Evaluation of Commercial "Carbon Quantum Dots" Sample on Origins of Red Absorption and Emission Features

Weixiong Liang,¹ Lin Ge,¹ Xiaofang Hou,¹ Xianyan Ren,¹ Liju Yang,^{2,*} Christopher E. Bunker,^{3,*} Christopher M. Overton,¹ Ping Wang,¹ Ya-Ping Sun^{1,*}

¹ Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634, USA

² Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA

³ Air Force Research Laboratory, Aerospace Systems Directorate, Wright-Patterson Air Force Base, Ohio 45433, USA.

* Correspondence: lyang@nccu.edu; christopher.bunker@us.af.mil; syaping@clemson.edu

Supporting Information

Different figure configurations to present the same results reported in the manuscript, which some readers might find more informative.

Figure S1. Absorption spectra (ABS) and fluorescence quantum yields at different excitation wavelengths for (Upper) a comparison between the as-supplied MilliporeSigma sample solution and EDA-CDots, where the yields are normalized against the values at 400 nm excitation of 5.9% for the former and 24% for the latter; and (Lower) a comparison between the two samples from processing the CA – FA mixture at 160 °C for 1 h and at 300 °C for 2 h, where the yields are normalized against the values at 400 nm excitation of 20% for the former and 14% for the latter.

Figure S2. Absorption (ABS) and fluorescence spectra at different excitation wavelengths (from 400 nm to 580 nm in the 20 nm increment) of the as-supplied MilliporeSigma sample (upper), EDA-CDots (upper-middle), from the CA – FA mixture at 160 °C for 1 h (lower-middle) and at 300 °C for 2 h (lower).