Article Adsorption of Bovine Serum Albumin on Carbon-Based Materials

Mykola Seredych ¹, Lyuba Mikhalovska ², Sergey Mikhalovsky ² and Yury Gogotsi ^{1,*}

- ¹ Department of Materials Science & Engineering and A.J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, PA 19104, USA; ms4427@drexel.edu
- ² School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK; l.mikhalovska@brighton.ac.uk (L.M.); s.mikhalovsky@brighton.ac.uk (S.M.)
- * Correspondence: gogotsi@drexel.edu; Tel.: +1-215-895-6446; Fax: +1-215-895-1934

Figure S1. Oxidized with nitric acid (50%) expanded graphite in distilled water during washing.

Figure S2. (a) UV-visible absorption spectra of bovine serum albumin (BSA) with increasing concentrations of BSA in PBS (1 X) at pH 7.2 and (b) BSA calibration curve at wavelength 278 nm.

Figure S3. N 1*s* core energy levels for aminated (EGr-N) sample (N-6 in pyridine; N-5 in pyrroles, pyridines, amines, amides).