the alternative cleaning protocol
that consists of treating ablation soot in acid. The methodology, adapted from a detonation
NDs industrial treatment [13], starts with dispersion of the soot in 30 mL of sulfonitric
solution (three parts sulfuric acid at 98% concentration, one part nitric acid at 65% concen-
tration). The mixture is then heated to 190 ◦C and kept under reflux for 3 h using an oil
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bath and a recondensation column. The resulting solution is then cooled and neutralized
with NaOH. In order to deposit the NDs, the neutralized solution is then centrifuged for
30 min at 3000 rpm. Subsequently, the supernatant liquid is decanted and the sediment
washed with distilled water in order to remove the salts formed during the neutralization,
and centrifuged again. After drying, the samples were characterized via SEM imaging as
reported in Figure 4.
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Figure 4. Typical SEM images for the chemically cleaned sample. The NDs are clearly visible in
agglomerated form and the graphite is virtually absent.

The yield of the chemical purification process, quantified as mass of the final product
over the mass of the total ablation soot, is 7 ± 1%. This result is in line with other
research based on laser ablation techniques that report yields between 5 and 10% [13,14].
HPHT shows yields around 15% [15] and cavitation-assisted techniques around 10% [16].
Detonation falls in the 4–10% range of the mass of the initial explosive charge mass [16,17].

NV-center optical properties were characterized by studying the NDs fluorescence
spectra of our nanopowders under continuous 532 nm laser irradiation (Figure 5) using
the confocal apparatus described in the previous section. A broad red emission was
detected, consistent with the well-established [18] NV− radiation pattern. An additional
photoluminescence tail, probably due to graphitic surface layers on the NDs, was observed
in the red region of the spectrum (>700 nm). The most important message is that the
photoluminescence after the thermal and chemical treatments, performed as described,
was still compatible with that observed in our previous work [8,9]. The sharp peaks at
<600 nm are the D and G Raman peaks related to residual NDs-surrounding graphite
shells. ODMR measurements are sensitive only to NV− center fluorescence [2]. The
observable effect is that the NV− fluorescence undergoes a significant intensity change
when radiofrequency coirradiation is superimposed to the samples and tuned to around
2870 MHz (transition of NV ground state energy level |g> to excited state |e>, as illustrated
in Figure 2)

In fact, the ODMR curve (Figure 6) confirms the presence of NV− centers as testified
by the ~2870 MHz fluorescence dip. In particular, its spectral broadness is compatible with
previous observation [8] and it is attributed to local strain fields acting on the observed
micrometric-sized NDs clusters.
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4. Conclusions

In conclusion, we designed and built an efficient automatized liquid-nitrogen pulsed
laser ablation apparatus capable of synthesizing milligrams of fluorescent NDs. In fact,
within a single 6 h experiment more than 50 mg ablation powder (pure NDs with NV
centers + graphite) were obtained, one order of magnitude larger than reported in [8,9].
This represents an important step forward with respect to previous existing literature [8,9],
allowing to chemically clean out almost all the graphitic byproducts, preserving their
optical and magneto-optical features, and letting us estimate the PLA-yield around values
competitive with other production techniques. PLA fluorescent NDs are therefore closer to
sensing applications [19].
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