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Abstract: Porous graphite was prepared without the use of template by rapidly heating the
carbonization products from mixtures of anthracene, fluorene, and pyrene with a CO2 laser.
Rapid CO2 laser heating at a rate of 1.8 × 106 ◦C/s vaporizes out the fluorene-pyrene derived
pitch while annealing the anthracene coke. The resulting structure is that of graphite with 100 nm
spherical pores. The graphitizablity of the porous material is the same as pure anthracene coke.
Transmission electron microscopy revealed that the interfaces between graphitic layers and the pore
walls are unimpeded. Traditional furnace annealing does not result in the porous structure as the
heating rates are too slow to vaporize out the pitch, thereby illustrating the advantage of fast thermal
processing. The resultant porous graphite was prelithiated and used as an anode in lithium ion
capacitors. The porous graphite when lithiated had a specific capacity of 200 mAh/g at 100 mA/g.
The assembled lithium ion capacitor demonstrated an energy density as high as 75 Wh/kg when
cycled between 2.2 V and 4.2 V.
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1. Introduction

Carbonization is the first step in the production of synthetic graphite. A liquid crystalline
state or mesophase formation during carbonization is a key process that determines the property
of graphitizable carbon [1–4]. The discovery of the carbonaceous mesophase is credited to Taylor,
who in 1961 observed naturally occurring anisotropic spheres in the Wongawillie coal seam in New
South Wales, Australia [5]. Mesophase is utilized to produce various forms of carbon including
cokes [6–8], carbon fibers [9,10], and porous carbon via templating [11,12]. The nature of mesophase
and thus the resulting carbon product is dependent upon the extent of planarity of intermediate
compounds formed, rates of carbonization, fluidity and extent of fluidity, and possible effect of
solids on mesophase formation and coalescence [6,7,13–15]. Model polycyclic aromatic hydrocarbon
(PAH) compounds have been utilized to study mesophase. Carbonization of biphenyl results in
an isotropic non-graphitizable carbon [6,7,15]. Walker and colleagues co-carbonized anthracene and
phenanthrene with biphenyl to observe potential retardation of mesophase development and resulting
graphitizability by its introduction [7,14,15]. The anthracene-biphenyl system produced a coke of
in-homogeneous optical texture with regions that were similar to pure anthracene and pure biphenyl
carbonization. The phenanthrene-biphenyl system exhibited a greater homogeneous texture and
the observed optical texture of the anisotropic regions dropped sharply with increased additions of
biphenyl. The in-homogeneous texture from anthracene-biphenyl and the homogenous texture from
phenanthrene-biphenyl is due to the differences in carbonization reactivity between the compounds.
Biphenyl carbonization reactivity is three orders of magnitude less than anthracene and similar
to phenanthrene [7]. Anthracene finishes carbonization before biphenyl has a chance to influence
mesophase and actively participates with phenanthrene carbonization.
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Therefore, mesophase derived carbon can be pre-engineered with proper selection and
concentrations of precursor PAHs. Carbonized products from PAHs with differing carbonization
reactivity will produce a coke comprised of segmented components that can be traced back to the
precursor. Post carbonization heat treatment can then be used to accentuate the structural difference
found in the material. Recently, it has been demonstrated that carbon materials can be heated to
graphitization temperature in a millisecond under the action of a CO2 laser [16]. In this study a porous
graphite is produced by rapid laser heating a coke derived from selective model compounds. The coke
contains regions of pitch from slow carbonizing PAHs that are vaporized. The well-developed coke
from highly reactive anthracene is annealed under the action of CO2 laser heating.

Porous carbons have received a lot of attention due to their use in many applications, including
separations, absorbents, catalyst supports, and electrodes in energy storage media [11]. A truly
porous graphite would make a good lithiated anode for lithium ion hybrid battery-supercapacitors.
A hybrid battery-capacitor combines the best properties of the two devices. Lithium ion batteries
have high energy density, but suffer from low power by virtue of the reversible Coulombic reactions
that occur at both electrodes [17]. The high energy density of the lithium ion battery is owed to the
intercalation of lithium within the graphite anode material. In contrast, electrochemical double-layer
capacitors store energy by accumulation of ions on the surface of high surface area electrode materials.
The supercapacitor has high power density, but low energy storage capacity. Most current capacitor
research effort is focused on the cathode and activated carbons for their extremely high surface
areas [18,19]. Efforts to combine the high energy density of the battery and high power density of the
supercapacitor into a single device is an emerging area of active research [17,20,21]. As the charge
capacity in hybrid battery-supercapacitors is proportional to the amount of each electrode component,
the power and energy performance is decoupled [17,20]. However, these electrode types are not
separate, but necessarily for their dual function integrated into one hybrid electrode [22]. Specifically,
the ideal hybrid electrode requires a graphitic character for high energy density while possessing
a high surface area along with porosity for power performance. Moreover, the galleries must be
externally accessible to the lithium ions.

Synthesis of carbons with such ordered and uniform pores is a challenge. Activation is the
most common means to prepare porous carbon, but results in pores with tortuous connectivity and
lack of order. Macroporous carbons with large pore sizes are commonly produced via emulsion
templating by polymerization of a continuous phase of a high internal phase emulsion [23,24].
As an alternative, templates provide a way to synthesize ordered carbons with controlled meso- and
micropore sizes [12,25]. Templated porous carbon was pioneered by Knox et al. in 1986 [26]. Since then
templating has been used to synthesize a wide range of porous carbons. However, obtaining a truly
porous graphitic material by templating remains challenging [11,25]. Typical carbon precursors used
in templating, like polyfurfuryl alcohol, acrylonitrile, and phenolic resins result in non-graphitizing
carbons. Graphitizing precursors that pass through a fluid mesophase can be utilized to prepare
a graphitizable porous carbon via templating. However, the template guides mesophase development
and results in the carbon basal planes aligning normally to the template walls. Thus, the interlamellar
galleries are not accessible as desired for a hybrid battery-capacitor electrode.

As shown here, rapid thermal processing of pre-engineered carbons bypasses the need for
templating and the added processing complexity therein. The laser synthesized porous graphite has
been studied as anode material for lithium ion capacitors. In general, porous graphitic anodes are very
interesting materials for use in both lithium ion batteries and lithium ion capacitors. The presence
of mesopores in the graphite can minimize the lithium diffusion length while also providing greater
gallery access area for lithium storage.
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2. Materials and Methods

2.1. Synthesis

Porous Swiss-Cheese-Graphite (SCG) was prepared by rapidly heating the carbonization products
from mixtures of anthracene, fluorene, and pyrene with a CO2 laser. The PAHs used in this study
were purchased from Alfa Aesar (Tewksbury, MA, USA) and are 98+% pure. Carbonization provides
the SCG precursor. The carbonized product is then collected and rapidly heated with a CO2 laser to
vaporize out the liquid pitch and partially anneal the anthracene derived coke. A final heat treatment
is applied to graphitize the material in a graphitization furnace.

Carbonization was carried out in a sealed tube bomb reactor. Ten grams of precursor was loaded
into the 25 mL reactor body. The reactor was purged of oxygen with nitrogen. A preheated and
aerated sand bath was used to bring the reactor to temperature. Heating duration and temperature
were 5 h and 500 ◦C. Vertical agitation was provided during carbonization. The reaction occurred
under autogenous pressure (no pressure control), pressures reached ~6.9 MPa. Additional details and
a schematic of the reactor have been provided elsewhere [27]. The carbonized products were heated
with 10.6 µm radiation from a 250 Watt Synrad Firestar series F201 CO2 laser (Mukilteo, WA, USA).
The material was laser heated in a graphite crucible in an argon atmosphere for durations of 10 s to
5 min. Laser heating material quantity was limited to 10 mg to assure uniform heating. The material
was placed in the center of the 4 mm laser beam. Sample temperature was elevated to 2600 ◦C in 1.4 ms
under the action of the laser. Multi-wavelength pyrometry was applied to determine the absolute
temperature during laser annealing based on a black body approximation. The carbons used in this
study are well approximated as black body absorbers, as evidenced by good fit of Planck’s black
body radiation curves to the laser induced incandescence signal [16]. Laser annealed materials were
subsequently annealed in a Centorr Vacuum Industries series 45 graphitization furnace (Nashua, NH,
USA). The furnace was heated at a rate of 25 ◦C a minute to 2600 ◦C and held for an hour.

2.2. Material Characterization

Polarized light microscopy was employed to measure the extent of mesophase development.
A highly polished surface is required to view the microstructure at the focal length of the microscope.
In order to increase the mechanical integrity needed to hold the carbon in place during polishing,
carbon materials were set in epoxy. Polishing was carried out in several stages, using a series of
sand paper and alumina slurries. A Nikon Microphot-FXAII microscope (Tokyo, Japan) was used to
collect micrographs from the entire surface. Carbon lamellae diameter (La), crystallite stack height
(Lc), and lattice spacing (d002) were measured by X-ray diffraction (XRD). Samples were analyzed
in powder form and crushed with a mortar and pestle. Samples were scanned from 15–90 degrees
2θ. To correct for instrument broadening, an external standard (silicon) was measured and then
applied to correct the sample linewidths. Lc and La were found by applying the Scherrer equation
with dimensionless shape factor (K) values of 0.89 for Lc and 1.84 for La. La was taken from the
(110) peak found at 77◦. La values from the (100) peak at 42◦ are not resolved from the (101) peak at
44◦ from disorganized carbons. Although, for completely disorganized carbon, there should be no
3-dimensional crystal and thus (101) should not be present. In practice, the broadening of the (100)
due to the (101) peak is present. Lc values were found from the (002) peak. Transmission electron
microscopy (TEM) was used for direct visualization of the micro and nanostructure. Microscopy was
performed on a FEI Talos. Nanostructure (lamellae observed as (002) fringes) was observed in bright
field mode at magnifications of 500,000. The N2 adsorption/desorption isotherms at −196 ◦C were
measured using a Micromeritics ASAP 2420 system. The Brunauer–Emmett–Teller (BET) surface area
was evaluated using N2 adsorption data.
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2.3. Electrochemical Characterization

An electrode slurry of SCG was prepared by dissolving 10 wt % of styrene butadiene rubber
and carboxymethyl cellulose (1:1 by wt.) in water, followed by addition of 85 wt % SCG and 5 wt %
acetylene black (purchased from Alfa Aesar Inc.), which was used as conductive additive. The slurry
was tapecasted onto a copper foil, dried, and calendared to produce a ~50 µm thick electrode with
electrode mass of ~4 mg/cm2. The coated electrode was then prelithiated using a short circuiting
method. Lithium foil (purchased from MTI Corporation, Richmond, CA, USA) was pressed onto
the SCG graphite coated copper foil and held together for 24 h in the presence of a small amount of
electrolyte, 1 M lithium hexafluorophosphate dissolved in ethylene carbonate/dimethyl carbonate
(1:1 by wt.). The prelithiated electrode was used to make a half cell against lithium and the specific
capacity was estimated using constant current technique by varying the voltage from 0 to 3 V vs.
Li+/Li. The prelithiated electrode was also used as an anode to assemble a lithium ion capacitor.
High surface area carbon derived from pyrolysis and activation of polyfurfuryl alcohol/phloroglucinol
was used as the cathode. The synthesis of the high surface area carbon has been reported elsewhere [18].
The fabricated capacitor was tested using galvanostatic charge/discharge between 2.2 V and 4.2 V.
Energy density was computed by integrating the voltage-time curve as follows:

E =

∫ t
0 IVdt

m

where I is the constant current applied and m is the active mass of both electrodes. Power density was
calculated as a ratio of energy density over the discharge time. The performance of the SCG graphite
based lithium ion capacitor was compared with a lithium ion capacitor made using a commercially
available mesophase pitch based graphite purchased from MTI Corporation.

3. Results and Discussion

Anthracene goes through an extended mesophase during carbonization as evidenced by the high
optical anisotropy shown in the polarized light micrograph, Figure 1. As such, anthracene coke is
highly graphitizable and forms a synthetic graphite upon graphitization heat treatment [14,15,28,29].
Optical texture is classified in Appendix A.
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Figure 1. Polarized light micrograph of anthracene coke.

Fluorene, a five-membered ring containing PAH, yields only tar and no solid carbon after
carbonization at 500 ◦C for 5 h. To maintain a prolonged fluid phase that promotes potential mesophase
formation, fluorene was again carbonized at 500 ◦C and a solid carbon product was obtained after 12 h.
The carbon yield was very high ~75% (anthracene coke ~50%). However, no optical anisotropy was
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observed under the polarized light microscope. The polarized light micrograph from fluorene char in
Figure 2 is absent of colored regions representative of anisotropy. The nanostructure of the 2 materials
after furnace annealing at 2600 ◦C for 1 h is displayed by the TEM micrographs in Figure 3.

As seen in the TEM micrographs, anthracene coke is a highly ordered graphitic structure and
fluorene char is a highly disordered material with a chaotic nanostructure. The curvature found in
heat-treated fluorene char is believed to be due to the inclusion of curvature inducing pentagonal ring
structures [30–36].

A 1:1 blend of fluorene and anthracene by weight was co-carbonized at 500 ◦C for 5 h. Due to
the difference in reactivity of the compounds at 500 ◦C, it was expected that the surface would be
heterogeneous and contain optical anisotropic regions formed from anthracene carbonization and
pitch from fluorene carbonization. Indeed, pitch was found in abundant supply, shown on the edges
of the micrograph in Figure 4 (black regions), as were abundant flow domains from anthracene.C 2018, 4, x FOR PEER REVIEW  5 of 14 
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Figure 3. TEM micrographs of (A) anthracene coke and (B) fluorene char after furnace heat treatment
at 2600 ◦C for 1 h.

It has been demonstrated that optical anisotropy is typically locked in place upon the completion
of mesophase development [27]. However, heat treatment of the co-carbonized material partially
destroyed the optical texture as shown in Figure 5. The optical textures after heat treatment at 2600 ◦C
for 1 h are mosaics (left) and small domains (right). No flow domains were preserved upon heating and
thus fluorene pitch must have been embedded in the flow domains in Figure 4. The smaller textures
are the remnants of the original anthracene flow domains. At the nanoscale, clear heterogeneity exists,
as shown in the TEM micrograph in Figure 6.
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The 2 regions are anthracene coke derived synthetic graphite as displayed in the right hand side
of Figure 6A and disordered regions as shown on the left in Figure 6A and with a higher magnification
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in Figure 6B. The disordered regions were likely present in the virgin coke as fluorene derived pitch.
Since the disordered regions shown in the TEM micrograph are below the detection size limit of a light
microscope, pitch was not observed dispersed throughout the flow domains in Figure 4. The structure
of the disordered region is very similar to that observed from heat-treated fluorene char. Upon furnace
heat treatment, the pitch forms the disordered carbon regions causing stress between adjacent graphitic
regions that results in misalignment. This misalignment translates to a decreased optical texture size
as observed in the polarized light micrographs from before and after heat treatment.

CO2 laser annealing vaporizes out the fluorene derived pitch while annealing the anthracene coke.
The resulting structure is that of graphite with ~200 nm spherical pores as shown in Figure 7. The Swiss
cheese like structure in Figure 7 was prepared by CO2 laser annealing at 2600 ◦C for a duration of
1 min. Traditional furnace annealing of this material does not result in the porous structure as the
heating rates are too slow to vaporize out the pitch. The heating rate of the CO2 laser is 1.8 × 106 ◦C/s.
The CO2 laser heating rates and experimental setup have been reported elsewhere [16].C 2018, 4, x FOR PEER REVIEW  7 of 14 
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Figure 7. TEM micrographs of Swiss-Cheese-Graphite formed from CO2 laser annealing of
anthracene-fluorene coke.

The vaporization of the fluorene pitch is rapid and SCG is produced with very short laser pulses.
Longer laser pulse widths are utilized to anneal the remaining anthracene coke. A thin carbon film
from the deposition of the vaporized fluorene pitch was found around the annealed sample. A TEM
grid was placed near the sample for the purpose of collecting the film. A TEM micrograph of the
deposited carbon product is shown in Figure 8. The film is in the form of soot and thus supports the
assumption of vaporized pitch leaving behind the pores as the pyrolysis of pitch in aerosol will result
in the formation of soot [37,38].

After 1 min of CO2 laser annealing the SCG has a d002 spacing of 3.40 Å, the same as pure
anthracene coke subjected to the same heat treatment and thus the pores do not limit graphitizability.
The laser synthesized SCG was heat treated at 2600 ◦C for a 1 h duration in a graphitization furnace.
The layer plane spacing reduced to 3.36 Å, the same as pure anthracene coke.

A potential application of porous SCG is to use it as a lithiated anode. Graphite is the most
common anode material for lithium ion batteries. However, the rate capacity of charging and
discharging the lithiated graphite anode is a limiting factor. The porous SCG may provide improved
rate capacity as the pores can increase Li+ transport to the graphite gallery (edges), while improving
their accessibility by increased exposure. Moreover, shorter interstitial distances (due to porosity) could
also increase lithium intercalation and deintercalation rates, while retaining the desired properties of
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graphite (high energy density). The ideal porous graphite should contain pores covering the entire
material and the graphite pore interface needs to be accessible to Li. However, as seen in the TEM
micrograph in the right side of Figure 7, not all of the laser annealed anthracene-fluorene coke contains
pores. The pores were found dispersed in only ~1/4 of the material. Additionally, the pore walls
are comprised of closed shell nanoparticles and thus the graphitic layers are inaccessible to Li ions
(Figure 9).
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In an attempt to optimize SCG, fluorene was replaced with pyrene as the fullerene-like structures
around the pore walls may likely be due to the odd-membered ring. It has been repeatedly observed
that oils with higher concentrations of pyrene result in extended fluidity of the carbonization
medium [4,39–41]. Pyrene functions as a hydrogen shuttler and good solvent, extending fluidity
and moderating the reactivity of the carbonizing medium. Co-carbonization of pyrene and anthracene
yielded mostly tar after 5 h at 500 ◦C. The recovered solid product was 10% weight of that of the starting
feed and did not yield SCG upon laser annealing as the pitch did not disperse throughout the solid.
Co-carbonization of an equal part blend by weight of anthracene-fluorene-pyrene yielded 30% weight
of solid carbon after carbonization at 500 ◦C for 5 h and resulted in SCG upon laser heating. The laser
annealed product is shown in the TEM micrograph in Figure 10. As seen in Figure 10B, the graphitic
layer planes are for the most part unimpeded with relatively few fullerene-like nanoparticles lining
the pore walls. The reduction in fullerene-like particles may reflect the reduction in concentration
of curvature inducing pentagonal ring systems. However, their nearly complete absence suggests
otherwise. Pyrene mediated carbonization may create a boundary layer between the fluorene pitch
and anthracene coke.

Pore coverage was increased to greater than half of the material by providing vertical agitation of
the reactors at a frequency of 200 oscillations a minute and an amplitude of 2.5 cm. The pore diameter
is ~100 nm with reactor agitation as shown in Figure 10A, compared to ~200 nm w/out agitation and
~1/4 material coverage. Increasing the frequency beyond 200 oscillations a minute did not result in
increased pore coverage. The crystal lattice dimensions of pure anthracene coke and SCG after furnace
heat treatment at 2600 ◦C for 1 h are provided in Table 1 as measured by XRD.
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Table 1. XRD crystal structure of anthracene coke and SCG—2600 ◦C, 1 h.

Anthracene Coke SCG

La [nm] from (110) 110 54
Lc [nm] from (002) 61 20

d002 [Å] 3.36 3.36

The carbon layer diameter (La) and stack height (Lc) are reduced due to the pores in SCG as
compared to heat-treated anthracene coke. The lattice spacing and thus degree of graphitization
are the same between the materials. Therefore, SCG is graphitized anthracene coke that contains
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quasi-spherical pores. Pore shape is assumed to be quasi-spherical based on the thickness contrast
of the TEM micrographs in Figure 10. The BET surface area was measured from both heat-treated
anthracene coke and SCG after ball milling for 30 min. A TEM survey showed that both materials have
an equivalent particle size of ~10 µm (micrographs provided in Appendix B). The surface areas of SCG
and heat-treated anthracene coke are 30 and 8 m2/g, respectively. The nearly 4-fold greater surface
area of SCG reflects the pores, considering the particle sizes of the 2 materials are equivalent. The total
pore volume of SCG is 0.45 cm3/g, the N2 isotherm is provided in Appendix C.

The optimized SCG was prelithiated using a short circuiting approach. The specific capacity of the
SCG electrode was measured using half-cell measurements by delithiating the SCG electrode to 3 V.

Figure 11 shows the specific capacity of the SCG electrode measured at a current density of 0.1 A/g.
The delithiation curve shows a voltage plateau below 0.2 V vs. Li+/Li corresponding to various stages
of lithium deintercalation in SCG graphite. The total specific capacity measured at 0.1 A/g was
~235 mAh/g based on the active mass of SCG electrode. Figure 12 shows the charge/discharge
curve of the lithium ion capacitor fabricated using polyfurfuryl alcohol/phloroglucinol carbon as
cathode and prelithiated SCG as anode. The hybrid capacitor was cycled between 2.2 V and 4.2 V and
exhibits a typical sawtooth profile. Figure 13 shows the specific cell capacitance plotted as a function
of current density. The specific capacitance at 0.1 A/g, 0.3 A/g and 0.5 A/g was 46 F/g, 39 F/g,
and 33 F/g, respectively. Figure 14 shows the comparison of the Ragone plot made using prelithiated
SCG graphite and commercially available graphite derived from mesophase pitch. The energy density
of the capacitor was ~75 Wh/kg at a power density of 370 W/kg. At 1 KW/kg, the energy density was
about 48.5 Wh/kg.
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Figure 14. Comparison of Ragone plot performance of lithium ion capacitor made using prelithiated
SCG Graphite and commercial graphite as anode.

In the current form, SCG does not provide improvement over commercial carbon anode materials.
Although the relative surface area increase is large compared to pure anthracene derived graphite,
30 m2/g is low and likely a limiting factor. Further refinement of porosity and improvement in surface
area, either pre-engineered by recipe and procedure or post partial activation, could result in increased
rate capability and power characteristics. The low surface area of SCG is attributed to limited pore
coverage. Approximately half of the material is non-porous. Pore coverage increased from ~1/4 to
greater than half of the material by providing vertical agitation of the reactors. Increased vertical
agitation beyond 200 oscillations a minute at an amplitude of 2.5 cm did not provide increased surface
area. A potential method to increase surface area is to provide horizontal agitation of the reactor
during carbonization. Horizontal agitation may result in the higher dispersion of the fluorene derived
liquid pitch throughout the anthracene derived coke. Recipe modification is another avenue to explore,
increasing the pitch precursor (fluorene) would decrease solid product yield, but may provide a more
porous material with higher surface area. Other low carbonization reactivity compounds that yield
pitch should be experimented with, in place and in combinations with fluorene and pyrene.

The electrical properties do demonstrate the graphitic nature of SCG. Thus, SCG is a porous
graphite synthesized directly from tailored carbonization products via rapid thermal processing.
Rapid thermal processing bypasses the need for templating and template removal. Laser annealing
carbon is potentially of enormous technological importance as synthesis not possible via traditional
annealing can be used in the development of novel materials like SCG. The pores in SCG provide
access to the graphite gallery (edges), whereas templated carbons align normally to the template and
thus block edge access.
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4. Conclusions

Porous Swiss-Cheese-Graphite (SCG) was prepared by rapidly heating the carbonization product
of an equal part blend of anthracene, fluorene, and pyrene with a CO2 laser. Rapid CO2 laser heating at
a rate of 1.8 × 106 ◦C/s vaporized out the fluorene-pyrene derived pitch while annealing the anthracene
coke. The resulting structure is that of graphite with 100 nm spherical pores. The graphitizablity of
SCG is the same as pure anthracene coke. A TEM investigation paired with an electrical half-cell test
shows that interfaces between graphitic layers and the pore wall are unimpeded. SCG was prelithiated
and tested as an anode in lithium ion capacitors. The fabricated capacitor showed good voltage
stability between 2.2 V and 4.2 V and an energy density as high as 75 Wh/kg.

Author Contributions: J.P.A. and R.L.V.W. conceived and designed the experiments related to the material
synthesis; J.A. performed the experiments and material characterization; R.R. conceived, designed, and preformed
the electrochemical experiment; J.A. wrote the paper.
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Appendix A. Optical Texture

The optical textures of anthracene coke are mainly flow domains and domains; optical texture
sizes are classified in reference [42]. Domains (often further classified as small and large) refer to
anisotropic regions with diameters between 10–60 µm. Elongated domains that are greater than
60 µm in length and greater than 10 µm in width are called flow domains. Mosaics describes small
structures of anisotropic units that are 1–10 µm in diameter (smallest resolvable optical textures in
a light microscope). A preponderance of a given texture, or a mixture of textures, characterizes the
principal optical texture of cokes.
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