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Abstract: A sustainable and simple synthesis procedure involving the co-assembly of green phenolic
resin and amphiphilic polymer template in water/ethanol mixture at room temperature to synthesize
nitrogen doped mesoporous carbon is reported herein. Guanine is proposed as a novel nitrogen-based
precursor which is able to create H-bondings both with the phenolic resin and the template allowing
the formation of mesoporous carbons with nitrogen atoms uniformly distributed in their framework.
The influence of the synthesis procedure, template amount and annealing temperature on the carbon
textural properties, structure and surface chemistry were investigated. For several conditions, carbon
materials with ordered pore size and high nitrogen content (up to 10.6 at %) could be achieved.
The phase separation procedure combined with optimal amount of template favor the formation of
ordered mesoporous carbons with higher specific surface area while the increase in the temperature
induces a decrease in the surface area and amount of heteroatoms (N and O). The electrochemical
performances as electrode in supercapacitors were evaluated in acidic medium and the capacitance
was closely related to the material conductivity and surface chemistry.

Keywords: N-doped mesoporous carbon; soft-template; guanine; supercapacitor

1. Introduction

Ordered mesoporous carbons (OMC) received tremendous attention during the last decade
mainly due to their tunable and uniform pore size/geometry, pore connectivity and adjustable surface
functionalities. All these properties made them valuable materials in many fields of applications such
as the catalysis, gas adsorption and separation, energy storage, drug delivery, and gas sensors [1–7].
The design of ordered carbon materials can be achieved only via two specific synthesis pathways,
i.e., the hard and soft-template. Herein, the soft template has been chosen taking into consideration
the advantages such as simplicity, time efficiency and convenient removal of the template by simple
thermal annealing. This approach consists in supramolecular self-assembly organization of organic
species. In general, cross-linked phenolic resins are used as carbon-yielding components, which are
able to co-assembly with an amphiphilic block co-polymer acting as a pore-forming component.
Thermopolymerization of such assemblies allows the formation of a thermosetting phenolic resin and
further thermal annealing induces the decomposition of the phenolic resin and of the soft template
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resulting in a mesoporous carbon formation. Due to the flexibility of this synthesis, the incorporation
of other species is very simple allowing to obtain heteroatom’s doped or hybrid mesoporous carbons.

In the recent years, nitrogen became the most studied hetoroatom since it allows to enhance
carbon electronic conductivity, surface polarity and electron-donor tendency, improving the carbon
performances in different applications. N-doped porous carbons show great potential in energy storage
and they are particularly used in supercapacitors [8] which are known to be environmentally friendly
and a high safety system combining high power density [9] and long cycling life [10]. Depending on
the charge storage mechanism, two types of supercapacitors are known [11], i.e., electrical double
layer capacitors (EDLC) where the charge is stored at the carbon/electrolyte interface and redox-based
electrochemical capacitors [12–15] where the charge is stored via redox reactions promoted by the
material in the presence of the electrolyte. While in the first case, the performances are related to the
carbon porosity [16–18], in the second case they are affected by the carbon surface chemistry [19],
namely, the nature and amount of functional groups. Therefore, it appears that the combination
of an optimal carbon porosity and surface chemistry must be achieved in order to improve the
electrochemical performances [12,15,16,20].

N-doped mesoporous carbons can be synthesized by post-synthesis routs involving the
impregnation of a carbon with urea, melamine or polypyrrole, followed by thermal annealing
under inert atmosphere or by direct exposure to ammonia gas at high temperatures [8]. However,
these methods are generally time consuming and costly for practical application and for this reason the
direct thermal transformation of nitrogen containing polymers into N-doped carbon was also explored.
Wei et al. [21] reported the synthesis of N-doped mesoporous carbon using the evaporation-induced
self-assembly (EISA) process and phenol-formaldehyde derived resol as carbon source, Pluronic
F-127 as template and dicyandiamide as nitrogen source. The carbon resol and dicyandiamide were
able to assemble with the micelles of pluronic template via hydrogen bonding and electrostatic
interactions giving rise after thermal annealing to N-doped mesoporous carbon presenting tunable
mesostructures, pore size and high nitrogen content (13.1 wt %). Wang et al. [22] proposed the use of
aminophenol as carbon and nitrogen source, formaldehyde as cross-linker and pluronic F-127 as pore
agent. The co-assembly of these molecules resulted in N-doped mesoporous carbon with a hexagonal
structure and nitrogen amount of 3.3 at %. By employing aminophenol, hexamethylenetetramine
(HMTA), formaldehyde and Pluronic F-127, Chen et al. [23] demonstrated successful synthesis of single
crystals of N-doped mesoporous carbon through a soft-template approach. Yu et al. [24] used urea as
nitrogen source, hexamethylenetetramine, resorcinol–formaldehyde and pluronic F-127 co-assembled
in an aqueous ammonia solution in a soft-template route under hydrothermal conditions. N-doped
mesoporous carbon exhibiting a cubic structure and ~2.5 wt % of nitrogen was obtained. Using the
same soft-template approach assisted by hydrothermal conditions, nitrogen-doped carbon could be
obtained by self-assembly of poly(benzoxazine) with resorcinol–formaldehyde resin and lysine as
precursors [25,26]. Melamine–formaldehyde resins [27,28] and aniline [29] were reported as well as
nitrogen source for the preparation of N-doped mesoporous carbons.

The main inconvenience presented by the above mentioned synthesis pathways are related either
to the use of toxic precursors (phenol, formaldehyde, aniline . . . ), or strong acids/bases for the
polymerization of phenolic resin and hydrothermal conditions for rigidifying the resin. Therefore,
developing more environmentally friendly synthesis routs involving limited synthesis steps and that
can be cost-effective for large-scale applications are of great need. In this aim, significant progress was
made by our group in the recent years to improve the soft-template route. Firstly, the glyoxylic acid
as a green precursor extracted from plants was proposed for the first time as cross-linker alternative
instead of formaldehyde with no requirements of supplementary base/acid catalyst in the synthesis.
Such a green synthesis pathway was successfully used to prepare mesoporous carbon powders and
films with tuned pore size and geometries, various graphitization levels via classical approaches
like EISA and phase separation [30], but also by novel more unconventional routes assisted by
light [31,32]. Recently two green approaches have been developed to prepare N-doped porous carbon.
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Phloroglucinol/glyoxylic acid resin was cross-linked with triethylenediamine (TEDA) as nitrogen
source in water at room temperature and in the absence of a template, resulting in the formation of
microporous carbon spheres [33]. Chitosan, a biocompatible and green precursor was as well proposed
as a simultaneous carbon and nitrogen precursor which was able to assemble with Pluronic F-127
template to obtain N-doped carbon beads with hierarchical porosity by a soft-template assisted by a
freezing-drying technique [34].

Inspired by our recent works, herein, we report a direct synthesis of N-doped ordered mesoporous
carbons with a high nitrogen content and tuned porosity by co-assembly of phloroglucinol–glyoxylic
acid resin and guanine with Pluronic F-127 template in water/ethanol mixture at room temperature.
Guanine is proposed as a new green precursor which contains high nitrogen content (46.3%) coming
from one nitrile group and two amine groups in its composition. Several synthesis parameters
were investigated (synthesis procedure, template amount and annealing temperature) and their
impact on the final material texture and structure finely characterized. Thus, insight on the formation
mechanism of the N-doped mesoporous carbon using guanine is proposed based on several techniques.
Selected materials were tested as supercapacitors and the performances are discussed in terms of
materials characteristics.

2. Materials and Methods

2.1. Material Synthesis

All chemicals were purchased from Sigma-Aldrich (Darmstadt, Germany) and used as received
without any further purification. The nitrogen doped carbon porous materials were synthesized by
soft-templating approach. Typically, phloroglucinol (0.82 g) and Pluronic F-127 (1.6 g) were dissolved
in an ethanol/water mixture (15/30 mL) followed by the addition of guanine (0.46 g) and glyoxylic
acid (0.53 g). Three different procedures were investigated: (i) a phase separation approach consisting
in aging the mixture in the absence of stirring during 48 h at normal conditions of pressure and
temperature; (ii) a stirring approach, a rather similar procedure as before but in this case the solution
is stirred continuously in a closed Teflon beaker; and (iii) a stirring/evaporation approach implying
the evaporation of the solvent under stirring in air in a fume-hood using the same Teflon beaker
but uncovered. The obtained polymer-gel was recovered (in the first two cases the solvent must be
discarded) and dried at room temperature and at 80 ◦C in air for 12 h followed by another 12 h at
150 ◦C in order to cross-link the phenolic resin framework. The obtained materials were pyrolyzed at
600 ◦C under inert atmosphere (Ar) for 1 h using a heating rate of 2 K/min. To check the influence of
annealing temperature, two other temperatures were investigated, i.e., 750 and 900 ◦C on the materials
obtained using the stirring method. Another studied parameter was the amount of Pluronic F-127
template, i.e., 0.8 and 0.4 g was used in addition to the reference quantity 1.6 g. A last material was
prepared in the absence of phloroglucinol in order to evaluate the contribution of guanine in the
synthesis mechanism. The amounts of guanine and glyoxylic acid was increased to 0.8 g while that of
template, Pluronic F-127 was kept constant (1.6 g).

2.2. Material Characterization

The textural properties of the carbon material were investigated with Micromeritics ASAP 2420
Accelerated Surface Area and Porosimetry System (Micromeritics Instrument Corporation, Norcross,
GA, USA) using N2 as adsorbate at −196 ◦C and allowing simultaneous analysis of six materials.
Prior to the analysis, the samples were out-gassed overnight under vacuum at 300 ◦C on the degassing
port followed by 12 h out-gassing on the analysis port. The specific surface area (SSA) was calculated
from the linear plot in the relative pressure range of 0.05–0.3 using the BET (Brunauer–Emmett–Teller)
model while the micropore volume (Vmicro) was determined using the Dubinin–Radushkevich (DR)
equation. The mesopore volume (Vmeso) was obtained by subtracting the micropore volume from the
total pore volume of N2 adsorbed at a relative pressure P/P0 of 0.95. The pore size distributions (PSD)
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were determined from the adsorption branch of nitrogen isotherms using the 2D-NLDFT (non local
density functional theory) standard slit pore model for carbon materials implemented in SAIEUS
software (Micromeritics) [35,36].

The long-range ordering of the materials was studied by small angle X-ray scattering (SAXS)
analysis using a Rigaku SMax 3000 (RIGAKU, Tokyo, Japan) equipped with a rotating Cu anode
Micromax-007HF (40 kV, 30 mA) and OSMIC CMF (Confocal Max Flux) optics. ImageJ software
(National Institutes of Health, Rockville Pike, MD, USA) was used for SAXS treatment of different
images collected with the X-ray 2D detector. X-ray photoelectron spectroscopy (XPS) was performed
with a VG Scienta SES 200-2 spectrometer (VG Scienta, Uppsala, Sweden) equipped with a
monochromatized Al Kα X-ray source (1486.6 eV) and a hemispherical analyzer (VG Scienta, Uppsala,
Sweden). Widescan and high resolution XPS spectra are recorded with a pass energy 100 eV. Spectra
were subjected to a Shirley baseline and peak fitting was made with mixed Gaussian-Lorentzian
components with equal full-width-at-half-maximum (FWHM) using CASAXPS version 2.3.17 software
(Neal Fairley, Teignmouth, UK). All the binding energies (BE) are referenced to the C1s peak (sp2 carbon
atoms) from the “graphitic material” at 284.6 eV.

The material surface morphology/structure was investigated with a JEOL ARM-200F transmission
electron microscope (TEM) (JEOL, Akishima, Japan) working at 200 kV. Energy Dispersive X-ray
analysis (EDX) mapping with quantitative determination of atomic composition of the NPs
was obtained with a JED 2300 detector (JEOL, Akishima, Japan) coupled with the transmission
electron microscope.

13C solid-state NMR CP-MAS (cross-polarization magic angle spinning) experiments have been
performed on a Bruker Avance 400 MHz spectrometer (Bruker, Karlsruhe, Germany) using 3.2 mm
zirconia rotors spinning at a MAS frequency of 13 kHz. Recycle delay for all CP experiments was 4 s
and spinal-64 decoupling was applied during signal acquisition. Cross-polarization transfers were
performed using adiabatic tangential ramps to enhance the transfer efficiency, and the contact time
was 1 ms.

2.3. Material Electrochemical Characterization

The materials were tested using Swagelok cells in a 2-electrode configuration, by cyclic
voltammetry using a multichannel VMP3 potentiostat/galvanostat (Biologic, Paris, France). Electrodes
were prepared by mixing 95% of carbon with 5% of polytetrafluoroethylene (PTFE) binder in the
presence of ethanol. In some cases, carbon black was used (30 wt %). Electrochemical capacitors were
built using two carbon electrodes (8 mm diameter) with comparable mass (~7 mg) and thickness
(200 µm) [37] which were electrically isolated by a 50 mm-thick porous cellulose as separator disk.
As counter electrode a platinum disk was used. All materials were tested in 0.1 M H2SO4 aqueous
electrolyte. Cyclic voltammetry was performed in a voltage window between 0 and 0.9 V for aqueous
electrolytes at scan rates of 20 mV·s−1. Electrochemical impedance spectroscopy (EIS) measurements
were carried out at open-circuit voltage within the frequency range from 1 mHz to 100 kHz.

3. Results and Discussion

The synthesis of N-doped carbons was performed via the soft-template approach involving the
organic-organic self-assembly of phenolic resins molecules with a soft-template (triblock polymer,
Pluronic F-127), which is able to create the mesoporosity and to organize it in different shapes and size
depending of several factors (Figure 1).

Herein, few important parameters have been explored in order to evaluate their influence on the
final carbon characteristics. The phase separation, even if less used compared to the EISA method,
was selected for this study taking into consideration the following advantages (a) allows to prepare
high quantities of material per batch of synthesis, therefore possible to up-scale and (b) easy to perform
and to recover the polymer for carbonization (scratching of polymer film from petri dishes being
necessary for EISA method). However, the control of porosity (surface area, pore size and architecture)
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is of great importance, particularly when new precursors are incorporated in the synthesis mixture.
This is the case of guanine which was used for the first time in order to introduce nitrogen in the
carbon framework.
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Figure 1. Schematic representation of the synthesis process of N-doped mesoporous carbon and the
involved mechanism.

Firstly, the impact of the synthesis type on the carbon porosity was investigated and three
different procedures were evaluated: (a) the phase separation, involving macroscopic phase separation
of polymeric resin and the solvent; (b) phase separation assisted by stirring, herein “stirring”; and (c)
stirring/evaporation method, a similar approach as method (b) but being conducted in an uncovered
vessel to allow complete evaporation of the solvent. The as-obtained gels after the synthesis were
thermopolymerized and pyrolyzed and the obtained carbons analyzed by transmission electron
microscopy (Figure 2). The carbon obtained by phase separation (Figure 2a) present regular parallel
channels indicating an ordered porous structure. When the synthesis is assisted by stirring (Figure 2b),
the morphology became less ordered or even completely disordered when the synthesis is performed
under evaporation (Figure 2c). This result indicates that the way of synthesis preparation has a great
impact on the mesoporosity formation.
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To obtain further details about the materials porosity, nitrogen adsorption measurements were
performed and the obtained nitrogen adsorption/desorption isotherms are shown in Figure 3a. For the
materials prepared by phase separation and stirring, the isotherms present a type IV shape with
a hysteresis loop of type 2 between 0.4 and 1, P/P0 relative pressure, confirming the mesoporous
character of the materials. An increase of the adsorbed nitrogen volume in the low relative pressure
region is observed as well suggesting the presence of micropores. Comparing the two materials, it can
be noticed that the microporous part is rather similar, slightly higher in the case of carbon obtained by
stirring which translates in the same tendency for specific surface areas (445 and 570 m2·g−1 for phase
separation and stirring, respectively) and microporous volume (0.19 vs. 0.25 cm3·g−1, Table 1). If the
mesoporous part of the isotherms are compared (P/P0 > 0.4), it can be clearly seen a much defined
hysteresis with higher adsorbed nitrogen volumes for phase separation derived carbon. This implies
that this carbon presents a more developed mesoporosity as confirmed by the determination of
mesoporous volume which is 0.50 cm3·g−1, therefore five times higher than in the case of stirring
derived carbon, 0.11 cm3·g−1. The mesopore size is different as well (Figure 3b), ~4 nm and 8 nm for
phase separation and stirring, respectively. The micropores are visible on the pore size distribution,
with sizes less than 1 nm for both materials. As the mesoporosity is much affected by the stirring
procedure compared to microporosity, we can believe that this had an effect on the self-assembly of the
phenolic resin with the template rather than on the formation of the resin. As a reminder, the thermal
decomposition of phenolic resin (cross-linked phloroglucinol with glyoxylic acid) is responsible for the
micropore creation while the decomposition of the template is related to the mesoporous formation [38].
Surprisingly, if the stirring synthesis is assisted by evaporation, the resulting carbon material is not
porous, the surface being very small (36 m2·g−1). Therefore, the cross-linking of the phloroglucinol
with glyoxylic acid and the self-assembly of the resulting resin with the template is strongly affected by
the evaporation of the solvent. Taking into consideration the higher evaporation rate of ethanol over
water, we can expect that the removal of ethanol is done before the water and that the polymer solution
will be enriched in water solvent. As some precursors, such as phloroglucinol have limited solubility
in water, it can be supposed that its cross-linking with glyoxylic acid and further self-assembly with
the template is not promoted. However, at this point the mechanism behind the porosity loss is
not yet clear, but it is evident that this approach is detrimental for the preparation of carbons with
controlled porosity. Therefore, we select the stirring procedure to investigate further the template
amount influence.C 2018, 4, x FOR PEER REVIEW  7 of 17 
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Table 1. Textural properties of carbon materials determined from N2 adsorption/desorption isotherms.

Materials SSA m2·g−1 Vt cm3·g−1 Vmicro cm3·g−1 Vmeso cm3·g−1

Phase Separation 445 0.69 0.19 0.50
Stirring 570 0.46 0.25 0.11

Stirring/Evaporation 36 0.016 - -
1.6 570 0.46 0.25 0.11
0.8 523 0.67 0.22 0.40
0.4 341 0.42 0.13 0.29
600 523 0.67 0.22 0.40
750 587 0.63 0.22 0.41
900 322 0.35 0.12 0.23

Figure 4 presents the TEM images and the small-angle X-ray scattering of carbon materials
resulting by changing the initial amount of template from 1.6 g to 0.8 g and 0.4 g, respectively. It can
be observed in the TEM pictures that diminishing the quantity from 1.6 g (Figure 4a, left) to 0.8 g
(Figure 4b, left), the morphology changes, an ordered material presenting uniform parallel channels
with ordered distributed porosity (in-set) being obtained. However, if the quantity is further decreased
to 0.4 g, the obtained material is more disorganized (Figure 4c, left) compared the other two materials.
These results are sustained by the SAXS measurements, showing a well-defined diffraction peak at
around 0.8◦ 2theta for 0.8 g materials. This peak corresponds to the 10 diffraction planes of a 2D
hexagonal ordered mesostructure having p6m symmetry [30]. On the contrary, only a small peak
is seen for 1.6 g material and no peak for 0.4 g material indicating low ordering in line with the
TEM observations.
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Figure 4. (left) TEM images of carbon materials and (right) Small-angle X-ray Scattering patterns of
carbon materials obtained using the stirring procedure and different amounts of template: 1.6 g (a),
0.8 g (b) and 0.4 g (c).
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The nitrogen adsorption/desorption isotherms show for all materials type IV isotherms specific
to micro/mesoporous materials (Figure 5a). For 1.6 and 0.8 g, the low-pressure curves are almost
overlapped, inducing similar microporosity (Vmicro, Table 1) and SSA (570 vs. 527 m2·g−1, respectively),
while the high pressure region corresponding to the mesopores is much developed for 0.8 g material
(0.11 vs. 0.40 cm3·g−1 for 1.6 and 0.8 g material, respectively). For 0.4 g material, the mesoporosity is
similar with 1.6 g material while the microporosity and the SSA is the smallest one among the studied
materials (341 m2·g−1, Table 1). The pore size is also different depending on the template amount
as demonstrated in Figure 5b. This suggests that a certain quantity of template is required to obtain
high surface area materials with ordered porosity. This is a balance between the formations of ordered
template micelles able to interact with the phenolic resin through H-bondings. The 0.8 g material is
therefore the most interesting one to investigate further the impact of annealing temperature on the
porosity but also on the surface chemistry.
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distribution of carbon materials obtained by using the stirring procedure and different amounts of
template (a,b) and different temperatures (template amount 0.8 g) (c,d).

The nitrogen adsorption/desorption measurements for carbon materials were prepared at
standard 600 ◦C but also at higher temperatures 750 ◦C and 900 ◦C, depicted in Figure 5c. For 600
and 750 ◦C, the shapes of the curves are similar, slightly higher for 750 ◦C resulting in similar textural
values as seen in Table 1. Increasing the temperature to 900 ◦C has a negative impact on the porosity,
the SSA being reduced from 587 (750 ◦C) to 322 m2·g−1 (900 ◦C). The pore size is affected as well by
the temperature as shown in Figure 5d. The micropore size is increasing from 0.54 nm for 600 ◦C to
0.62 nm for 900 ◦C, while for the mesopores an opposite behavior is seen, i.e., shrinkage from ~9 nm to
7 nm and 5 nm for 600, 750 and 900 ◦C materials, respectively. The modification of pore size can be
in some extent related to the collapse of the micropores with the formation of larger one and to the
densification of the carbon matrix due to the removal of hetoroatoms. This last aspect was analyzed
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in more detail since it may also influence the electrochemical performances of the supercapacitors.
The heteroatoms may change the wettability behavior of the material with the electrolyte, the electronic
conductivity and may induce redox reactions with the electrolyte.

In this aim, the XPS analyses were performed for the carbon treated at different temperatures.
The survey spectra were recorded and besides the carbon presence, oxygen and nitrogen were detected.
For 600 ◦C material, the C, O and N contents are 83.4, 6.2 and 10.4 at % respectively. It is worth
noting, the high quantity of nitrogen that could be introduced by using the guanine. Increasing the
temperature to 900 ◦C, both the oxygen and nitrogen amount are reduced to ~4 and 6 at %, respectively
(Table 2). The high-resolution spectra of C1s were deconvoluted in several components (Figure 6, left).
The most intense one is related to Csp2 followed by C=N and C–N bonds [39,40]. The increase of the
full width at half maximum (FWMH) of the C1s peak at 600 ◦C compared to 700 ◦C and 900 ◦C, and the
appearance of a peak towards 286.5 eV, is related to the presence of oxygen functional groups such as
ethers, carbonyl, carboxyl (–C–OR, –C=O and O=C–O) and nitrogen groups (C=N, C–N), which are
located at higher binding energy compared to the Csp2.

Table 2. Carbon composition as determined by XPS analysis and electrochemical capacitance extracted
from cycling voltammetry curves.

Materials C, at % O, at % N, at % Capacitance, F·g−1 ESR, ohm

600 ◦C 83.4 6.2 10.4 0.6 8150
750 ◦C 90.1 3.1 6.7 84 13
900 ◦C 89.3 4.5 6.1 53 6.0

750 ◦C-CB - - - 95 4.0
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Increasing the temperature, the FWHM of C1s peak decreases due to the removal of some oxygen
and nitrogen groups. In addition, the N1s peaks exhibit five contributions located at 398.1, 399.6, 400.9,
402.5 and 403.6 eV (Figure 6, right) corresponding to pyridine, pyridine pyrrolic, quaternary, pyridine
oxide and NOx nitrogen functional groups [40,41]. At 600 ◦C, the pyridine groups are predominant
while increasing the temperature they are partly removed leaving place to quaternary groups which
become predominant at 900 ◦C.

The distribution of N and O atoms in the carbon framework was evaluated by EDX mapping
(Figure 7) and it can be observed that the heteroatoms are very well distributed in the carbon matrix
at atomic level. This indicates a good repartition of the guanine in the phenolic resin resulting in a
uniform N-doped carbon.
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Figure 8. 13C CPMAS NMR spectra of (a) guanine, (b) phenolic resin PS containing guanine (FR PS) 

and (c) phenolic resin (FR) prepared without guanine. 

Figure 7. STEM image of a typical carbon (a) along with the EDX mapping showing the distribution of
C (b), N (c) and O atoms (d) in the materials.

To get further insights on the formation of these materials, 13C NMR was performed on a phenolic
resin containing guanine and in addition for comparison purposes on a phenolic resin which is free
of guanine and on guanine precursor (Figure 8). The 13C NMR of guanine exhibit three main peaks
placed at 156, 141 and 106 ppm, respectively. The first peak (156 ppm) is the most intense one and
correspond to carbon atoms bonded to oxygen (=O) in the pyrimidine cycle. The peak presents a
shoulder which assigned to saturated and unsaturated carbon atoms bonded to nitrogen pyrimidine
cycle (in-set Figure 8).
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The peak for 141 ppm is related to the carbon atoms bonded to nitrogen in the imodazole
cycle, while the peak placed at 106 ppm is assigned to carbon atoms bonded simultaneous with
carbonyl groups and nitrogen atoms. The NMR conducted on phenolic resin containing guanine
(FR PS) confirms the presence of guanine by the appearance of the three peaks mentioned before.
In addition, other peaks are seen at 178, 158 and 101 ppm, which are mainly related to the carbon atoms
present in the initial precursors (phloroglucinol and glyoxylic acid) suggesting still some un-reacted
precursors. Another two peaks are detected at 108 and 40 ppm indicating cross-linked phloroglucinol
with glyoxylic acid via covalent bondings. The detailed mechanism of cross-linking was previously
reported in our works [30,32,38]. An intense contribution is seen at ~72 ppm and a small one at
20 ppm corresponding to the carbons atoms in –CH, –CH2 and –CH3 groups present in the PPO
(polypropylene oxide) and PEO (polyethylene oxide) moieties of the Pluronic F-127 template. It is
worth noting that if we compare all three NMR spectra, the spectra of phenolic resin containing the
guanine is an addition of the spectra of guanine and phenolic resin (FR). No supplementary peaks
appear indicating no cross-linking reactions by covalent bonds between the guanine and the phenolic
resin, as for instance may occur by using another nitrogen precursor as recently demonstrated [33].
As well, a simple physical mixture between the guanine and the phenolic resin can be excluded taking
into consideration the TEM and EDX results showing the formation of ordered carbon materials with
uniform distribution of nitrogen in their framework.

The most plausible hypothesis to explain the formation of these materials is the creation of
H-bonding between the guanine and the phenolic resin and the template. This scenario is possible
since the guanine is well known to be able to create H-bondings with various compounds. The carbonyl
bond (=O) of guanine may act as a hydrogen bond acceptor and may create H bonds with the –OH
groups of phloroglucinol while the nitrogen groups (–NH and –NH2) may act as a hydrogen bond
donor which may favor the H-bonding with the carbonyl groups (=O) of glyoxylic acid or its derivates.
The as-formed phenolic resin/guanine system may further assemble by H-bondings with the micelles
of Pluronic template. Two main possibilities of assembly of phenolic resin/guanine system with the
template are possible. On one hand the high number of hydroxyl groups (–OH) of phloroglucinol and
on the other hand the –NH and –NH2 groups of guanine, may develop H-bonds with the –O of PEO
fragments of the template. In the water/ethanol solution, the PPO fragments of the template form
the core of the micelles while the PEO the shell of the micelle. The phenolic resin/guanine may form
H-bonding with the oxygen atoms coming from the hydrophilic PEO moieties of the pluronic micelle
shell, forming a layer of resin/guanine in the surface of the micelles.

To evaluate if the guanine can self-assemble with the template we performed a supplementary
synthesis where phloroglucinol was not used. Surprisingly, the resulting material is porous (Figure 9a)
and this porosity is randomly organized than compared to the carbon obtained in the presence of
phloroglucinol (Figure 9b). This demonstrates that guanine itself is able to create H-bonding and
to assemble with the Pluronic template, and this assembly involves different bonds compared to
phloroglucinol. In addition, guanine can be used both as nitrogen but also carbon source.

Taking into considerations these results, one can propose that the synthesis of N-doped
mesoporous carbon proceed by a complex multi-component co-assembly process where the carbon
precursors (the phenolic resin), the nitrogen source (guanine) and the pore agent (Pluronic F-127)
are closely interacting by H-bondings. Further thermal annealing of such assembly, decompose the
template and allow to obtain a mesoporous carbon with nitrogen in its structure. A general schema
resuming the synthesis mechanism of assembly of phenolic resin/guanine and the template is proposed
in Figure 1.

The electrochemical performances of several N-doped carbon materials synthesized at 600 ◦C
were evaluated in a two-electrode configuration in 0.1 M H2SO4 electrolyte in the potential range of
0–0.9 V using a scan rate of 20 mV s−1. Cycling voltammetry was used to study the electrochemical
behavior and a typical curve for a material prepared at 600 ◦C is presented in Figure 10a. Surprisingly,
the capacity value was found to be close to zero F/g, however, increasing the annealing temperature
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to 750 and 900 ◦C, the cyclic voltammetry (CV) curve shape improves and the capacitance as well, i.e.,
84 F/g and 53 F/g for 750 ◦C and 900 ◦C.C 2018, 4, x FOR PEER REVIEW  12 of 17 
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Figure 10. Electrochemical cyclic voltammetry (a) and electrochemical impedance spectroscopy, 
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To explain this behavior several important factors must be considered such as porosity and surface
chemistry. Concerning the porosity, it has been seen before that this similarity between 600 ◦C and
750 ◦C, slightly higher for the latest one while for 900 ◦C, the porosity is significantly lower than at
600 and 750 ◦C (Figure 10b). Therefore, the textural properties cannot explain why the capacitance
of 600 ◦C sample is very low. On the other hand, the XPS showed for the 600 ◦C a high amount of
nitrogen and oxygen groups compared to 750 and 900 ◦C samples (Table 2). The high number of
functional groups are supposed to have a positive effect on the wettability of carbon surface with
the electrolyte as well in promoting redox reactions to improve the capacitance by pseudocapacitive
effects. However, particularly the oxygen groups may be detrimental to the electronic conduction of
the material. To get more insights on this aspect, EIS was performed and the Nyquist plots are shown
in Figure 10c.

A large semicircle in the high to low frequency region is seen for 600 ◦C sample indicating a highly
resistive material, which can be accounted to the large amount of oxygen. Increasing the temperature
to 750 ◦C, the shape of the curve changes to a semicircle in the high-to-medium frequency range,
accompanied by a sloped line in the low frequency region, indicating at a first glance a better capacitive
behavior and smaller diffusion resistance. At 900 ◦C, the semicircle become very small sign of a good
electronic conductivity. From the intercept of the semicircle with the real axis, the equivalent series
resistance (ESR) of the electrodes can be determined which gives information about the total resistance
of the system comprising the electrode, the electrolyte, and separator. This resistance is ~13 and
~4 Ohm for 750 and 900 ◦C carbons, therefore, significantly much smaller than for the 600 ◦C sample
(several thousand Ohms) proving the improvement of the electronic conductivity. To further improve
the electrochemical performances, the 750 ◦C sample was mixed with carbon black. The CV exhibits a
more rectangular CV curve indicating electric double layer capacitive behavior. The Nyquist plot show
a smaller semi-circle when carbon black is used, the resistance being diminished to 6 Ohm. Therefore,
the improvement in the conductivity allows to achieve a capacitance of 95 F/g for 750 ◦C/CB sample.
A general trend of the capacitance evolution with the ERS is seen in Figure 10d, i.e., an increase in
the capacitance with the increase of the ESR for the materials treated at 600 ◦C and 750 ◦C, therefore,
for materials presenting similar specific surface areas. For the 900 ◦C carbon, even if the ERS is lower,
the delivered capacitance is much lower than the other materials and this can be related to its lower
specific surface area (Table 1).

In order to compare the performances of such materials with those reported in the literature,
several electrochemical performances in H2SO4 were gathered in Table 3 along with their specific
surface area and nitrogen content. The selected samples were limited to material exhibiting
characteristics (porosity and nitrogen content) comparable with those obtained in the present work.
It can be seen that all these materials present higher capacitance than our materials even if the surface
area are comparable. However, it can be noticed that no strict correlation between the BET surface area
and the capacitance is observed (Figure 10b). If the capacitance is plotted versus the nitrogen content,
a nice increase trend of the capacitance with the increase of the nitrogen amount is seen (Figure 10e) for
most reported materials in the literature, suggesting an important contribution of pseudo-capacitive
reactions to the overall performance. However, it can be noticed that for our materials the capacity is
lower compared to other materials and in particularly for the richer N-doped sample. In this particular
case, the high resistance of these materials induced by the high amounts of oxygen (Figure 10d,f)
may explain the very low capacitance. Another parameter that can be considered to explain the
lower capacitance values maybe the carbon pore size. It is well known that the capacity is improved
when the carbon pore size approaches the size of electrolyte ions and the maximum capacitance was
demonstrated to be achieved for pore with size ~0.7 nm [16,17,42]. However, in many works this useful
information regarding the micropore size is often not provided (Table 3) which makes it difficult to
understand the storage mechanisms in complex doped carbons. In the present materials the micropore
size is centered on ~0.6 nm, which may be considered rather small to ensure effective diffusion of
electrolyte into the microporosity and the formation of the electrochemical double layer [42].
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Taking into consideration these results, it can be highlighted that several carbon characteristics
(conductivity, porosity and functionalities) are impacting the electrochemical capacitance. The optimal
carbon must combine firstly good electronic properties and high amounts of nitrogen but also optimal
porosity. Therefore, the prepared materials are meet most of these requirements; nevertheless,
their performances may be improved by enlarging the micropore size and amount. An activation
step already demonstrated the utility in order to improve the porosity and to achieve higher
capacitance [8,43] and can be implemented further for these materials.

Table 3. Literature review on N-doped mesoporous carbon electrochemical performances in H2SO4

electrolyte along with their specific surface area and nitrogen content.

Material Name SSA
m2·g−1

Pore Volume
cm3·g−1

Pore Size
nm N wt % Capacitance

F·g−1
Current Rate

A·g−1 Refs.

CESM-300 221 0.13 <3 nm 8.5 214 2 [44]
CA800 514 0.089 - 10.9 235 2 [45]

N-OMC 320 0.21 3.2 11.6 216 0.1 [46]
MR800 332 0.20 1.6–3.0 4.0 117 1 [47]

H-NMC-2.5 537 0.47 14.8 13.1 244 0.5 [21]
ACM-5 551 0.32 - 3.1 75.6 10 * [48]

NNCM-0.5 593 1.7 - 5.1 170 0.1 [49]

* −mV·s−1.

4. Conclusions

An eco-friendly and facile direct synthesis route based on co-assembly of a green phenolic
resin (phloroglucinol/glyoxylic acid), guanine and a soft-template, to design N-doped mesoporous,
is demonstrated in this work. Distinct carbon textures and high nitrogen contents could be obtained
by tuning several experimental parameters. The synthesis procedure and the amount of template
strongly influenced the mesoporosity but also the microporosity of the carbon while the thermal
annealing induces also modification in the surface functionalities. The 13C NMR studies evidenced
cross-linking reactions between phloroglucinol and glyoxylic acid and no covalent bonds formation
with guanine. The successful assembly of the guanine with the phenolic resin via H-bondings
and with the hydrophilic moieties of the template micelles resulted in ordered mesostructures
with uniformly dispersed nitrogen in the carbon framework. The electrochemical performances
as electrodes in supercapacitor were strongly impacted by the resistance of the materials. For low
annealing temperature (600 ◦C) the nitrogen and oxygen content in the materials is very high inducing
high resistance and consequently low capacitance. Increasing the annealing temperature led to the
removal of oxygen/nitrogen groups, a decrease in the resistance and improvement of the capacitance.
The maximum achieved capacitance was 97 F·g−1 for materials treated at 750 ◦C which combines high
surface area, high conductivity and proper amounts of heteroatoms.
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